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Speech or programmed sentences must often be interrupted in order to listen to and
interact with interlocutors. Among many processes that produce such complex acts, the
brain must precisely adjust breathing to produce adequate phonation. The mechanism
of these adjustments is multifactorial and still poorly understood. In order to selectively
examine the adjustment in breath control, we recorded respiratory-related premotor
cortical potentials from the scalp of human subjects while they performed a single
breathing initiation or inhibition task. We found that voluntary breathing is initiated if,
and only if, the cortical premotor potential activity reaches a threshold activation level.
The stochastic variability in the threshold correlates to the distribution of initiation times
of breathing. The data also fitted a computerized interactive race model. Modeling
results confirm that this model is also as effective in respiratory modality, as it has
been found to be for eye and hand movements. No modifications were required to
account for respiratory cycle inhibition processes. In this overly simplified task, we
showed a link between voluntary initiation and control of breathing and activity in a
fronto-median region of the cerebral cortex. These results shed light on some of the
physiological constraints involved in the complex mechanisms of respiration, phonation,
and language.

Keywords: motor control, countermanding task, breathing, decision making, inhibition (psychology)

INTRODUCTION

In vertebrate animals, the central nervous system generates a rhythmic command that
drives the contraction of respiratory muscles in order to move air in and out of the
lungs. The mechanisms of this automatic control have been deeply investigated. This
control relies primarily on groups of brainstem neurons in dynamic interaction (Feldman
et al., 2013) that generate the respiratory rhythm and adjust it to the metabolic activity
of the body. Voluntary breathing commands can also arise from higher brain structures,
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and the respiratory muscles are represented within the primary
motor cortex (Smith, 1938; Gandevia and Rothwell, 1987;
Similowski et al., 1996). Patients with locked-in syndrome retain
emotional influences on breathing but have no voluntary control
of respiratory movements (Heywood et al., 1996). Over the last
decade, functional studies in humans have shown that neuronal
activity in the premotor cortex and the supplementary motor
areas are also involved when subjects are exposed to inspiratory
resistance and breathe against it without being instructed to do
so (Raux et al., 2007, 2013). Cortico-subcortical cooperation in
generating the neural drive to breathe has been demonstrated
in patients with deficient respiratory automatism (Tremoureux
et al., 2014a), in normal subjects during hypocapnia-related
inhibition of the respiratory automatism (Dubois et al., 2016), in
patients with inspiratory muscle weakness (Georges et al., 2016),
and in patients with abnormally high inspiratory resistances
(Launois et al., 2015). In all cases their electroencephalographic
activity suggests involvement of the premotor cortex. In this
study we pushed the argument further by testing the hypothesis
of a causal involvement of the cerebral cortex in the voluntary
initiation and inhibition of a single breath command, and tested
it by recording respiratory-related premotor cortical potentials in
the scalp of awake subjects during such maneuvres.

Although, research on voluntary respiratory control is
most often based on neurophysiological studies, computational
modeling also has a role to play. Among the multitude of existing
computational models, the race model offers an interesting
method to investigate breathing modality in the context of
an inhibitory task. This task consists of two types of trials:
Go trials, where subjects were instructed to perform an action
as quickly as possible, and Stop trials, where subjects had to
inhibit this action. This paradigm is useful when studying the
ability of a subject to inhibit an action, and allows to the time
needed to stop an action to be assessed (Stop Signal Reaction
Time or SSRT), which is not observable directly. Logan et al.
(1984) developed a race model to estimate the SSRT in an
oculomotor countermanding task. Beyond the access to the
time needed to cancel an action, this model provides a way
to explore functional mechanisms responsible for inhibition
performance. This model involves two independent units, a go
and a stop process, performing a race from a baseline until one
of these processes crossed an arbitrary threshold; the winner of
this race is the first process that crosses the threshold. More
recently, Boucher et al. (2007a) added interactions between go
and stop units to account for electrophysiological recordings
of single units in macaques . Race models have been tested
in eye and hand modality (Boucher et al., 2007b) but never,
to our knowledge, on respiratory modality. In this study,
we tested the modified Boucher et al.’s race model to assess
whether it would be qualitatively adequate to account for
respiratory data in the particular context of a countermanding
task.

Our study focused on the magnitude and timing of the fronto-
median cortical premotor potential activity, examining whether
its stochastic variability could account for breathing initiation
time and inhibition. This study is an important contribution to
an improved understanding of how humans initiate vocalizations

and the disentanglement of the distinct and shared processes
within the complex mechanisms of respiration, phonation, and
language.

MATERIALS AND METHODS

Subjects and Session Design
This study was part of a wider respiratory-related cortical activity
research program that has been approved by the local ethical
committee. The subjects gave informed consent to participate.
Data were collected from six human subjects (five males, mean
age 31 years ± 8). Each subject participated in two sessions with
256 NoStop trials and two sessions with 128 NoStop and 128
Stop trials. Each session lasted for approximately 60 min. The
trial order and the session order were both randomized across
subjects. All subjects reported having normal or corrected-to-
normal vision.

Ventilatory Movement Recording
The subjects’ ventilatory movements were measured using
custom-built magnetometers (Mead et al., 1967). Two magnets
were positioned, one ventrally and one dorsally, at the level of
the umbilicus using an elastic belt. This allowed us to measure
abdominal expansion, a direct indicator of diaphragmatic
contraction insofar as the diaphragm is the only muscle whose
contraction increases abdominal circumference. A PC with a
NI-DAQ analog acquisition card (National Instruments Corp.,
Austin, TX, United States) running the Xenomai operating
system for parallel real-time acquisition (sampling frequency
1,000 Hz) recorded ventilatory movements and the various
stimuli presented on-screen during the sessions.

Initiation Breathing Task – NoStop Trials
Subjects sat 57 cm away from a TV display monitor (Dell 21”).
Each trial started with the presentation of two purple horizontal
bars centered on a black background. The two bars were vertically
separated by 10◦ of visual angle (Figure 1). After a random
delay ranging from 500 to 1,000 ms, a green bar (Go signal)
appeared 6◦ above the top fixation bar, instructing the subject
to initiate inspiration. To provide feedback of the amplitude
of the corresponding evoked respiratory response, the subject’s
abdominal movements were displayed on the screen as a cross
that moved up and down with abdominal expansion (see below).
A calibration procedure was performed at the beginning of each
block to adjust gain and offset so the respiration amplitude
modulation remained within the range of the breathing initiation
bars.

Countermanding Breathing Task – Stop
Trials
As in the initiation-breathing task, each trial started with the
presentation of two purple horizontal bars centered on a black
background (Figure 1). The two bars were vertically separated
by 10◦ of visual angle. After a random delay ranging from 500
to 1,000 ms, a green bar (Go signal) appeared 6◦ above the top
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FIGURE 1 | Experimental setup: the respiratory movements of the subjects were assessed using a magnetometer that measured the distance between two
magnets. These were placed on the abdomen and on the back at the height of the umbilicus, and maintained in position with an elastic belt. This allowed us to
measure abdominal expansion, an indirect indicator of diaphragmatic contraction. During respiratory tasks, electroencephalographic potential (ERPs) signal were
recorded. Each trial started with the presentation of two purple horizontal bars (10◦ length of visual angle) centered on a black background. The two bars were
vertically separated by 10◦ of visual angle. After a random delay ranging from 500 to 1,000 ms, a green bar (Go signal) appeared 6◦ above the top fixation bar,
instructing the subject to initiate an inspiration. Abdominal movements were displayed on the subject’s screen as a cross that moved up and down in relation to
abdominal expansion and contraction to provide feedback to the subject of the amplitude of the evoked respiratory response. On 50% of trials (at random), after a
delay (Stop Signal Delay- SSD) ranging from 48 to 640 ms, a green bar was presented in the center of the screen, instructing the subject to stop the inspiration.
A failure to inhibit inspiration was classed as a non-canceled trial, while a successfully inhibited inspiration was classed as a canceled trial.

fixation bar, instructing the subject to initiate an inspiration.
Abdominal movements were displayed on the subject’s screen
as a cross that moved up and down according to abdominal
expansion and contraction to provide feedback to the subject of
the amplitude of the evoked respiratory response. A calibration
procedure was performed at the beginning of each block to adjust
gain and offset so the respiration amplitude modulation remained
within the range of the breathing initiation bars. In a second type
of trial – the task started with the presentation of two purple
horizontal bars centered on a black background. On 50% of
trials (at random), after a delay (Stop Signal Delay- SSD) ranging
from 48 to 640 ms, a green bar was presented in the center of
the screen, instructing the subject to stop his/her inspiration.
A failure to inhibit inspiration was classed as a non-canceled trial,
while a successfully inhibited inspiration was classed as a canceled
trial.

Reaction Time Measurement
The ventilatory movement signal was processed offline using
Matlab (MATLAB Release 2012b, The MathWorks, Inc., Natick,
MA, United States). The onset of breathing movement was

determined using a derivative of the abdominal expansion signal
based on a threshold limit compared with the resting breathing
signal. The reaction time was the difference between a Go signal
presentation and the onset of inspiration.

EEG Signal Recording
During respiratory tasks, electroencephalographic (EEG) signal
was recorded using nine active electrodes positioned according to
the international 10–20 system, recorded with a V-Amp system,
(Brain Product, Munich, Germany). The reference was calculated
from the electrodes A1 and A2. The impedance of each electrode
was estimated between 5 and 10 k� and was always lower less
than 25 k�. Abdominal ventilatory movements and the EEG
signal were later synchronized using markers.

EEG Signal Processing
Ensemble averaging was first performed to improve the signal-
to-noise ratio and reveal the potentials, in a manner typical
to the study of evoked potentials. The continuously recorded
electroencephalographic signal was split into three epochs,
each of one second, extending from 0.5 s before to 2.5 s
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after the Go signal presentation (green bar). A thresholding
method was used to detect artifact and periods exhibiting
activity ± 3 standard deviation of the mean were discarded.
The rejection rate was approximately 30% in the various
sessions. Trials were sorted into five (NoStop sessions) or
three (NoStop trials of Stop sessions) groups according to
reaction time, and the EEG signal was averaged point by
point.

Race Model
The interactive race model is composed of a go unit and a stop
unit. Their activity is governed by two stochastic differential
equations (Usher and McClelland, 2001) with a null leakage
factor:

dago(t) = µgo − ßstop.astop(t) + ξ go (1)

dastop(t) = µstop − ßgo.ago(t) + ξ stop (2)

Each unit is defined by three parameters: the mean growth
rate (µ); the inhibition parameter on the other unit (ß); and
a Gaussian noise term (ξ ) with a mean of zero variance of
σ2

go or σ2
stop, where a represents the activity of the unit. The

race finished when a unit crossed the threshold, fixed at 1,000
(arbitrary units), within a limit of 800 ms. If unit activity is
negative during the race, the activity was reset to zero at this point
(non-physiologic value). An additional parameter, D, was added
to the model to take into account the stimulus encoding that
occurred in the go and stop units (respectively Dgo and Dstop).
Dgo was determined and set constant for each subject using values
from the EEG recordings. Dgo was calculated when the activity
signal equaled the baseline mean plus five standard deviations
in the EEG signal. Dstop, µ, ß, and σ are the unconstrained
parameters of the model.

We tested these interactive race models to find the parameters
that best fitted the data from six subjects who performed two
sessions of a breathing countermanding task. Two sessions were
removed from the analysis because of bimodality observed in
reaction times.

We fitted inhibition function, reaction time distributions of
correct NoStop trials and failed stop-signal trials. For each fit,
we computed a chi-square test between data from the model and
the subjects. Inhibition function chi-squares were calculated by
summing chi-squares computed at each stop-signal-delay (SSD)
between error rates from model and subject data. The chi-squares
of the reaction times of correct and failed NoStop stop-signal
trials were calculated as follows: each distribution was sorted
into five quintiles; a “local” chi-square was computed at each
quintile between the proportion of trials from model regarding
subjects’ data, then the five “local” chi-squares were added.
A general chi-square was then calculated by adding the local chi-
squares together. To find the best parameters for each subject,
we minimized the general chi-square using a minimization
function (patternsearch from the global optimization toolbox
of Matlab). Patternsearch looks for a minimum based on an
adaptive mesh that is aligned with the coordinate directions.
Because minimization functions are sensitive to start point, we

FIGURE 2 | Threshold of premotor activity response as a function of breath
initiation times. (A) Normalized average of the diaphragmatic signal (black
lines) and normalized activity at Fz aligned on target onset (red lines). Thick
and thin vertical lines represent, respectively, the mean of response
times ± standard error of mean. (B) Average activity at Fz aligned on breath
onset. Dot indicates the time of target presentation of each correct trial (the Y
values of each dot represents, its trial position during the session). Trials have
been sorted by mean reaction time into five groups. (C) Activity at FZ aligned
on target onset (same convention as in B). (D) Average activation level
10–20 ms before breath initiation is plotted against mean reaction time for the
five reaction time groups for this recording session.
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ran patternsearch from 50 randomly chosen starting points.
Finally, to avoid a local minimum, we again started patternsearch
from 200 new start points. These starting points were determined
by the best parameters from first run and were defined as follows:
best parameters ± 0.01 units and best parameters ± 0.02 units.
All these procedures were performed on a supercomputer cluster
(NEC, 40 nodes, 28 cpu Intel Xeon E5-2680 V4 2.4 GHz/node,
128 Go RAM/node).

RESULTS

Figure 2 shows the responses from a representative session of
256 NoStop trials. The activity recorded at Fz began to increase
∼100 ms before breathing initiation, peaking shortly before
breathing initiation.

Specific measures of movement-related neural activity were
required to evaluate the prediction that the trigger threshold
of breathing preparation varied with reaction time. We tested
this prediction by measuring the level of neural activation as a
function of the time at which the presumed threshold triggering
the movement was crossed. On the basis of electrophysiological
studies of cortical control in arm, leg, and eye movements,
we estimate that measurements of neural activity 10–20 ms
before breathing initiation are an accurate index of the level of
trigger threshold activation. We defined the threshold activation
as the average level of the activation function in the period
between 20 and 10 ms before breathing initiation. We compared
the activation threshold across groups of NoStop-trials with
different reaction times. Figure 2 presents the activity at Fz
for sorted response times aligned on breath onset (top panel)

FIGURE 3 | Across all sessions and all subjects. Average activation level
10–20 ms before breath initiation is plotted against mean reaction time for five
reaction time groups representative of each particular session. Each line
represents the linear regression plot between reaction time.

and target presentation (middle panel). The activation threshold
increases for longer reaction times (bottom panel). We divided
the distribution of trials into five groups according to their
reaction times (Neshige et al., 1988). A linear regression analysis
indicated a significant relation between the activation threshold
and reaction time. As shown in Figure 3, significant changes
in activation threshold with reaction time were observed for
11 of the 12 sessions (R2 = 0.78 ± 0.21, mean and standard
error, all p-values were lower than 0.001). The p-value was
computed by transforming the correlation to create a t-statistic
having 3◦ of freedom. The confidence bounds were based on an
asymptotic normal distribution of 0.5∗log((1 + r)/(1 – r)), with
an approximate variance equal to 1/(N – 3).

In one session, the impedance value was too high and
signal quality was insufficient to be included in the analysis.
These results are consistent with variable threshold activity in
adjustment of reaction time in breathing.

To determine not only if activation threshold co-varies
with reaction time, but if this activity is sufficient to predict
whether breathing is going to be initiated or not, we examined
the modulation of activity recorded at Fz while the subject
was performing a countermanding breathing task (Figure 1).
Figure 4A shows the response of a representative session of 256
non-canceled trials and 256 canceled trials. A linear regression
analysis indicates a relation between the threshold activation and
reaction time (R2 = 0.48, p< 0.001) for this session.

As in the NoStop task, Fz activity in the non-canceled
trials recorded began to increase approximately 100 ms before
breathing initiation, peaking shortly before it, which we
characterize as a failure of inhibition. We compared the activation
threshold across groups of non-canceled trials with the activity
during canceled trials. The activity in canceled trials remained
low and never reached the threshold activity of trials with shorter
or longer reaction times as shown in Figure 4 (top panel).
The threshold activation for the group of canceled trials was
essentially unchanged compared to baseline activity. Changes in
threshold activation with reaction time were observed between
subjects: see Figure 4 (bottom panel). These results are consistent
with variable threshold activity and causal linkage between
premotor threshold activity and breathing initiation.

To compare response time according to the phase of the
spontaneous cycle we divided the response trials into two groups.
In the first group, defined as the Inspiratory group, the response
times were made in the half cycle that included the initiation
of inspiration movement. In the second group, defined as the
Expiratory group, the response times were made in the half
cycle that included the initiation of expiratory movement. Across
sessions and subjects (Figure 5), the average mean response times
initiated in the half cycle including the initiation of inspiration
movement was not significantly different from the response times
initiated in the half cycle that included the initiation of expiratory
movement (Mann–Whitney U-test: p = 0.79).

The outputs of data modeling are the best parameters µ

(mean growth rate), Ò (noise in simulated signals), ß (weight
of inhibition of the other unit), and Dstop (time to encode
stop signal) corresponding to the smallest find by minimization
procedure.
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FIGURE 4 | Threshold premotor activity response and breathing inhibition or breathing initiation times. (A) Activity at Fz aligned on breath onset. NoStop trials have
been sorted by mean reaction time into three groups. Activity recorded during successful Canceled trials are presented by the black curve (B) Average activation
level 10–20 ms before breath initiation or estimated response time are plotted against mean reaction time for the three reaction time groups for this recording
session. ∗∗∗Represents significant p value < 0.001.

Results from behavioral data modeling by interactive race
model are summarized in Table 1 for each subject and session.
SSRTs represents the Stop Signal Reaction Time (ms) calculated
by an integration method (Hanes and Schall, 1995) based on
simulated data.

An example of simulated data compared to observed data is
shown in Figure 6 to illustrate the model fitting. This figure
represents real data from session 3a and the best parameters
from the interactive race model. Panel a) shows the cumulative
latencies of NoStop trials; here we can see that these parameters
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FIGURE 5 | Comparison of mean response times initiated in the half cycle including the initiation of inspiration movement or half cycle including the initiation of
expiratory movement (Mann–Whitney U-test: p = 0.79). Error bars represent the standard deviation of the mean (across 6 subjects and 11 sessions).

of the model qualitatively fit the real distribution of reaction
times. Panel b) shows the inhibition function; the simulated
data closely resemble the observed experimental data though
when stop signal delay was 450 ms, there was some divergence.
Panel c) shows the cumulative distribution of non-canceled Stop
trials; again, modeled data closely resemble experimental data,
apart from between 400 and 500 ms. In all but one session
(session 1a) the initiation of an inhibition curve was observed
for SSDs shorter than 200ms (see Supplementary Figure 1, for
all sessions). In one session (session 1a) the estimation of SSRTs
was problematic and therefore require cautious interpretation.
Similar outputs and models’ mimicries exist in the context of
countermanding task (modulation of e.g., µgo or DSTOP etc. . . ).
Therefor possible combinations of parameters might produce
similar estimates of behavioral parameters (Pouget et al., 2011).
Simultaneous physiological and behavioral measurement would
be required to disentangle such possible discrepancies. In our
present context, our models were unsufficently constraint to be
able to conclude. Our modest goal was simply to expose the fact
that a already proposed simple model of eye movement control
holds with a unique control of breathing initiation.

DISCUSSION

Our study focused on specific premotor activity potentials in
the fronto-medial cortex that increase in relation to voluntary
breathing (Macefield and Gandevia, 1991), loaded breathing
(Raux et al., 2007), or speech breathing (Tremoureux et al.,
2014b). We first tested whether variability in a single breathing
initiation time might be accounted for by modulation of
this activity. The results show that voluntary breathing is
initiated if, and only if, the cortical premotor potential
activity reached a threshold activation level. In the context
of countermanding a breathing task, our results show that
voluntary breathing is initiated if, and only if, the cortical
premotor potential activity reaches a specific threshold
activation level. The stochastic variability of this threshold
correlates with the distribution of breathing initiation times.
Similar premotor potentials have been recorded during
voluntary limb, leg and eye movements, with some cerebral
potentials being distinguishable in the latter. The major
component is a slow negativity, termed the Bereitschaftspotential
(readiness potential), which develops before the movement

TABLE 1 | Outputs of data modeling for each behavioral session.

Subject/Session 1a 1b 2a 2b 3a 3b 4a 5a 5b 6a

µgo 0.91 1.64 2.71 2.34 1.96 1.4 1.97 2.37 2.31 2.34

Ògo 36.82 46.05 16.51 10.99 11.63 15.53 6.29 23.79 11.96 15.34

µstop 45.95 17.5 81.72 8.58 66.35 79.69 77.29 81.76 64.68 83.13

Òstop 50.81 32.22 99.28 81.81 83.16 85.24 54.01 74.41 22.8 97.19

ßgo 6.37 9.07 0.51 0.33 0.36 0.35 0.05 0.37 0.13 0.41

ßstop 3.25 3.49 6.39 8.5 5.56 4.63 5.61 5.89 6.48 3.18

Dstop 93 88 164 152 30 55 161 116 145 126

χ2 0.06 0.11 0.07 0.27 0.06 0.26 0.12 0.08 0.06 0.25

SSRTs 58 206 333 329 196 132 179 236 234 236
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FIGURE 6 | Thin lines represent simulated data and thick lines observed data. For each panel, the x axis is time (ms). (A) Cumulative latencies of NoStop trials.
(B) Inhibition function. The y axis represents the error rate in response to Stop trials and the x axis the times of the stop signal delay (SSD). (C) Cumulative latencies
of non-canceled Stop trials.

(Deecke et al., 1969; Papakostopoulos et al., 1975; Kristeva
and Kornhuber, 1980). Based on subdural recordings from
the exposed cerebral cortex (Lee et al., 1986; Neshige et al.,
1988), and on topographical analysis of scalp recordings
(Barrett et al., 1986; Tarkka and Hallett, 1990), this premotor
potential is considered to originate in the supplementary
motor area and primary motor cortex. This evoked potential
does not accompany pathological limb movements generated
subcortically (Obeso et al., 1981). Additionally, this potential
is present during an array of cortically controlled respiratory
movements (see above), but does not accompany involuntary
respiratory activity (Macefield and Gandevia, 1991) or abnormal
respiratory activity such as hiccups (Raux et al., 2007). To
our knowledge this is the first study that demonstrates that

voluntary breathing initiation times might be accounted
for by the modulation of cortical premotor potential
activity.

Regarding breathing control, several mechanisms are required
for adequate speech production. Firstly, as speech is produced
during expiration, the control of the duration of vocalized
sentences implies inhibition on the automatic breathing pattern
generators (for automatic inspiration not to provoke unwanted
speech interruptions). In many animals, breath holding during
submersion involves strong reflex inhibition of respiratory
activity, for example in reaction to snout submersion in the dog
(review in Butler, 1982); see also (Lin, 1982). However, natural-
diving mammals can perform voluntary apneas spontaneously
or in response to training (Ridgway et al., 1969). In humans,
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a cortical network capable of substantiating such speech-related
inhibitory inputs has been described during voluntary apneas
(McKay et al., 2008). Secondly, producing sentences of variable
length at a variable loudness implies the ability to prepare
these sentences through tailored pre-phonatory breaths. We
have previously shown that the corresponding respiratory EEG
activities were similar to those involved in the production of
voluntary respiratory maneuvres such as sniffing (Tremoureux
et al., 2014b), suggesting that some aspects of the speech-
related breathing control might derive from a previously selected
ability to cortically prepare the volume and timing of particular
breaths. In certain species, the ability to prepare inspirations
according to locomotor and environmental context appears to
be crucial. For example, marine mammals must coordinate
inspirations with surfacing, sometimes with important timing
constraints, such as during sustained rapid swimming in
dolphins. Their ability to voluntarily control breathing for non-
respiratory purposes has long been described (Ridgway et al.,
1969), e.g., during bubble ring play (McCowan et al., 2000).
Thirdly, speech must be fluently adapted to social interactions.
Participation in conversation implies the possibility to prepare
pre-phonatory breaths, to cue them from various signals, to
adapt them to unplanned changes in speech programming, or
to completely inhibit them to comply with the necessities of
the inter-human exchange. This conversational ability requires
excitatory-inhibitory interplays very similar to those described
for locomotor and oculomotor movements. Our data suggest
that this is indeed the case. Furthermore, the interactive race
model has been tested on countermanding eye and hand tasks in
previous studies (Papakostopoulos et al., 1975), and our results
suggest that this model is also qualitatively effective in breath
modality without any further modification.

While analyzing possible interactions between the voluntary
and reflexive commands of expiration we did not find any
statistical differences between reaction times at different points
in the cycle of respiration: reaction times during expiration
are not significantly longer than in inspiration. Because many
factors could lead to an absence of significant variations our
results only indicate that any possible interaction between
the voluntary and reflexive command, if it exists, is weak in
the context of our countermanding paradigm. In support of
these findings, it has been shown that the spinal inspiratory
motoneurons are hyperpolarized during expiration compared
with inspiration (see for example Berger, 1979). Furthermore, it
has been also been shown that the automatic inspiratory drive
is sufficient to facilitate the response of the diaphragm to the
cortical inputs generated by transcranial magnetic stimulation
(Straus et al., 2004; Mehiri et al., 2006). It could therefore have
been hypothesized that, in our present experiment, RTs would

have been shorter for voluntary inspirations initiated within
the inspiratory phase of the automatic breathing cycle than
within its expiratory phase as a consequence of bulbo-spinal
facilitation. The fact that this was not the case is coherent with
the notion that the expiratory disfacilitation of respiratory moto-
neurons can be overcome by corticospinal inputs in animals
(see for example Planche, 1972) as in humans (Similowski
et al., 1996). It also indicates that the excitatory corticospinal
drive to inspiratory muscles not only bypasses the brainstem
central pattern generators (Corfield et al., 1998) but can also
be powerful enough to be beyond modulation by their output
(under resting breathing conditions). The high values of µstop
and ßstop observed in most of the model sessions underline the
necessity for the inhibition process to be very fast to be effective.
These observations suggest that the automatic respiration cycle
generated by the brainstem can be overridden by cortical outputs
with the same efficiency at any moment of the respiratory cycle
and that these cortical outputs can take full precedence over their
subcortical counterparts.
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