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Reducing the mechanical mismatch between the stiffness of a neural implant and
the softness of the neural tissue is still an open challenge in neuroprosthetics.
The emergence of conductive hydrogels in the last few years has considerably
widened the spectrum of possibilities to tackle this issue. Nevertheless, despite the
advancements in this field, further improvements in the fabrication of conductive
hydrogel-based electrodes are still required. In this work, we report the fabrication of
a conductive hydrogel-based microelectrode array for neural recording using a hybrid
material composed of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), and
alginate. The mechanical properties of the conductive hydrogel have been investigated
using imaging techniques, while the electrode arrays have been electrochemically
characterized at each fabrication step, and successfully validated both in vitro and
in vivo. The presence of the conductive hydrogel, selectively electrodeposited onto the
platinum microelectrodes, allowed achieving superior electrochemical characteristics,
leading to a lower electrical noise during recordings. These findings represent
an advancement in the design of soft conductive electrodes for neuroprosthetic
applications.

Keywords: conductive hydrogel, conjugated polymers, electrode array, electrochemistry, neural recordings

INTRODUCTION

In neuroprosthetics, the realization of a performing interface between an implant and the soft tissue
is of primary importance for both the preservation of the neuronal environment, and the correct
functioning of the device (Lacour et al., 2016). The main approaches taken into consideration for
this purpose are essentially two: the modification of the electrode surface with conductive polymers
(CPs) or carbon nanotubes (CNTs) (Abidian et al., 2010; Guex et al., 2015; Charkhkar et al., 2016)
and the encapsulation of the device in a hydrogel matrix (Kim et al., 2010; Heo et al., 2016).
CPs and CNTs are versatile carbon-based materials already exploited in the fabrication of several
neuroprosthetic devices (Antognazza et al., 2015; Khodagholy et al., 2015; Feyen et al., 2016; Xiang
et al., 2016; Ferlauto et al., 2018). In particular, their incorporation in the active sites of recording or
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stimulating neural devices is known to lower the impedance
and the stiffness of metal electrodes, to allow both electronic
and ionic charge transport, and to promote cell adhesion and
proliferation (Abidian et al., 2010; Harris et al., 2013; Balint et al.,
2014; Martin and Malliaras, 2016; Rivnay et al., 2016; Simon
et al., 2016). Despite these attractive properties, these materials
still suffer from a Young’s modulus far higher than the one of the
tissue they are in contact with, potentially leading to important
implications in terms of foreign body reaction and ultimately to
the device failure (Salatino et al., 2017).

On the other hand, hydrogels are natural, or synthetic
materials based on a three-dimensional network of polymer
chains that can retain a large amount of water and are already
used in a variety of biomedical applications, ranging from contact
lenses to wound healing, and drug delivery (Buwalda et al., 2014;
Caló and Khutoryanskiy, 2015; Ullah et al., 2015; Bryant and
Vernerey, 2018). Their tunable mechanical properties, high water
content, high porosity, and soft consistency mimic the ones of
living tissues; this makes hydrogels extremely attractive for neural
prostheses.

To combine the strengths of these two approaches, the
exploitation of conductive hydrogels (CHs) as coatings for
microelectrodes in neural implants has recently emerged as a
promising strategy (Green et al., 2012, 2016; Goding et al.,
2017; Staples et al., 2017; Spencer et al., 2017). A CH on the
electrodes could in fact simultaneously guarantee appropriate
electrochemical and mechanical properties for the interaction
with the neural tissue.

To our knowledge, despite recent progress in this field, a
selective micro-sized confinement of CHs, with a thorough
electrochemical characterization at each fabrication step,
followed by in vitro and in vivo validation, is still missing
(Kleber et al., 2017; Staples et al., 2017). The aim of this work
is therefore to provide a comprehensive characterization of
a CH-based microelectrode array, consisting of a poly (3,4-
ethylenedioxythiophene)-poly(styrenesulfonate; PEDOT:PSS)
and alginate (A) coating (called conductive alginate, CA)
selectively electrodeposited on platinum (Pt) microelectrodes
to reduce the mismatch of the material properties at the
electrode-tissue interface.

MATERIALS AND METHODS

Electrode Arrays Used in the Study
Pt-based microelectrode arrays (MEAs) with various
geometries (linear or grid), electrode diameters (30, 100, or
400 µm), and electrode coatings (PEDOT:PSS, PEDOT:PSS/A,
PEDOT:PSS/CA, and Pt Black) have been fabricated and used in
this study. For structural and electrochemical characterization,
planar grid MEAs (g-MEAs) with 16 electrodes (4 × 4)
of 400 µm in diameter and a center-to-center distance of
1 mm were used. Electrodes were bare Pt, or Pt-coated with
PEDOT:PSS, PEDOT:PSS/A, and PEDOT:PSS/CA. For in vitro
validation, two planar MEAs with eight electrodes of 30 µm in
diameter were used: a bottom porous MEA (p-MEA) and a top
strip MEA (s-MEA). Pt electrodes were coated with Pt black or

with PEDOT:PSS/CA. For in vivo validation, penetrating linear
MEAs (l-MEAs) with 16 electrodes of 100 µm in diameter and a
center-to-center distance of 200 µm were used. Electrodes were
bare Pt or Pt-coated with PEDOT:PSS/CA.

Electrode Array Fabrication
Microelectrode arrays were fabricated on 4-inch silicon
(Si) wafers (thickness 525 µm) with a titanium-tungsten
alloy/aluminum release layer (TiW/Al, 200 nm/1 µm).
A polyimide (PI) layer (HD MicroSystems PI2611, 10 µm)
was spin-coated (1,400 rpm for 40 s) and then cured by
a soft bake (5 min at 65◦C and 5 min at 95◦C) followed
by a hard bake (1 h at 300◦C with nitrogen from 190◦C).
A titanium/platinum (Ti/Pt, 5 nm/150 nm) adhesive/conductive
layer was deposited by sputtering (Alliance Concept AC450).
A positive photoresist (AZ1512, 2 µm) was deposited by
spin-coating and soft baked at 110◦C for 2 min before direct
exposure (Heidelberg Instruments MLA150, 405 nm) and
development. Electrode shaping and photoresist removal were
performed by chlorine dry etching (Corial 210IL) followed
by oxygen plasma (500 W for 30 s). MEAs were encapsulated
by spin-coating an adhesion promoter (VM651, 1,000 rpm
for 10 s + 3,000 rpm for 30 s), spin-coating and soft baking
a first PI layer (PI2611, 10 µm) followed by a second layer
(10 µm), and curing (soft and hard bake). Then, a Si hard mask
(1 µm) was deposited by sputtering (Alliance Concept AC450)
and the photolithography was repeated. Dry etching (Corial
210IL) of Si and eventually PI and photoresist (respectively,
chlorine and oxygen chemistries) allowed the exposure of
Pt pads and electrodes. A final Si dry etching removed the
remaining hard mask. An extra etching step was performed on
p-MEAs to fabricate a porous substrate (7.5 µm diameters holes
with a pitch of 20 µm). The MEAs were cut by a laser cutter
(Optec MM200-USP) and released by Al anodic dissolution
for 15 h.

PEDOT:PSS Coating
An aqueous solution of 0.1 wt% 3,4-ethylenedioxythiophene
(EDOT 97%, 483028, Sigma) and 4 wt% poly(4-styrenesulfonic
acid) solution (PSS, Mw ~75,000, 561223, Sigma) in deionized
water was mixed by ultrasonication for 5 min before being
filtered with 0.2 µm PTFE filters (431229, Corning). The
electropolymerization of PEDOT:PSS was obtained using a
potentiostat (Compact Stat, Ivium). MEAs were immersed in
the solution together with a silver/silver-chloride (Ag/AgCl)
reference electrode and a Pt counter electrode. The potential was
increased from 0.4 to 0.9 V in 5 steps of 0.1 V and 2 s in duration.
Then, the potential was held at 0.9 V for 40 s. The protocol was
repeated twice and MEAs were finally cured at 65◦C for 3 h.

Alginate and Conductive Alginate
Coating
1% Alginate mother solution was prepared by dissolving 1 wt%
of alginic acid from brown algae (A2033, Sigma) and 0.5 wt% of
calcium carbonate (CaCO3 −99%, C5929, Sigma) in phosphate-
buffered saline (PBS). The solution was then stirred and heated at
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100◦C for 1 h and all further alginate deposition solutions with
different concentrations were obtained by its dilution (Cheng
et al., 2011). First, an adhesion layer composed of 0.1 wt% EDOT
and 4 wt% PSS in alginate deposition solution was prepared,
ultrasonicated for 5 min, and electropolymerized (as in section
“PEDOT:PSS coating”). Then, alginate was electropolymerized
from the alginate deposition solution with a voltage increase from
0 to 2 V without any intermediate step and kept constant for 2
s. MEAs were then stored in a hardening solution consisting of 1
wt% of calcium chloride (CaCl2, C7902, Sigma) in PBS for at least
30 min. To obtain a CA, the electropolymerization of PEDOT:PSS
was then repeated twice (as in section “PEDOT:PSS Coating”).

Platinum Black Coating
Platinum electrodes were coated with platinum black using
a platinum solution made of: 2 g H2PtCl6 · xH2O, 16 mg
C4H6O4Pb · 3H2O, and 58 g of H2O (Sigma). A 700 mV
signal at 300 Hz was applied via a 4,284A Precision LCR Meter
(Keysight Technologies) until the electrode impedance reached
a magnitude of 8 k� and a phase of −45◦. About 10–15 s were
required to achieve sufficient plating corresponding to a black
platinum coating thickness of 300 to 400 nm.

PEGDMA Coating
The 5 wt% of Poly(ethylene glycol) dimethacrylate (PEGDMA,
Mn 20,000, 25406-5, Polysciences), 5 wt% of PEGDMA
(Mn 550, 409510, Sigma), and 0.5 wt% of 2-hydroxy-4′-
(2-hydroxyethoxy)-2-methylpropiophenone photoinitiator
(IRGACURE 2959, 410896, Sigma) were mixed in PBS and
ultrasonicated until complete dissolution. MEAs were dipped
in this solution for 3 s and then exposed to UV light (365 nm,
Thorlabs) for 15 min. Afterward, MEAs were stored inside the
hardening solution (1 wt% of CaCl2 in PBS).

Microscopic Characterization
The thickness of the PEDOT:PSS double layer was measured
using a Bruker’s DektakXT Stylus Profiler. The topography and
the elastic modulus surface map were taken using a Dimension
Icon atomic force microscope (AFM, Bruker); measurements
were performed in liquid (1 wt% of CaCl2 in PBS), with a
ScanAsyst Fluid + probe (Bruker, nominal spring constant 0.7
N m−1). Each scan contains 512 lines of 512 data points across
a 3 µm × 3 µm surface. Images were analyzed using Gwyddion
software. For each map, the average stiffness value with its SD
was obtained. The variance of the stiffness was calculated as the
square of the standard deviation.

Electrochemistry
Electrochemical characterizations were performed with a three-
electrode (Ag/AgCl reference electrode, Pt counter electrode)
potentiostat (Compact Stat, Ivium) in PBS (pH 7.4) at room
temperature. Impedance spectroscopy (IS) was performed
between 1 Hz and 1 MHz with an AC voltage of 50 mV. Cyclic
voltammetry (CV) was obtained by sweeping a cyclic potential at
a speed of 50 mV s−1 between −0.6 and 0.8 V for Pt electrodes
and between −0.9 and 0.8 V for coated electrodes. For each

electrode, the average response over 5 cycles was calculated;
the anodic and cathodic charge storage capacities (CSCs) were
extrapolated from the integration of the respective currents.

Cell Culture
Human neural stem cells from induced pluripotent stem cells
(iPSCs) were obtained from MTI-Globalstem (GSC-4301,
Thermo Fisher Scientific). They were cultured and maintained
on 1:200 GelTrex LDEV-free hESC quality (A1413302, Thermo
Fisher Scientific) coated flask in a proliferation medium
composed of neurobasalTM medium (21103049, Thermo
Fisher Scientific) supplemented with 2% B-27TM supplement
(17504001, Thermo Fisher Scientific), MEM non-essential amino
acids (11140050, Thermo Fisher Scientific), 1% GlutamaxTM

supplement (35050061, Thermo Fisher Scientific), and 20 ng
ml−1 FGF-2 (100-18B, PeproTech). For the generation of
three-dimensional neurospheres (NSs), cells were detached at
approximately 80% confluence with pre-warmed StemProTM

AccutaseTM (A1110501, Thermo Fisher Scientific) for 1–2 min.
The single cell suspension was centrifuged for 3 min at 320 g,
suspended in proliferation medium and cells were counted.
500,000 cells in 3 ml proliferating medium were added into
a non-treated six-well plate. The plate was left under orbital
agitation (80 rpm) for 4 days in a cell culture incubator at 37◦C
(100% humidity, 5% CO2). 24 h later, the free-floating three-
dimensional NSs were formed by aggregation. Four days after
seeding, the NS size was checked and switched to a differentiation
medium composed of NeuralQTM Basal Medium (GSM9420,
GlobalStem), GS21T Supplement (GSM3100, GlobalStem),
and 1% GlutamaxTM supplement (35050061, Thermo Fisher
Scientific). Cultures were maintained in orbital agitation
(80 rpm) for 6 weeks. A breathable plate sealer was added in
order to reduce medium evaporation. The medium was changed
once a week (3 ml). Mature NSs were then transferred to a 6 mm
patch of pre-cut circular hydrophilic membrane supported by
a six well insert (PICMORG50, Merck-Millipore) and kept in
the incubator for 1 week. The use of membrane pre-cut patches
facilitates the NS manipulation.

Electrophysiology in vitro
Neurospheres on membranes were transferred with forceps
under a dissection microscope (Leica Microsystems) onto the
center of a p-MEA device. After 1 day of recovery, NSs top
surface was put in contact with an s-MEA device (coated with
platinum black or conductive alginate) and electrophysiological
recordings were performed using an amplifier (W2100-HS32,
Multi Channel Systems) and a data acquisition system (W2100,
Multi Channel Systems). The signal-to-noise ratio (SNR) was
evaluated as follow: for each electrode, the noise was quantified
as the standard deviation of the voltage during a 5 min
recording, while the signal was the average peak-to-peak
voltage of the spikes recorded in the same 5 min period.
For each electrode, the SNR was computed as the signal
divided by the noise. Therefore, electrodes unable to detect
neural spikes have been excluded (n = 11 out of 16 and
n = 4 out of 21, respectively, for s-MEA with Pt black and
s-MEA-CA).
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FIGURE 1 | (A) Pictures of a fabricated g-MEA with 400 µm diameter electrodes. The scale bar is 400 µm. (B) Schematic of the soft CA-based electrode structure.
(C) Step-by-step coating process of the CA-based electrodes. (D) Selective electroplating of alginate with added Rhodamine B on the central Pt electrode only. The
scale bar is 150 µm. (E) AFM topography map of a 3 × 3 µm surface area of the CA (left) and the corresponding elastic modulus surface map (right). The scale bar
is 400 nm. (F) Quantification of the mean (± SEM) stiffness and variance (n = 6 electrodes, 1 map per electrode).

Electrophysiology in vivo
Animal experiments were performed according to the animal
authorization GE13416 issued by the Département de l’emploi,
des affaires sociales et de la santé (DEAS), Direction générale de
la santé of the Republique et Canton de Geneve, Switzerland.
Two months old C57BL6J mice were anesthetized with isoflurane
inhalation (induction 0.8–1.5 l min−1, 4–5%; maintenance 0.8–
1.5 l min−1, 1–2%). A 0.5 mm small craniotomy was opened in
the correspondence of the visual cortex (identified by stereotaxic
coordinates). MEAs were implanted in the cortical layers using a
micromanipulator (SM-15R, Narishige). Light flashes (4 ms, 30
cd s m−2) were delivered using a Ganzfeld stimulator (Biomedica
Mangoni) positioned close to the contralateral eye and visually
evoked cortical potentials (VEPs) were recorded and filtered
(0.1–300 Hz).

Statistical Analysis and Graphical
Representation
Statistical analysis and graphical representation were performed
on Prism (GraphPad Software Inc.). The normality test
(D’Agostino & Pearson omnibus normality test) was performed

in each dataset to justify the use of a parametric or non-
parametric test. In each figure p-values were represented as:
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001. Data
were always reported as mean ± SD or ± SEM; n identifies the
number of electrodes.

RESULTS

Microelectrode arrays with various geometries (linear or grid)
and electrode diameters (30, 100, or 400 µm) have been
fabricated using PI as substrate and superstrate and Pt for
the electrodes, traces, and pads (Figure 1A). Soft electrodes
consisting of a first layer of PEDOT:PSS and a second layer of
CA have been then electrodeposited on top of the Pt electrodes
(Figures 1B,C). With a mechanical profilometer the average
(± SD, n = 12) thickness of the PEDOT:PSS layer has been
quantified as 1.18 ± 0.69 µm. The sharp confinement of the
conductive alginate coating on top of the electrodes has been
obtained by ionic crosslinking via electroplating (Cheng et al.,
2011). This has been experimentally visualized and validated by
adding Rhodamine B to the hydrogel (Figure 1D). The map of
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FIGURE 2 | Quantification of the electrochemical characteristics of g-MEA with 400-µm diameter electrodes (n = 16) at each fabrication step. (A) IS (magnitude and
phase) and CV performed at each fabrication step. Colored lines represent average values and gray lines the ± SD. (B) Impedance magnitude at 1 kHz (p < 0.0001,
Kruskal–Wallis test with Dunn’s multiple comparisons test). (C) Impedance phase at 1 kHz (p < 0.0001, one-way ANOVA with Tukey’s multiple comparisons test).
(D) Anodic CSC (p < 0.0001, Kruskal–Wallis test with Dunn’s multiple comparisons test). (E) Cathodic CSC (p < 0.0001, Kruskal–Wallis test with Dunn’s multiple
comparisons test). In all panels P:PSS means PEDOT:PSS.

the elastic modulus on the surface of the CA (Figure 1E) has
been obtained through peak-force quantitative nanomechanical
mapping atomic force microscopy (PF-QNM AFM) of the
hydrated sample. The variability of the modulus values points out
the presence of an interpenetrating network of a stiffer material
within a softer embedding, thus revealing the co-presence of the
two components of the CA. The mean (± SEM) elastic modulus
measured from various electrodes (n = 6) has been quantified in
12.29 ± 5.67 MPa with a mean (± SEM) variance of 6.10 ± 4.21
MPa2 (Figure 1F).

IS and CV have been performed at each fabrication step on
g-MEAs with 400 µm electrodes to evaluate their electrochemical
characteristics (Figure 2). In agreement with the literature
(Staples et al., 2017), CA-based electrodes showed (mean ± SD,
n = 16) a lower impedance magnitude (4.26 ± 0.29 k� at

1 kHz), a resistive behavior (−3.59 ± 1.71◦ at 1 kHz), and a
larger charge storage capacity (CSC, anodic: 12.96 ± 1.63 mC
cm−2, cathodic: 8.62 ± 0.90 mC cm−2) in comparison with the
other conditions tested (bare Pt, Pt-coated with PEDOT:PSS,
and Pt-coated with PEDOT:PSS and pure alginate). Amongst
the different concentrations of alginate within the conductive
hydrogel, the lowest (0.125%) has been chosen due to its
effectiveness in constraining the gel on the electrode sites. In
fact, higher gel concentrations will form a continuous layer
over the entire electrode array due to the higher viscosity
of the solution. From the electrochemical point of view, an
improvement of impedance magnitude and phase of bare
alginate coated electrodes was observed by lowering the alginate
concentration, while no effect was appreciable on CA-based
electrodes (Figure 3).
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FIGURE 3 | Quantification of the electrochemical characteristics of g-MEA with 400-µm diameter electrodes at different alginate concentrations (1%, n = 6; 0.5%,
n = 16; 0.25%, n = 10; 0.125% n = 16); bare alginate on the left and CA on the right. (A) Impedance magnitude at 1 kHz (alginate p < 0.0001, CA p < 0.001,
Kruskal–Wallis test with Dunn’s multiple comparisons test). (B) Impedance phase at 1 kHz (alginate p < 0.0001, CA p < 0.01, one-way ANOVA with Tukey’s multiple
comparisons test).

FIGURE 4 | Validation in vitro. (A–D) Quantification of the impedance magnitude at 1 kHz (p < 0.0001, t-test), impedance phase at 1 kHz (p < 0.0001, t-test),
anodic CSC (p < 0.05, t-test), cathodic CSC (p < 0.01, t-test) of s-MEA (n = 7 for IS and n = 3 for CV) and s-MEA-CA (n = 8). The electrode diameter is 30 µm.
(E) Sketch of the recording set-up. (F) Picture of an s-MEA. (G) Picture of a p-MEA with the NS on top. (H) Picture of the set-up with p-MEA, NS, and s-MEA.
(I) Representative recordings from a p-MEA, an s-MEA, and an s-MEA-CA. For each, on the left is a representative raw trace and on the right the overlay of the spike
waveform from the same electrode. The white traces represent the baseline (0 µV), while the red lines are the averages of the spike waveforms.
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FIGURE 5 | Noise performance of CA-based electrodes. (A) Mean (± SD) of the noise level between p-MEA (n = 29), s-MEA (n = 16), and s-MEA-CA (n = 21);
p < 0.0001 Kruskal–Wallis test with Dunn’s multiple comparisons test. (B) Mean (± SD) noise level over the time of s-MEA-CA (n = 21). (C) Spike raster plot of four
NSs over 22 h of recordings. s-MEA (two NSs) and s-MEA-CA (two NSs) have eight electrodes each.

FIGURE 6 | Validation in vivo. (A) Picture of a penetrating MEA with CA electrodes. (B) Experiment sketch. (C) Representative single-sweep recordings from 4 (out
of 8) CA-based electrodes (diameter 100 µm, black electrodes in B from an implanted array on the left and representative averaged recordings (average of 10
consecutive sweeps) from 4 (out of 8) bare Pt electrodes (diameter 100 µm) on the right. The dotted gray line represents the flash occurrence (4 ms, 30 cd s m−2).
The main peaks of the VEP are highlighted in the trace of electrode 8.

The detailed characterization of the CA-based electrodes has
been performed at 1 kHz since this frequency is a standard
reference for application in neuroprosthetics. It should be noted
(Figure 2A), that at lower frequencies (<100 Hz), the mean
impedance magnitude of PEDOT:PSS coated electrodes starts
to increase, while the mean impedance magnitude of CA-
based electrodes remains remarkably low till a frequency of
10 Hz. Below 10 Hz, it starts to increase but remains at values
which are 10 times lower than those of PEDOT:PSS coated

electrodes. This could be very relevant for several biomedical
applications in which low-frequency signals are collected, such
as for electrocardiographic and electromyographic tattoo skin
sensors (Zucca et al., 2015; Wang et al., 2018).

The performance of the CA-based electrode array in recording
neuronal signals has been tested in vitro on NSs formed by human
neural stem cells derived from iPSCs. CA-based electrodes
(30 µm in diameter) have been compared to Pt/Pt black ones,
which represent the standard reference in neuronal recordings.
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FIGURE 7 | (A) Schematic of the soft electrode structure coated with PEGDMA. (B) Mean impedance magnitude, phase, and cyclic voltammetry for CA (red) and
PEGDMA (black) 400 µm diameter electrodes (n = 15). (C) Quantification of the impedance magnitude at 1 kHz (p = 0.9568, t-test, n = 15). (D) Quantification of the
impedance phase at 1 kHz (p < 0.001, t-test, n = 15). (E) Quantification of the anodic CSC (p < 0.0001, t-test, n = 15). (F) Quantification of the cathodic CSC
(p < 0.0001, t-test, n = 15).

As in the previous case, the electrochemical characterization
of CA-based electrodes showed (mean ± SD, n = 8) a lower
impedance magnitude (7.29 ± 1.09 k� at 1 kHz), a more
resistive behavior (−11.82 ± 2.46◦ at 1 kHz), and an increase
in the CSC values (anodic: 18.96 ± 4.68 mC cm−2, cathodic:
16.46 ± 3.57 mC cm−2) with respect to Pt/Pt black electrodes
(Figures 4A–D). For in vitro validation, four NSs have been
placed onto four p-MEAs with 30 µm Pt/Pt black electrodes,
used as a reference for tissue viability. The top side of each NS
has been contacted with an s-MEA embedding either 30 µm
Pt/Pt black (s-MEA) or 30 µm CA-based (s-MEA-CA) electrodes
(Figures 4E–H). Both p-MEA and s-MEA showed a noise level
larger than s-MEA-CA (Figure 4I), that has been quantified as
the standard deviation of the voltage recordings. In agreement
with IS (Figure 4A), CA-based electrodes (s-MEA-CA) showed a
better noise level (Figure 5A) compared to Pt/Pt black electrodes
(p-MEA and s-MEA). Since NSs are seeded on top of the p-MEA,
they had a stronger adhesion to the tissue, which translated into
the detection of spikes with a higher peak-to-peak voltage with
respect to any s-MEA (with or without CA). On the contrary,
the s-MEA suffered from a weak contact to the NSs due to their
spherical surface and the flexibility of the PI strip; this resulted

in the detection of spikes with a lower peak-to-peak voltage
(Figure 4I). However, regardless of the weaker contact, the
s-MEA-CA devices presented a lower noise level in comparison
with the s-MEA and p-MEA (Figure 5A), which turned into a
better SNR with respect to the equivalent condition with s-MEAs:
mean SNRs (± SD) are 6.75 ± 0.87 (n = 5) and 8.20 ± 1.35
(n = 17), respectively, for s-MEA with Pt black and s-MEA-
CA (p < 0.05, unpaired t-test). Moreover, the noise level of
s-MEA-CA devices was not affected over a time-period of 22
h (Figure 5B), in which neuronal spikes have been detected
(Figure 5C). The frequency of the detected spikes decreases after
about 16 h of recordings. This effect has not been associated with
a deterioration of the CA-based electrodes since both electrode
types (s-MEA and s-MEA-CA) showed a similar reduction. On
the contrary, it could be owed to a reduction of the NS viability.

The ability of CA-based electrodes to detect neuronal activity
has also been proven in vivo. Penetrating CA-based MEAs
with linear geometry and electrode diameters of 100 µm have
been implanted in the visual cortex of mice (Figure 6A).
Due to the thin thickness of the mouse visual cortex, only
the first eight electrodes of the probe (16 in total) have
been inserted over the entire cortical thickness (Figure 6B).
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VEPs have been successfully recorded upon light stimulation
of the contralateral eye (Figure 6C, left). Because of the low
impedance of the CA electrodes, individual responses to a single
flash highlighted all main components (positive and negative
peaks, respectively, P and N) of the cortical VEP, without
synchronous averaging. As a qualitative comparison, the cortical
VEP recorded with bare Pt electrodes (diameter of 100 µm) upon
synchronous averaging of 10 consecutive responses have been
shown (Figure 6C, right). Qualitatively, it is visible that CA-based
electrodes have better performances even without synchronous
averaging. Lastly, taking into consideration the possibility of the
alginate to dissolve with time during chronic implantation (Lee
and Mooney, 2012), we also verified that a protective coating of
the probe with Poly(ethylene glycol) dimethacrylate (PEGDMA),
created by dip-coating, would not alter the electrochemical
properties of the CA-based electrodes (Figure 7).

CONCLUSION

The use of CA as a soft coating of MEAs is an attractive
strategy to both reduce the mechanical mismatch at the electrode-
tissue interface and improve the electrochemical properties
of microelectrodes (Green et al., 2012, 2016; Goding et al.,
2017). Our results showed a selective and sharp micro-sized
confinement of CA onto the metallic electrodes of MEAs, which
is one of the open challenges in the field. In addition, we provided
a comprehensive and complete characterization of CA-based
MEAs via electrochemical, mechanical, and electrophysiological
analyses. With respect to Pt and Pt/Pt black electrodes, which
are the standard materials employed in clinical devices, the soft
CA-based microelectrodes presented in this work demonstrated
lower impedance magnitude, higher CSCs, and a more resistive
behavior. This turns into an improved SNR during neuronal
recordings. These results represent an important advancement

for the fabrication of performing neuroprosthetic devices able to
reduce the mechanical and electrical mismatch at the electrode-
tissue interface.
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