
ORIGINAL RESEARCH
published: 15 October 2018

doi: 10.3389/fnins.2018.00665

Frontiers in Neuroscience | www.frontiersin.org 1 October 2018 | Volume 12 | Article 665

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Siddharth Joshi,

University of Notre Dame,

United States

Fabio Stefanini,

Columbia University, United States

*Correspondence:

Bernabé Linares-Barranco

bernabe@imse-cnm.csic.es

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 05 December 2017

Accepted: 04 September 2018

Published: 15 October 2018

Citation:

Yousefzadeh A, Stromatias E, Soto M,

Serrano-Gotarredona T and

Linares-Barranco B (2018) On

Practical Issues for Stochastic STDP

Hardware With 1-bit Synaptic

Weights. Front. Neurosci. 12:665.

doi: 10.3389/fnins.2018.00665

On Practical Issues for Stochastic
STDP Hardware With 1-bit Synaptic
Weights

Amirreza Yousefzadeh †, Evangelos Stromatias †, Miguel Soto,

Teresa Serrano-Gotarredona and Bernabé Linares-Barranco*

Instituto de Microelectrónica de Sevilla (IMSE-CNM), CSIC and Universidad de Sevilla, Sevilla, Spain

In computational neuroscience, synaptic plasticity learning rules are typically studied

using the full 64-bit floating point precision computers provide. However, for dedicated

hardware implementations, the precision used not only penalizes directly the required

memory resources, but also the computing, communication, and energy resources.

When it comes to hardware engineering, a key question is always to find the minimum

number of necessary bits to keep the neurocomputational system working satisfactorily.

Here we present some techniques and results obtained when limiting synaptic weights

to 1-bit precision, applied to a Spike-Timing-Dependent-Plasticity (STDP) learning rule in

Spiking Neural Networks (SNN). We first illustrate the 1-bit synapses STDP operation

by replicating a classical biological experiment on visual orientation tuning, using a

simple four neuron setup. After this, we apply 1-bit STDP learning to the hidden

feature extraction layer of a 2-layer system, where for the second (and output) layer

we use already reported SNN classifiers. The systems are tested on two spiking

datasets: a Dynamic Vision Sensor (DVS) recorded poker card symbols dataset and

a Poisson-distributed spike representation MNIST dataset version. Tests are performed

using the in-house MegaSim event-driven behavioral simulator and by implementing the

systems on FPGA (Field Programmable Gate Array) hardware.

Keywords: spiking neural networks, spike timing dependent plasticity, stochastic learning, feature extraction,

neuromorphic systems

1. INTRODUCTION

One goal of neuromorphic engineering is to map efficiently neurocomputational algorithms onto
compact, low power, and fast hardware, while preserving satisfactorily the functionalities of the
theoretical algorithms. The main first question (digital) hardware neuromorphic engineers ask
themselves is about the minimum required bits to represent parameters and states. Theoretical
neurocomputists, which use as tools conventional computers, use typically the full 64-bit floating
point precision available to develop and study their algorithms. However, using 64-bit floating
point precision for neuromorphic hardware, where typically massive parallelism is physically
implemented, imposes a severe resources penalty not only for memory usage, but also for all
computing and communication resources. Because of this, for example, the SpiNNaker spiking
neuromorphic platform, although it uses 32-bit precision hardware, it restricts itself to integer
arithmetic (instead of floating point), thus introducing some hardware simplifications (Furber et al.,
2014). In another example, the TrueNorth platform (Cassidy et al., 2013) is built upon multiple

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00665
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00665&domain=pdf&date_stamp=2018-10-15
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:bernabe@imse-cnm.csic.es
https://doi.org/10.3389/fnins.2018.00665
https://www.frontiersin.org/articles/10.3389/fnins.2018.00665/full
http://loop.frontiersin.org/people/504915/overview
http://loop.frontiersin.org/people/173788/overview
http://loop.frontiersin.org/people/286002/overview
http://loop.frontiersin.org/people/14450/overview
http://loop.frontiersin.org/people/12772/overview

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

256 × 256 1-bit synaptic weight crossbars, although it includes
extra circuitry to allow assigning up to four possible 8-bit values
to the synapses (with some restrictions). In the world of non-
spiking Deep Neural Networks (DNN), where there is now a
strong quest for providing dedicated efficient hardware (Chen
et al., 2016; Sim et al., 2016; Bong et al., 2017; Whatmough
et al., 2017; Biswas and Chandrakasan, 2018; Gonugondla et al.,
2018; Khwa et al., 2018), some theorists are studying ways to
reduce bit precision of the weights down to 1-bit (Courbariaux
et al., 2015; Rastegari et al., 2016) to help simplifying hardware.
Here we focus on spiking neural network (SNN) hardware
capable of on-line unsupervised learning through Spike-Time-
Dependent-Plasticity (STDP). In a previous work (Yousefzadeh
et al., 2017) we implemented deterministic STDP hardware with
9-bit resolution for the weights. Our goal here is to obtain
a working learning (stochastic) STDP layer by restricting the
weights to 1-bit precision (“0” or “1”) for both learning and
inference phases. For this, we consider a feed-forward neural
system made of two layers. The first layer, restricted to 1-bit
weights, uses stochastic STDP unsupervised learning for learning
representative features. The second layer uses some trainable
SNN classifier with supervised learning for pattern classification
(Stromatias et al., 2017; Yousefzadeh et al., 2017). Interestingly,
the conventional full-precision additive STDP learning rule will
result in a bimodal weight distribution after learning (Barbour
et al., 2007; Galluppi et al., 2015). This means that, even in the
case of graded synaptic weights, the final weight values tend
to saturate to the minimum (disconnected) or maximum (fully
connected) value.

STDP was originally proposed by Gerstner et al. (1993),
evolving later on to successfully learn hidden spiking patterns
(Masquelier et al., 2008), to perform competitive spike pattern
learning (Masquelier et al., 2009), to achieve reward modulated
(pseudo-supervised) learning (Mozafari et al., 2017), or to
be successfully applied to deep spiking neural networks
(Kheradpisheh et al., 2018). Surprisingly, experimental evidence
of STDP in biological synapses was reported by neuroscientists
shortly after proposing the computational algorithms for the
first time (Markram et al., 1997; Bi and Poo, 1998, 2001; Zhang
et al., 1998; Feldman, 2000; Mu and Poo, 2006; Cassenaer and
Laurent, 2006; Jacob et al., 2007). However, STDP works typically
by performing very small weight changes, which implies high
resolution for the weights, consequently imposing high hardware
resources demands for memory, computing, and communication
circuits. Most of the neuromorphic hardware designs use on-
chip memory to reduce power consumption (Cassidy et al.,
2013; Davies et al., 2018)1 and therefore memory is a limiting
factor for the number of neurons and synaptic connections.
By using 1-bit synaptic weights, not only the memory, but all
the processing elements inside the chip will be much simpler.
Reducing weight resolution from 9-bit to 1-bit, should in
principle allow for about one order of magnitude reduction

1The dominant power is typically burnt in the continuous and massive data
transfers between computing circuits and memory circuits. If computing and
memory circuits are in separate chips, data transfer power is multiplied by one
or two orders of magnitude.

in memory, computing, communication resources and power
consumption. When restricting to 1-bit weights, one option
is to consider some type of stochastic weight update. This is,
instead of applying a given weight change from the STDP
rule, one changes the weight from either “0” to “1” or from
“1” to “0” with a probability given by the STDP rule. This
idea has already been used before. Suri et al. (2013) applied
it to cluster vehicle trajectories recorded with spiking retinas
(Dynamic Vision Sensors -DVS-) (Lichtsteiner et al., 2008; Posch
et al., 2011; Serrano-Gotarredona and Linares-Barranco, 2013;
Son et al., 2017; Guo et al., 2017) into highway lane segments. Seo
and Seok (2015) applied it to simple classification problems, but
found out that they could not learn to separate more than five
patterns. Here we want to learn to classify either DVS recorded
poker card symbols (Soto, 2017) or a spiking representation
of the MNIST dataset (LeCun et al., 1998). At the beginning,
we were not able to obtain any reasonable learning by simply
applying an STDP binary update with stochasticity. It was not
until we started applying some additional “tricks” that we started
to observe the formation of characteristic features together with
overall reasonable accuracy results. These “tricks” were weight
normalization, individual neuron threshold adjustment, or using
separate thresholds for learning and inference.

Since there is no other work in the literature reporting
classification accuracy results for 1-bit weights STDP feature
extraction (FE) layers, we compare with purely random 1-bit
weights FE layers. It is well-known that it is possible to build
excellent performance pattern learning and classification systems
by using a sufficiently large hidden FE layer with randomweights,
followed by a trainable high performance classification layer
(Huang et al., 2006). Based on this, we compare our STDP
systemswith a “parallel” one using the same classifier output layer
and a hidden layer with the same number of neurons but with
1-bit random weights. As shown later in the section 3, there is
always a consistent improvement when using STDP with respect
to using pure random weights, although this improvement
reduces as the number of hidden layer neurons increases.

Throughout the paper we will use always a very simple
neuron model, namely, the linear-leak (or piece-wise linear-
leak) integrate-and-fire (LIF) model, together with instantaneous
synapses (Camuñas-Mesa et al., 2010, 2011, 2012; Pérez-Carrasco
et al., 2013; Serrano-Gotarredona et al., 2015), restricted to
positive neural state values.

The paper is structured as follows. In the section 2 we will
first include a quick review on different STDP rules, signaling
the difference betweenmore conventional time-based STDP rules
vs. less conventional order-based STDP rules, which we will use
here. Then we will briefly explain how we “engineer” STDP
and, in particular, stochastic STDP with 1-bit weights by adding
some “tricks.” Then we present quickly two previously reported
spiking classifiers we have used, followed by a quick description
of the software and hardware experimentation platforms used.
In the section 3 we provide software and hardware results
for three experiments. A first experiment is a very simple
4-neuron system that replicates a biological experiment of
visual orientation tuning (Bienenstock et al., 1982; Moore
and Freeman, 2012; Jeyabalaratnam et al., 2013). It is a very

Frontiers in Neuroscience | www.frontiersin.org 2 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

simple starting point used as reference in other computational
studies (Galluppi et al., 2015). The second experiment learns to
classify poker card symbols (Soto, 2017) recorded with a spiking
retina Dynamic Vision Sensor (DVS) (Serrano-Gotarredona and
Linares-Barranco, 2013). The third experiment learns to classify
the MNIST dataset. More specifically, a spiking version of it,
obtained by generating Poisson distributed spike trains from
the original pixel gray levels. This is a common technique for
converting static images to synthetic spike-trains and has been
used in a number of previous studies (O’Connor et al., 2013;
Querlioz et al., 2013; Diehl et al., 2015; Diehl and Cook, 2015;
Galluppi et al., 2015; Stromatias et al., 2017). Finally, the paper
finishes by presenting some Discussions and Conclusions.

2. MATERIALS AND METHODS

2.1. Review of Some STDP Rules
Figure 1A shows a typical STDP update function ξ (1t), where
1t is the time difference between a post-synaptic spike at time
tpost and a pre-synaptic spike at time tpre. In biology, the time
window [−Tmin,Tmax] is typically in the range of about 100 ms,
although in artificial systems one can adjust this time window
to the dynamics of the data spikes. Figures 1B–E illustrate
other STDP learning functions ξ () that have been used in
the computational neuroscience literature and/or observed in
biology. For example, Figure 1B is a simplification of Figure 1A
that provides a relatively similar outcome as long as the ratio
of the areas under the positive A+ and negative A− branches
is preserved. Figure 1C shows an STDP learning function ξ ()
where potentiation is applied only for a narrow positive time
window 0 < 1t < Tp, otherwise there will be depression. An
interesting, powerful and widely used extension of this learning
function is when +Tmax → +∞ and −Tmin → −∞ (Bichler
et al., 2012; Suri et al., 2013; Querlioz et al., 2013). This is,
whenever there is a post-synaptic spike, all synapses connecting
to this destination neuron will be depressed by a fixed amount,
except those who have transmitted a pre-synaptic spike during
a prior time window Tp which will undergo a potentiation2. Let
us call this type of STDP “undiscriminating depressing STDP.”
This implementation requires less resources, as discussed later.
Figure 1D is another interesting STDP version, where synapses
are potentiated whenever pre- and post-synaptic spikes are more
or less coincident in time, irrespective of which happens first.
This “symmetric hebbian” STDP learning has also been found
in some biological synapses (Roberts and Bell, 2002). Figure 1E
is a type of symmetric “undiscriminating depressing” version of
Figure 1D, also found in biology (Dan and Poo, 1998).

The STDP functions ξ (1t) in Figures 1A–F are all time-based
(function of 1t). In practical implementations (like digital HW
or SW algorithms), one keeps a list of the pre- and post-synaptic
spikes with their respective timestamps for later computation

2Strictly speaking, the correct formulation should say −Tmin = 0. This is because
for 1t < 0 (pre after post), a new arriving pre-synaptic spike checks the list of
prior post-synaptic spikes to perform weight update. This means, that for every
pre-synaptic spike, all synapses connecting to this pre-synaptic neuron should also
be depressed. However, this action is not taken (Bichler et al., 2012; Querlioz et al.,
2013; Roclin et al., 2013; Suri et al., 2013).

of the STDP function for each synaptic connection and
corresponding update. Some neurocomputational researchers
have proposed and successfully implemented time-abstracted
versions of the STDP function ξ (), where the time variable has
been removed and substituted by the order of the occurrence of
the spikes (Thorpe and Gautrais, 1998; Masquelier and Thorpe,
2007; Bichler et al., 2012; Roclin et al., 2013). This way, each
spike is not associated to a timestamp, but to an integer number
n indicating its rank or order of occurrence. In this abstracted
representation the time difference between consecutive spikes is
irrelevant, and it only matters which spikes appear after or before
each other. This is called “order-based” STDP and the learning
function is now ξ (1n). In order-based STDP implementations
one simply needs to keep track of an ordered list of pre- and
post-synaptic spikes, without any timestamp. One can keep one
single ordered list of the full system, separate ordered lists for
sub-populations of the system, or even separate ordered lists
for each synapse. When keeping track of the ordered lists, one
should set a maximum number N of events to keep in the
list, so that STDP learning is only driven by reasonably recent
events. Figures 1F–J show the equivalent order-based STDP
learning function versions of those shown in Figures 1A–E. One
interesting feature of order-based STDP is that learning self-
adapts to the dynamics of the neural activity. This is radically
different to what happens in biology, where STDP is always
time-based and consequently tuned to a specific range of time
constants and dynamics. In order-based STDP the learning
will occur in the same way, independently of the speed and
dynamics with which events occur. If all spike timestamps are
multiplied by the same constant, their ordering will be the same
and consequently learning remains unchanged. Therefore, order-
based STDP self-adapts to the speed and dynamics of the events.

2.2. Engineering STDP
In software as well as in hardware, STDP can be computed
in many different ways. Here we follow an event-driven
approach for both the software as well as the digital hardware
implementation. This way, computations are not performed
time-step by time-step, but only when an event is generated and
transmitted. One way of computing STDP in an event-driven
simulation is by keeping a bounded list of pre- and post-synaptic
events. This is, for example, illustrated in Figure 2A1 for an
individual synapse. Every time a pre-synaptic event is received
by a synapse, its time of occurrence is stored in a pre-list or
pre-buffer. If t is the present time, events are kept in the pre-
synaptic list as long as t − t

pre
n ≤ Tmax. Similarly, whenever the

post-synaptic neuron generates a spike, its time of occurrence is
stored in a post-list or post-buffer, where events are kept as long

as t − t
post
m ≤ Tmin. For every new pre-synaptic event at time

t, it is stored in the pre-list, the post-list is scanned, and 1wij

is computed by using the corresponding ξ (t
post
m − t) function.

Similarly, for every new post-synaptic event at time t, it is stored
in the post-list, the pre-list is scanned and1wij is computed using

ξ (t − t
pre
n). Depending on the type of STDP rule, one can choose

to update a synapse for all the events in the list, or only for the
most recent one(s).

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 1 | (A) Classic time-based STDP (B) Rectangular time-based STDP, (C) Narrow Potentiation time-based STDP, (D) Symmetric Hebbian Potentiating only

time-based STDP, (E) Symmetric Hebbian with Narrow Potentiation time-based STDP, (F) Classic order-based STDP (G) Rectangular order-based STDP, (H) Narrow

Potentiation order-based STDP, (I) Symmetric Hebbian Potentiating only order-based STDP, (J) Symmetric Hebbian with Narrow Potentiation order-based STDP.

However, keeping a separate pre- and post-list for each
individual synapse is costly for both software and hardware
implementations. Consequently, normally one keeps one pre-
and one post-list for a full population, as illustrated in
Figure 2A2, including the indexes i and j of pre- and post-
synaptic neurons.

For the cases of order-based STDP rules, the pre- and post-list
will not contain any time information, but just the indexes of the
pre- and post-synaptic neurons in the proper order. The number
of events kept in each list is a fixed integer number (which we will
call “buffer size”).

Note that if one sets Tmin = 0 or Nmin = 0, only the pre-list is
required. Similarly, if Tmax = 0 or Nmax = 0, only the post-list is
required.

In the implementations (for both software and hardware)
reported in this paper, we will keep a separate “STDP processor”
connected to a neuron population containing its input synapses,
as illustrated in Figure 2B. In this approach, the STDP processor
receives a replica of, both, all pre-synaptic events Ik and all post-
synaptic events Ol. For each new event it checks the opposite list
of stored events, and sends a kind of 1wij command/event to the
neuron population to update each of the wij weights that requires
STDP update.

2.3. Engineering Stochastic STDP With
1-bit Weights
When restricting to 1-bit weights, it is no longer possible to
consider small values for 1wij. Weights change directly from “0”
to “1,” or vice versa. In this case, one can consider a stochastic
version of STDP by simply substituting the learning functions in
Figure 1 to provide a given signed probability3 for potentiation
or depression. The weights are directly set to “1” (ON state) or
“0” (OFF state) depending on the resulting probability and sign
of function ξ (). For example, if ξ (1t) or ξ (1n) is equal to a

3Strictly speaking, probabilities are positive numbers. Here we consider that
a positive probability provides a probability for potentiation, and a negative
probability provides a probability for depression.

positive probability p (with 0 ≤ p ≤ 1), then after generating
a random number x (with 0 ≤ x ≤ 1), if x ≤ p the weight
will be set to “1,” otherwise it will remain unchanged. In the case
of negative probability p = ξ () values (with 0 ≥ p ≥ −1),
after generating the random number x (with 0 ≤ x ≤ 1), if
x ≤ |p| the weight will be set to “0,” otherwise it will remain
unchanged.

The proposed STDP implementation with stochastic updates
is of the type “undiscriminating depressing” order-based STDP.
Therefore, only the pre-list is kept and whenever a neuron
generates a post-synaptic event, the synapses connecting to
this neuron in the pre-list are potentiated while all remaining
synapses connecting to this neuron are depressed. The STDP
learning function is shown in Figure 2C, and is a particular case
of Figure 1C for Nmin = 0 and Nmax = ∞, but with the vertical
axis indicating either long term potentiation probability PLTP
or long term depression probability PLTD. Parameter Np is the
“buffer size” of the pre-list of the population, while 1n is the
event index in the pre-list of the population.

Additionally, we incorporate a number of additional “tricks”
which help to obtain representative features4, while allowing the
use of larger probabilities. This way, the learning is fast but stable.
These “tricks” are the following:

1. Individually incrementing neuron thresholds xthj . During
learning, every time a neuron j produces an output event,
its threshold xthj is incremented. This is because its receptive
field weights will become more selective to a given feature, or
equivalently, it has specialized to recognize a given feature, and
consequently should give more chances to other neurons to
pick up other features. To do so, its threshold is increased so
that other still unspecialized (or less specialized) neurons have
better chances to fire. This implements a form of homeostasis
(Querlioz et al., 2013; Diehl and Cook, 2015). Typically, we
increment a threshold by “1,” but it could be incremented by
any predetermined integer number.

4Obtaining representative features should make the task of the classifier layer more
easy.

Frontiers in Neuroscience | www.frontiersin.org 4 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 2 | (A) STDP computation. (A1) By keeping a pre- and a post-synaptic event list per synapse, (A2) by keeping a pre- and a post-synaptic event list per

neuron population with its input synapses. (B) STDP computation block assigned to a neuron population with its input synapses. (C) Stochastic STDP learning

function. (D) The neural network topology used in this work for the fully-connected FE (feature extraction) hidden layer, where p is its size. The red arrows represent

the lateral inhibition that is implemented internally. (E) Event-Driven System Topology used in this paper when the experiments require a FE layer and a Classifier layer.

Frontiers in Neuroscience | www.frontiersin.org 5 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

2. Weight Normalization. The sum of the weights Wsum =
∑

i wij connecting to a neuron j, is maintained constant5. This
can be enforced deterministically after each random update,
or stochastically by readjusting the probability depending on
the instantaneous value of Wsum. If deterministic, the sum of
weights will be kept constant at any time, but if stochastic, the
sum will randomly wander around the target value. Without
this “trick” some neurons become dead (null synapses) or
over-activated (having too many active synapses), resulting
in unstable learning. Different neuron populations can have
differentWsum.

3. Neuron threshold xthj saturation. The threshold xthj of each
neuron in a plastic population is not allowed to exceed
a predefined maximum threshold xthmax

. This feature was
introduced because we noticed that populations with fewer
number of neurons for a given task produced very large final
thresholds and ended up generating no events for an input
sample during the testing phase.

4. Separate neuron thresholds for STDP process and for

inference process. The idea is to keep for each neuron two
different neuron states with their corresponding thresholds,
one used for STDP weights updates and the other used
for inference. Each incoming event updates both states. For
inference the thresholds can be kept constant for simplicity,
or they can also be adaptive as mentioned above. For STDP,
the threshold is increased every time it is reached. Reaching
the STDP threshold triggers weight update. By decoupling
STDP and inference, neural activity can be kept high (which
may improve learning at the next layer), while slowing down
STDP learning as the neuron becomes more selective. Note
that for STDP and inference processes to be decoupled, they
should not have all characteristics equal (threshold increment,
initial conditions). This “trick” is only implemented in the
hardware implementations. The reason is that in the hardware
versions, training is fully on-line. This is, all layers are
trained simultaneously. Consequently, by separating inference
and STDP thresholds, firing activity is kept high all the
time, helping to accelerate learning in later layers. For the
software versions, since learning is performed off-line, layers
are trained sequentially.

5. Lateral Inhibition. When a population receives an input
event, several neurons can reach their threshold and fire.
However, we only allow one to fire. The rest of neurons in
the population will be reset. This way we are implementing
a form of internal lateral inhibition which resembles a
winner-takes-all (WTA) (Maass, 2000) layer. This lateral
antagonism forces competition between the neurons. It can
be also more efficient for hardware designs, compared to
the alternative method of using recurrent inhibitory soft
connections.

5In conventional neural networks (with weights of higher resolution) scaling the
weights by a factor α is equivalent to scaling the threshold by 1/α (previous
“trick”). But here weights are either “0” or “1” and cannot be scaled. It is the total
number of weights with value “1” that is kept constant. AlsoWsum is the same for
all neurons in the population, while in the previous “trick” each neuron can change
its threshold separately.

6. List Flushing. After one output event is produced by a
given neuron, the present list of stored pre-synaptic events
of the population can be fully emptied. This way, the most
recent history that triggered this output event is the only
one used to contribute to learning for this output event.
It will not contribute to learning induced by other output
events. Although this “trick” had no impact on the learning
of the systems tested (accuracy results are practically identical
whether “list flushing” was active or not6), for the hardware
implementations it introduced relevant simplifications, as
explained later in the hardware description of the STDP unit.

In the software experiments, training was done off-line, layer
by layer, thus decoupling the learning processes between layers.
Therefore, as soon as the STDP learning process was finished
in the FE layer, the weights were fixed to their final values
and each neuron threshold (xthj) was set to its last final
threshold. Also, the lateral inhibition between neurons of the
same population was disabled. After this, the classifier layer
was trained independently. However, if an application requires
a hardware implementation with learning, it is because on-
line learning is required. Otherwise, one would implement a
pure inferring hardware which is simpler and consequently
more efficient (Chen et al., 2016; Sim et al., 2016; Bong et al.,
2017; Whatmough et al., 2017; Biswas and Chandrakasan, 2018;
Khwa et al., 2018). Therefore, for our hardware tests we always
implemented simultaneous on-line learning for all layers.

2.4. Network Architecture
The neural network topology used throughout this work can be
seen in Figure 2D. It is a fully connected topology, where the first
layer is the input layer, whose size n×n depends on the size of the
particular data set. The second layer, which is a fully connected
(FC) Feature Extraction (FE) layer, consists of a population of
spiking neurons. Attached to the plastic FE neural layer is the
stochastic binary weighted STDP processor block which receives
two inputs, one from the presynaptic input layer and one from
the post-synaptic FE layer. The STDP block sends weight update
events 1wij with the indexes of the synapses that need to be
potentiated, as well as, a special 1w event that will trigger the
undiscriminating depression.

2.5. Event-Based Classifier
Some of the experimental results shown later are classification
problems which, after the 1-bit weights stochastic STDP feature
extraction layer, require an additional event-driven classifier
layer, as shown in Figure 2E. We have used two different event-
driven (SNN) classifiers. One is a very simple low performance
one which uses a kind of supervised STDP training rule
(Yousefzadeh et al., 2017). In this case, it is possible to train
simultaneously the two layers, by making the classifier layer
learn slower. We have followed this approach for our hardware
experiments. The second classifier is a high performance one
that needs to be trained off-line in the frame-domain (Stromatias
et al., 2017). In this case, one needs to train first the STDP

6List flushing is similar to implementing lateral inhibition by resetting the
neighbors, because neighboring neurons start integrating new events from scratch.

Frontiers in Neuroscience | www.frontiersin.org 6 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

layer and once it has finished learning, the classifier layer is
trained off-line. We have followed this approach in our software
experiments. More details of each classifier are as follows:

1. Simple Supervised STDP-based SNN Classifier. This
classifier is trained following a conventional non-binary
non-stochastic STDP learning rule (Yousefzadeh et al., 2017),
in which the post-synaptic spikes are replaced by a teacher
signal indicating which is the correct category. The sum of
weights of synapses connecting to an output neuron is kept
constant (weights are normalized after each weight update).

2. High-Performance SNN Classifier. For training this
classifier, the method is to present the spike-trains of each
training and testing sample and store the normalized spike-
counts (histograms) of the FE layer output for each input
sample. This way we create a new data set of frames that
have somehow captured the dynamic activity (spike count
per symbol) of the FE layer. The advantage of creating this
new data set of frames is that we can now train a fully
connected Softmax classifier in the frame domain using
Stochastic Gradient Descent (SGD) (Bottou, 2010). When
the frame-based classifier is trained, it can be converted to a
population of LIF neurons by scaling the classifier’s weights
by a constant k and setting the threshold of the LIF neurons
to k. It has been shown there is a small loss when converting
from the frame-based to the SNN classifier that is in the order
of 0.03% for synthetic data and 0.68% for real DVS sensory
data (Stromatias et al., 2017).

It is worth mentioning that a very efficient classifier layer can
compensate for a poor feature extraction hidden layer. As a
matter of fact, the extreme learning learning machine (Huang
et al., 2006) is one such an example. It is capable of performing
excellent classification by using a hidden layer with random
weights but with a large number of neurons, followed by a high
performance classifier. Therefore, the benefit of having a better
feature extraction hidden layer is more evident with a lower
performance classifier or with small number of neurons in the
hidden layer.

2.6. Experimentation Platforms
Experiments were performed using two different platforms. One
is an Event-Driven software simulation tool called MegaSim,
and the other is a hardware implementation using a commercial
FPGA.

2.6.1. MegaSim Software Simulator
MegaSim (Modular Event-Driven Growing Asynchronous
Simulator7) is a tool designed for behavioral event-driven
simulations of multi-module hardware systems, with strong
emphasis on the low-level hardware details of the modules
such as processing delays, handshaking, communication delays,
parameter variations, etc. The user can add new modules
by adding descriptions in C-language, allowing therefore
for arbitrary model complexities. This simulator has already
been used in prior work (Stromatias et al., 2017), and more

7https://bitbucket.org/bernabelinares/megasim.

details about its internal operations are available in the
Appendix.

2.6.2. Hardware Implementation
The hardware platform we are using here for Stochastic 1-bit
weights STDP allows for on-line unsupervised learning of the FE
layer, with simultaneous on-line supervised STDP-based classifier
learning (Yousefzadeh et al., 2017). This digital hardware has
been designed using standard Hardware Description Language
(HDL) and is implemented on a Spartan-6 based FPGA
(XC6SLX150T-3) custom platform. Figure 3 shows the hardware
setup used8.

Two main blocks have been developed for the hardware
implementation on digital FPGAs: a neuron block and an STDP
unit. The STDP unit can be shared by several neuron blocks,
as STDP processing has much lower occurrence. The inhibition
mechanism prevents two or more neurons from simultaneously
learning a pattern. Therefore, at the most one single neuron
will be requesting usage of the STDP unit at a given time.
Additionally, by separating firing and STDP thresholds, STDP
thresholds are reached with lower frequency than average firing
rate. Consequently, the STDP unit will be requested with much
less frequency than the neuron updates. Therefore, one single
STDP unit can be shared by several neurons. In our hardware
implementation, several neurons with one STDP unit form a
neural core. Next we describe each block.

2.6.2.1. Neuron block
Figure 4A shows the structure of a neuron block. The
implemented neuron block contains a 1024-bit synaptic RAM
to keep the values of up to 1024 binary synapses, three
counters (“Firing Counter,” “STDP_threshold Counter,” and
“Learning Counter”), some D-type flip-flops (D-FF), three logic
comparators, and a few digital gates. The 1024-bit synaptic
memory has two independent ports, one is used inside the
neuron block (syn_weight) to read synaptic weights and the
other one is connected to an STDP bus (STDP_RD_data) for
STDP type of operations. When a new spike comes in, signal
port “AERin_v” will be activated. “AERin” contains the address
of the incoming spike. The corresponding synaptic weight for
the incoming spike will be read from the synaptic memory,
which requires 3 clock cycles. If the synaptic weight is one,
then the state of the neuron should be increased by one, by
asserting “count_up.” For the neuron implementation we keep
two separate states, each with its own counter, the “Firing
Counter” for inference and the “Learning Counter” for learning.
The “STDP threshold Counter” stores the threshold for the STDP
events. After each learning/STDP process, the value of the STDP
threshold is increased by one. The values of the “Learning
Counter” and the “Firing Counter” are constantly compared with
their corresponding threshold values to generate an STDP event
(“STDP_req”) or an output event/spike (Spike_out), respectively.
The neuron states are reset to zero if they exceed the threshold
or an external reset event inhibits them because of lateral
inhibition. When a neuron asserts the “STDP_req” signal, the

8All HDL codes are available upon request for academic purposes.

Frontiers in Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 665

https://bitbucket.org/bernabelinares/megasim
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 3 | Hardware setup for demonstration of on-line real-time Stochastic Binary-Weights STDP learning. This setup contains an Event-Player (USBAER board)

(Serrano-Gotarredona et al., 2009) to play back recorded AER events with precise timing, an AER-NODE board (Iakymchuk et al., 2014) which contains the Spartan-6

(XC6SLX150T-3) FPGA and a computer interfacing board (USBAERmini2) (Serrano-Gotarredona et al., 2009) to send the output AER events along with their

time-stamps to a computer through USB. The computer uses jAER (Delbruck, 2007) to visualize and/or record events in real time displaying them as sequences of

frames on a monitor screen.

external STDP unit will access the synaptic memory (through
“STDP_active_addr”) to perform the learning process. Since the
STDP unit is shared by multiple neurons, neurons are connected
to a shared bus, which we call STDP_BUS (see Figure 4C), made
of signals {STDP_active_addr, STDP_RD_add, STDP_WR_en,
STDP_WR_data and STDP_RD_data}. Neuron_addr is unique
for each neuron. When the STDP unit wants to access a
neuron’s weight, it will put the address of the neuron in the
STDP_active_addr line. Each neuron can process one input
spike per clock cycle, because the 3-cycle reading from synaptic
memory is pipelined.

In a Spartan-6 FPGA (XC6SLX150T), each neuron occupies
only 56 slices (out of 23 K) and it can be clocked at up to 300
MHz [therefore, each neuron can process up to 300 Meps (mega
events per second)]9. This allows to implement more than 400
physical neurons and 400,000 synapses in this FPGA without
using block-RAMs.

2.6.2.2. STDP unit
The STDP unit is significantly more complex than the neuron
block. Figure 4B shows a detailed block diagram for the STDP
unit. This unit contains a circular buffer to memorize the
addresses of up to the latest 1024 incoming spikes (which we
called “pre-list” or “pre-Buffer” in section 2.2), three processors
(Main Processor, LTP Processor, LTD Processor), a 10-bit
random number generator (LFSR), four counters (rd_counter,
div_latency_cnt, Cnt_Sum of weights, LTP_cnt+1), a subtracter

9It should be clarified that reducing the clock frequency helps to reduce the number
of of slices. For lower speeds, fewer resources are required, in general.

logic block, a ×1024 multiplier block (implemented as a
10-bit shift), a divider block, three logic comparators, three
multiplexers, a number of D-FF registers, and digital gates.

Parameter “number of potentiation” indicates how many
events in the circular pre-Buffer will be actually used (“number of
potentiation”≤ 1024). This information is used for the LTP (long
term potentiation) process. The main processor acts as a general
manager. Activation of signal STDP_addr_v means that the
STDP unit has received an STDP request. In this case, if the main
processor is ready to process a new request, it puts the address
of the selected neuron on the STDP_active_addr line. Then it
asserts the start signal for the LTP processor. After finishing
the LTP process, it will assert the start signal for the LTD (long
term depression) processor. The first step of the STDP process
is LTP. In this step, the LTP processor controls the STDP BUS
of the selected neuron. It reads the addresses of the most recent
spikes that are stored in the circular buffer and puts them on the
STDP_RD_addr bus. Then, after reading the synaptic weight, the
value needs to be potentiated with a pre-defined probability. In
this case, a 16-bit LFSR generates a pseudo-random number. It
compares 10 (out of 16) bits of this random number with the LTP
probability value, and if the random number is smaller than the
probability value, the synaptic weight will be potentiated to “1” if
it was “0” before. This process repeats until the number of LTP
actions becomes equal to parameter “number of potentiation.”
Each potentiation can be done in one clock cycle but there is
a 3 clock cycle latency for reading from the circular buffer and
the same for reading from the synaptic memory of the neuron.
One clock cycle latency is also added for the STDP_WR_data
bus to make a proper pipeline. Therefore, in total, the LTP

Frontiers in Neuroscience | www.frontiersin.org 8 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 4 | (A) Neuron block schematics. (B) STDP unit schematics. (C) Neural core schematics. (D) Multi-core configuration.

process requires 7+num_potentiation clock cycles, which in the
worst case is 1024+7=1031 clock cycles. After the LTP process,
the LTD process starts to depress some weights randomly and
normalizes the number of active weights in a synaptic memory.
The LTD processor first reads all the synaptic weights of the
selected neuron to compute the sum of the weights and calculates
the depression probability. This will take 1024+3 clock cycles.
Then a subtracter logic block calculates the difference between
the number of actual active weights and the number of expected
active weights (1W). After this, a logic 10 bit shift multiplies
1W by 210 to scale it. Then a divider logic block calculates the
normalized LTD probability with the following formula

LTD Probability =
1024× 1W

Wsum
(1)

where Wsum is the number of actual active weights. This process
requires 25 clock cycles because the divider logic is very small
and it is a slow serial divider. Since only one division is needed
for the whole STDP process, it is efficient to use a slow and

small divider. After calculating the LTD probability, the LTD
processor reads again all the synaptic weights, one by one,
and depresses them using this probability. This step requires
1024+7 clock cycles. Therefore, in total, the LTD process requires
1024+3+25+1024+7= 2083 clock cycles.

At the end of the STDP process, all the pointers in the circular
buffer will be reset. This implements pre-list flushing. In HW,
lateral inhibition is very strong by directly resetting all neurons
within the same population sharing the same STDP UNIT.
Consequently, it does not make sense to keep the old events in the
circular buffer for future STDP. This simplifies dramatically the
HW.Otherwise, if lateral inhibitionwould have been soft, wemay
think of not flushing the pre-list. But this would require to add the
following complication: since the STDP process is much slower
than the neuron updates, while an STDP update is running,
new incoming events should not be included in the circular
buffer before the running STDP process is finished, requiring the
introduction of an intermediate buffer whose content would be
transferred to the circular buffer once the STDP update process is
concluded.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

The proposed design implemented in Spartan-6
(XC6SLX150T-3) consumes 120 slices (out of 23k), and it
can operate at a clock frequency of up to 200 MHz10. The exact
time of the STDP process depends on one parameter (number of
potentiation), which in the worst case needs 2083+1031 = 3114
clock cycles, or 15µs.

As a practical consideration, a VLSI design needs a
hierarchical approach to be extensible and reusable. Here we
implemented a Neural-Core as a single processing core that
contains an arbitrary number of 256 neurons and one STDP unit.
Figure 4C shows the block diagram of this Neural-Core. Each
core contains two arbiters. One arbiter (“STDP arbiter UNIT”)
is in charge of handling STDP requests from the neurons, while
the other arbiter (“Spike2AER UNIT”) is in charge of handling
the output spikes produced by the neurons. Since the number
of neurons per core can be large, the use of the shared bus
(“STDP_BUS”) reduces long-distance wiring resources. There are
only 2 signals (1-bit each) that need to be routed separately
for each neuron: “Spike_out” and “STDP_req.” An AER filter is
implemented at the “AERin” input to filter out all input spikes
whose destination is not the present Neural Core. The Neural
Core can have any arbitrary number of neuron units, as long as
their output activity does not saturate the shared “STDP UNIT.”

2.6.2.3. Multi-core configuration
Figure 4D illustrates an arrangement of a multi-core
configuration for the case of a one-layer fully connected
neural network with an arbitrary number of 256 cores (65 k
neurons). This can be one layer of a deep neural network. In this
case each core can have its own parameters.

The efficiency of the presented hardware implementation
comes from the simplicity of the neuron model, of the learning
rule, and from using 1-bit synaptic weights. We approximate
the exponential leak by a simplified piece-wise-linear leak, by
using a bit-wise shift mechanism for leakage11(Yousefzadeh et al.,
2017). Figure 5A shows the exact exponential leak (with 12
ms time constant), together with the approximated piece-wise-
linear one. Initially, a large number is subtracted every time
(fast linear leak), but this number is divided by a power of 2 at
some point, reducing the slope of the linear leak. Additionally,
the simplicity of the order-based STDP learning rule avoids
keeping track of time, saving on-chipmemory. For a comparison,
Rice et al. (2009) implemented 25 physical Izhikevich neurons
(without any learning scheme) in a Virtex4 FPGA, consuming
79% of total resources (more than 2 k slices per each physical
neuron) which is around 40 times more than the resources
used for the simple neurons used in this work. Cassidy et al.
(2007) presented an FPGA design with 32 LIF neurons and 128
8-bit synaptic connections per neuron which are equipped with
conventional time-based STDP learning and operates at 50 MHz
clock frequency. Their design consumed 7454 slices of Xilinx

10Reducing clock frequency helps reducing the number of slices.
11Note that for the hardware implementation we have used a more sophisticated
leak than for the software implementations. In software we used plain linear leak,
while in hardware we are approximating an exponential leak. However, the circuit
implementation is simpler: the plain linear leak requires one subtracter and one
comparator, while the piece-wise-linear exponential approximation requires one
subtracter and bit-shifting.

Spartan-3 FPGA and 20 KB of block RAMs while our proposed
design with 256 neurons (including STDP unit and clocking
at 100MHz) consumed 6210 slices and no block RAMs12. This
means that by using 1-bit weights, we were able to integrate more
than 8 times smaller neurons with 8 times more connections per
neuron, while having almost identical resource consumption.

3. RESULTS

This section describes three learning experiments performed
on three different data sets, using either the MegaSim software
platform, the FPGA hardware platform, or both. The first one
is an experiment on the unsupervised development of simple
orientation selectivity fields replicating biological experiments
(Bienenstock et al., 1982). These biological experiments
demonstrate the development of stimulus orientation selectivity
in the primary visual cortex. To replicate this biological
experiment no classifier layer was used, and results were
obtained for both the MegaSim software platform and the
hardware FPGA platform. The second experiment is a poker
card symbol classification experiment using real DVS recordings.
We used the so called “Slow Poker DVS” data set (Soto, 2017),
which consists of relatively long recordings of hand held printed
poker symbols, that allowed for a reasonable large training set.
This experiment required a classification layer, and we used
both, the high performance and the simple STDP-based ones.
Results were obtained for the MegaSim and the FPGA platforms.
The third experiment is an MNIST handwritten digits (LeCun
et al., 1998) recognition experiment. For this experiment we
required the high performance classifier, as the simple classifier
provided poor performance for such a complex data set. Results
were only obtained for the MegaSim platform, because the high
performance classifier cannot be trained on-line by the hardware.
In the following we show details of the different experiments and
corresponding results.

3.1. Development of Orientation Selectivity
This experiment is based on the work presented in Bienenstock
et al. (1982) and was used to experimentally demonstrate the
development of stimulus selectivity in the primary sensory
cortex. The topology of this neural network was shown in
Figure 2D. It consists of two layers, one input layer of size 32×32,
which is fully connected to a FE layer of 4 neurons. The synthetic
stimulus used for the training is a bar presented in 4 different
orientations, rotated by 45o. The bar is 8 pixels thick, and 24
pixels in length, while each pixel has a random intensity value
between 0.8 and 1.0. The pixels are then converted to Poisson
spike-trains with a rate proportional to the intensity of each
individual pixel. This is a common technique for converting
static images to synthetic spike-trains (O’Connor et al., 2013;
Querlioz et al., 2013; Diehl et al., 2015; Diehl and Cook, 2015;
Galluppi et al., 2015; Stromatias et al., 2017). The four different
orientations used for the training can be seen in Figure 6A.
During training, each bar is presented in one of the four random

12Spartan-3 FPGA is older than Spartan-6 and, by our experience, a similar design
may take around 10% fewer slices in Spartan-6 in comparison to Spartan-3.

Frontiers in Neuroscience | www.frontiersin.org 10 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 5 | (A) Illustration of the implemented efficient leakage mechanism by using bitwise shift. This approximates exponential leakage in LIF neurons. (B) Event

rate of input, output, and STDP output during STDP learning. Horizontal axis (time) is shown in log scale to visualize the exponential decay in STDP output events.

One training set trial is about 400 s.

orientations, with an inter-symbol time equal to Tleak, thus
allowing all neurons to leak to their resting state.

The parameters of the fully connected neural population are
summarized in Table 1 top, while the STDP parameters can be
seen in Table 1 bottom. Figure 6B top shows the initial random
1-bit weights before learning, and Figure 6B bottom shows the
final 1-bit weights after 400 training epochs. It can be seen
that by the end of the training each neuron has developed a
receptive field specific to a particular orientation. The purpose
of the post-learning test is to demonstrate that each neuron has
learned to respond maximally to a preferred orientation. For
this, we disabled the (a) plasticity, (b) dynamic thresholds, and
(c) internal (inhibition) reset mechanism. Neuron thresholds are
kept at their final training values (which is xthmax

).
This experiment has been performed both on the MegaSim

and on the FPGA platforms, presenting identical results.
Figure 6B shows the firing frequencies of the four neurons as a
function of input stimulus bar orientation, in steps of 10◦. As the
bar rotates, the neuron tuned to the closest orientation provides
higher firing frequency, as happens in biology (Bienenstock et al.,
1982) and other similar experiments (Moore and Freeman, 2012;
Jeyabalaratnam et al., 2013; Galluppi et al., 2015). For the rest
of the paper, in the remaining experiments, we will consider the
spike count of the output neurons, for a given input stimulus, as
the quantity determining the readout of the neurons.

In the FPGA, we implemented four physical neurons and one
STDP UNIT. The complete circuit power consumption was 142
mW when operated at 100 MHz clock frequency. This design
occupied only 1% of the FPGA slices. A video demonstration of
the FPGA version of this experiment can be seen in (Yousefzadeh,
2017b).

3.2. Recognition of DVS-Recorded Poker
Card Symbols
A very high speed DVS recorded poker symbol data set was
released in the past (Serrano-Gotarredona and Linares-Barranco,

2015). However, this data set contained too few training samples
for proper STDP learning and classifier training. To perform
more robust poker symbol recognition training, a new data set
was recorded called “Slow-Poker-DVS,” in which paper printed
poker symbols were hand held in front of a DVS and moved
slowly to inducemotion events (Soto, 2017). This data set consists
of four 3 min recordings, each recording for a different poker
symbol. The recordings use the full 128×128 DVS resolution.
For each recording, we extracted slices with a fixed number of
events per slice, rather than with a fixed time window. More
specifically, we used slices of sizes 10, 30, and 50 kilo events per
slice (kesl). Therefore, we had three different data sets for training
and testing, depending on the chosen kesl. Each slice is not like a
static frame, but rather like a moving video, and a few neurons
may fire and learn during each slice. For finding the optimal
learning hyper parameters such asWsum, xthmax , STDPBuffer Size,
and PLTP, we used a validation set to avoid over-fitting the testing
set (Nowotny, 2014).

The number of samples of the training and testing set varies
depending on the number of kesl. For 10 kesl, we had 779
samples in the training set (of which 138 samples are used for
the validation set) and 192 samples in the test set. For 30 kesl we
had 259 samples in the training set (of which 45 are used as the
validation set) and 64 samples in the test set. Finally, for 50 kesl
we had 155 samples in the training set (of which 26 samples are
used for the validation set) and 37 samples in the test set. For each
experiment the hyper parameters that generated the highest score
on the validation set were used to train on the full training set and
report the final score as CA on the testing set.

3.2.1. Software Results
For each data set we trained the SNN with different number of
neurons in the feature extraction layer, the layer that will learn
with 1-bit weights. The number of neurons we tried for this layer
were {200, 400, and 800}. The experiments were executed by
applying a PLTP of 20 and 80%, a number of active synapses per

Frontiers in Neuroscience | www.frontiersin.org 11 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 6 | (A) The input pattern used for the orientation selectivity

experiment. During the experiments the bar is presented in random order. (B)

The initial and final 1-bit weights for the development of orientation selectivity

experiment. (C) Orientation tuning curves obtained by rotating a horizontal bar

counter clockwise with a step size of 10◦C.

receptive field Wsum of {16, 32, 128}, and xthmax
of {40, 60}. The

STDP buffer size was kept fixed at 250 events to reduce simulation
time.

In order to find the optimal hyper parameters, we used the
validation set of each data set. For each data set, each training set
is presented once with stochastic STDP learning activated. Then,
the hyper parameters that resulted in the highest classification
accuracy (CA) on the validation set were chosen to train with
the full training set, and after this the classifier (output layer)
was trained. The final score is reported using the testing set of
each data set. Table 2 gathers the hyper parameters that were
investigated for the Slow-Poker-DVS experiments, when using

TABLE 1 | Neural and STDP parameters for the development of orientation

selectivity experiment.

Parameters Values Description

Neural parameters

population_size 4 Population size

pre_size 1024 presynaptic population size

xth 10 Initial Neuron Threshold

xthmax 100 Maximum allowed dynamic threshold

STDP parameters

STDP buffer size 250 Total size of the event buffer

PLTP 80% Probability for LTP

Wsum 180 Sum of active synapses per neuron

TABLE 2 | STDP hyper parameters investigated for the MNIST classification task.

Parameter Values Description

STDP buffer size [250, 500] STDP event buffer size

Wsum [16, 32, 128, 256] Number of active synapses per neuron

PLTP [80%, 20%] Potentiation probability

xthmax [40, 60, 80] Maximum allowed threshold during

STDP learning

the MegaSim platform with the high performance event-driven
classifier (Stromatias et al., 2017). The corresponding results are
summarized in Figure 7. The green line represents CA on the
corresponding testing set as a function of the number of neurons
in the 1-bit weights feature extraction layer. Figures 7A–C

correspond to data sets created using 10, 30, and 50 kesl,
respectively. It can be seen that there is no significant difference
between processing most of the incoming STDP updates (PLTP
= 80%) or just a portion of them (PLTP = 20%). Although CA
improves with more neurons in the feature extraction layer,
the number of kesl has a more significant effect on the CA.
Along with the CA, Figure 7 presents the confidence interval
(CI) for each result with a vertical bar. The CI is calculated for
a confidence level of 0.99 and assuming that the test samples
are statistically independent (Nowotny, 2014). The confidence
intervals show the expected CA depending on the test set size.
The confidence intervals of the mean test error are computed
using the following expression (Nowotny, 2014)

µ̂ ± z∗(

√

µ̂(1− µ̂)

NT
) (2)

where µ̂ is the estimated test error, NT is the test set size, and
z∗ depends on the level of confidence. For 0.99 confidence level,
z∗ is 2.578. Note that the resulting range of the CI is quite wide
because the data set used is not very large. Furthermore, with the
increase of kesl, the number of samples of the data set and the test
set becomes smaller and the CI increases.

The “Slow-Poker-DVS” data set was used before with the
same high performance classifier, but using a feature extraction
layer of 18 pre-programmed non-plastic oriented Gabor filters

Frontiers in Neuroscience | www.frontiersin.org 12 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 7 | Classification Accuracy (CA) of the SNNs on the Slow-Poker-DVS data set as a function of the number of neurons in the FE layer for a PLTP of 80 and

20%, shown as the green solid line, for (A) 10 kesl, (B) 30 kesl, and (C) 50 kesl. The text at each data point presents the hyper parameters that yielded the best CA

on the validation set. The blue solid lines show the CA for random fixed 1-bit weights with no STDP learning in the FE layer, while the red lines show the CA for random

fixed 1-bit weights with fixed Wsum applied to restrict the number of active synapses per neuron. PLTP is not applicable for the blue and red solid lines; they are

duplicated in each pair of subplots for viewing convenience. The error bars denote the confidence and are calculated for a confidence level of 0.99 and assuming that

the test samples are statistically independent (Nowotny, 2014).

Frontiers in Neuroscience | www.frontiersin.org 13 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

(Stromatias et al., 2017), obtaining a CA of 99.7%. Slices were
extracted using 100 ms time windows, generating a total of 6751
samples for the full data set. Here we decided to be independent
of the time variable and create slices using number of events.
However, the large number of events required for a good CA,
results in a reduced number of samples in the data set, which
increases the CI for each result. Using fixed time slices we
obtained 99.7% CA (Stromatias et al., 2017). On the other hand,
here the data set got reduced drastically, but we achieved even
better CA, despite using 1-bit weights, a smaller network size, and
training the feature extraction layer in an unsupervised manner.

In order to “measure” the effectiveness of the STDP-trained
FE layer, we compare with the case of using pure random 1-bit
weights in the FE layer. It is well-known that a sufficiently large
FE layer with random weights followed by a high-performance
classifier yields highly competitive accuracies (Huang et al.,
2006). Here we want to see if stochastic STDP learning with
1-bit weights improves with respect to pure random 1-bit
weights, using the same FE layer size. The results are shown
in Figure 7 with blue and red traces. Blue traces correspond to
generating random 1-bit weights without any restriction. Red
traces correspond to the same, but with the restriction of keeping
the sum of 1-bit weights (connecting to one destination neuron)
equal to Wsum. We can see there is a systematic benefit when
using stochastic STDP with respect to random weights. The
benefit tends to be more for smaller number of neurons in the
FE layer.

3.2.2. Hardware Results
In addition to the MegaSim based experiments with the high
performance classifier, we also performed some tests using the
digital hardware FPGA platform with the simplified event-driven
classifier. The FPGA platform results shown in Figure 8A (trace
“1b stdp”) correspond to the 10kesl data set, with input events
sub-sampled to 32 × 32 pixel resolution. From each original
recording, we used the first 1.6 million events, which resulted
in 160 samples per symbol. From these, 80% randomly picked
samples were used for the training set and the remaining 20%
for the test set. We set up a network with a 32 × 32 input layer
which connects to a feature extraction (FE) layer with N neurons
in a fully connected manner. The 32 × 32 × N 1-bit synaptic
weights were trained on-line using the proposed stochastic STDP
1-bit rule with Wsum = 100. The N neurons are connected to a
simple STDP-type classifier (as presented before in section 2.5)
with 4 output neurons, and trained accordingly (Yousefzadeh
et al., 2017). This classifier is implemented in hardware and is
trained on-line along with the stochastic STDP neurons. We
performed tests using different numbers of neurons N for the
FE layer. Also, for comparison purposes, we repeated the same
process but without STDP FE learning. Instead, the receptive
fields of the N FE neurons were randomly set to 1-bit values,
while keeping Wsum = 100. Figure 8A (trace “1b rand”) shows
the results when setting the event buffer size to 90 and the
probability of potentiation to PLTP = 30%. The bottom axes
in Figure 8A indicate N, the number of neurons in the FE
hidden layer. Figure 8A (left) indicates the CA obtained after
stochastic STDP learning and classifier training, and Figure 8A

(right) indicates the average number of FE hidden layer spikes
per pattern presentation for the full test set. We can see that
when using the proposed stochastic STDP FE layer learning, the
classifier can learn with up to 100% accuracy with N = 256,
while generatingmuch less events. However, when the FEweights
are set randomly, the classifier is not able to achieve such high
accuracy. Figure 8B shows the stochastic-STDP learned FE 1-
bit weights for13 N = 100. For these results, we kept for all N
the same STDP buffer size (90), Wsum (100), and PLTP (30%).
However, the inference threshold was automatically adjusted
to have an acceptable activity for classification. In general, a
higher activity should lead to improved accuracy as there is
more information. However, we can see that for the STDP FE
layer, higher accuracy is achieved with lower neural activity
(and consequently lower power consumption), which means that
extracted features are more efficient and representative. For this
experiment, with 256 physical neurons and one STDP UNIT, the
FPGA consumed 333 mW when operating at 100 MHz clock
frequency. Such design occupied 27% of our FPGA slices.

3.2.3. Trading off Bit-Resolution for Number of

Neurons While Maintaining Similar Hardware

Resources
An interesting question one may ask is what if, for the same
hardware resources, we increase bit-precision while reducing
number of neurons and synapses. Will we gain in CA or
power consumption? Changing bit-precision affects all circuitry:
synapses, neurons, as well as all computing and communication
circuitry. Although a full detailed study is out of the scope of the
present paper, we can quickly analyze the case for an 8-bit system,
using both STDP or fixed random 8-bit weights. For example,
as reported by Cassidy (Cassidy et al., 2007), they implemented
an STDP 8-bit system using very similar hardware resources
than our 1-bit STDP implementation (see Table 5). The number
of synapses and neurons they were able to fit was exactly 1/8
the ones we have used. Therefore, as an approximate rule of
thumb, we can suggest that increasing/decreasing bit resolution
by a given number, decreases/increases both the number of
synapses and neurons in the hidden layer by the same number.
This observation is actually quite intuitive when implementing
a hidden layer with Ni inputs, Nh hidden neurons, and Nsyn =

Ni×Nh synapses. If Rh represents the hardware resources for the
hidden layer neurons, Rsyn the ones for the synapses, and Rov the
ones for the rest of overhead (shared) circuitry, then

Rsyn = αsyn × Ni × Nh × nb (3)

Rh = αh × Nh × nb (4)

Rov = αov × nb (5)

where nb is the number of bits, and αsyn, αh, and αov are some
proportionality constants. Assuming Rov << Rsyn + Rh, then
we can see that the product Nh × nb must be kept constant for
equal hardware resources. Consequently, we may assume that
if we change bit resolution from 1-bit to 8-bit, we must divide

13A video showing the evolution of the 1-bit weights during stochastic STDP
learning can be seen in (Yousefzadeh, 2017a).

Frontiers in Neuroscience | www.frontiersin.org 14 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 8 | (A) CA (left) and output neuron spikes (right) for STDP trained FE weights and random FE weights. The figure compares 1-bit hardware (bottom axes) with

8-bit hardware (top axes). Bottom and top axes are aligned for similar hardware resources consumption. Blue circles: 1-bit HW with STDP. Red exes: 1-bit HW with

fixed random weights. Green asteriscs: 8-bit HW with STDP. Black triangles: 8-bit HW with fixed random weights. (B) Stochastic-STDP learned weights on the FPGA

hardware platform for buffer size 90 and PLTP = 30%. The number on top of each receptive field indicates the final neuron threshold xth after learning has concluded.

Nh by 8. In Figure 8A we show CA (left) and Average Number
of Hidden Layer Spikes per Input Pattern (right) as a function
of the number of neurons for different implementations. The
horizontal axes have been separated into two: the bottom one
for 1-bit hardware and the top one for 8-bit hardware. This way,

hardware of similar resources is aligned vertically. For example,
a 1-bit implementation with 256 hidden layer neurons is aligned
vertically with an 8-bit implementation of 32 neurons, because
both consume similar hardware resources. Vertical segments at
each data point, represents the max/min spread when repeating

Frontiers in Neuroscience | www.frontiersin.org 15 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

the training over 10 full trials. For the case of 8-bit STDP training
there are no vertical segments, because in this case STDP is
deterministic: STDP applies small changes every time without
generating random numbers in the process.

From Figure 8A we can make some interesting observations.
(a) The 1-bit hardware with STDP provides, for given hardware
resources, the highest CA and the minimum number of spikes
in the hidden layer. Note that the number of spikes is
directly proportional to power consumption in an event-driven
system, because computation and information communication is
performed at a per-event basis. Also note that computing events
in 1-bit hardware consumes less energy than with 8-bit hardware
(although, this is not reflected in Figure 8A). (b) CA seems to
depend mainly on the number of neurons, while depending very
little on the bit representation used. In Figure 8A left, when
shifting the 8-bit HW curves to align exactly the number of
neurons, the resulting curves almost overlap. (c) For the fixed
random weights (both 1-bit and 8-bit) there is a sudden increase
in number of events as hidden layer neurons increase, while for
the STDP cases the tendency seems to be to settle smoothly.
Please note that none of these observations is conclusive, and
should not be extrapolated to more general cases before a more
careful and systematic study is performed.

3.2.4. Bandwidth Limitations of STDP Hardware

During Learning
From section 2.6.2 we can see that the hardware resource usage
of the STDP unit within one 256-neuron core (see Figure 4C)
is about 2-3 neurons, or equivalently, about 1% of the neural
core. Therefore, from the hardware resources point of view, the
difference between a 1-bit STDP hardware and a 1-bit fixed
random weights hardware is negligible. On the other hand, the
biggest advantage of the fixed random weights option is that it
does not require training. From the bandwidth point of view, the
STDP version has some bandwidth limitations during learning.
For inference, both versions have identical bandwidth because
the neuron hardware is the same. Neurons can process one event
per clock cycle. Therefore, for the 100 MHz clock frequency
implementation (see section 3.2.2) the maximum input event
throughput is 100 Meps. Additionally, the maximum output
event throughput cannot exceed 100Meps, for the same reason.

However, the STDP version needs to be trained and, during
training, the STDP unit imposes some additional bandwidth
limitation, which can be reached under some circumstances. In
our example implementation, the STDP unit is shared by 256
neurons, and is triggered every time one of the 256 neurons
generates an STDP output event. Each STDP output event also
resets the STDP counters of the rest of neurons, thus helping
to make the STDP output activity sparse. As mentioned in
section 3.2.2, the STDP process needs “2090 + buffer size” clock
cycles. In our example implementation “buffer size = 90,” thus
requiring 2180 clock cycles per output event (21.8µs at 100 MHz
clock frequency). Therefore, the STDP unit would saturate at
an STDP output event rate of 45.87 keps. Note that saturating
the STDP unit is not a dramatic problem: while saturated, all
STDP output events will be ignored and training would require
more time. Figure 5B shows, as an illustration for the 256-neuron

hidden FE layer case, the instantaneous event rates for the input
flow (average around 12 keps), for the output flow (average
around 18 eps), and for the output STDP events. We can see
that STDP output event rate starts with a maximum of about 220
eps and decreases exponentially with time as learning progresses.
Consequently, one could accelerate the input event rate by a
factor 45.87k/220 = 208 before saturating the STDP unit during
the initial learning phase, which would result in an input event
rate of 2.5 Meps. Alternatively, if one wants to avoid STDP unit
saturation, it is possible to add more STDP units and have them
shared by less neurons.

3.3. Recognition on the MNIST Data Set
The MNIST data set (LeCun et al., 1998) consists of 70,000
samples of handwritten digits from 0 to 9, of which 60,000
are used for training and 10,000 for testing. Each sample is a
28×28 gray-scale image with maximum intensity value of 255.
We converted the MNIST data set from static images to Poisson-
distributed spike-trains with a rate proportional to the intensity
of each pixel, while all firing rates are scaled in order to keep the
total firing rate of the population constant (O’Connor et al., 2013;
Stromatias et al., 2017, 2015).

MNIST dataset learning was only possible when using the high
performance classifier for the output layer. Otherwise, accuracy
results were very poor. Consequently, here we only focus on
software platform results with the high-performance classifier.
During STDP learning we presented one sample at a time, 1000
spikes per training sample, with an inter-symbol-time (IST)
identical to the linear leakage of the spiking neurons. This way
the leakage acts as a natural way to reset the internal states of the
neurons before presenting a new training sample.

We first train the FE layer using the topology shown in
Figure 2D. Stochastic STDP learning stops when all training
samples are presented once. Training was repeated for different
number of neurons in the FE layer. For the output layer we
used the high performance event-driven classifier described in
section 2.5. For finding the optimal learning hyper parameters
such as Wsum, xthmax

, STDP Buffer Size, and PLTP, we used a
validation set to avoid over-fitting the testing set (Nowotny,
2014). We split the original 60, 000 samples of the full training
set into a training set of 50, 000 samples and used the remaining
10, 000 samples as the validation set. For each experiment
the hyper parameters that generated the highest score on the
validation set were used to train on the full 60, 000 samples
training set and we report the final score as CA on the MNIST
testing set.

We trained a series of SNNs with varying number of neurons
in the stochastic STDP FE layer. The number of neurons were
{100, 400, 1600, 6400}, as in (Diehl and Cook, 2015) to allow for
a direct comparison. Table 2 shows the STDP hyper parameters
that were investigated. Figure 9A shows the effect that Wsum

has on the learned weights of a population of 100 neurons.
Results are summarized in Figure 9B. The green solid line in
Figure 9B represents CA on the MNIST testing set as a function
of the number of neurons in the FE layer, along with the hyper
parameters that generated the highest CA on the validation set.
For PLTP = 80% the SNNs achieve the following classification

Frontiers in Neuroscience | www.frontiersin.org 16 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

FIGURE 9 | (A) Effect of Wsum Stochastic-STDP meta parameter on the 1-bit weights (receptive fields) and the classification accuracy (CA) of a population of 100

neurons trained on the MNIST data set. Weights are reshaped from 784 to 28×28. (B) Classification Accuracy (CA) of the SNNs on the MNIST testing set as a

function of the number of neurons in the FE layer for a PLTP of 80 and 20%, shown as the green solid line. The text at each data point presents the hyper parameters

that yielded the best CA on the validation set. The blue solid line shows the CA for random fixed 1-bit weights with no STDP learning in the FE layer, while the red line

shows the CA for random fixed 1-bit weights with fixed Wsum applied to restrict the number of active synapses per neuron. Error bars denote the confidence and are

calculated for a confidence level of 0.99 and assuming that the test samples are statistically independent (Nowotny, 2014). (C) The confusion matrix on the 10, 000

MNIST testing set digits for a FE layer of 6400 spiking neurons when applied STDP learning with a PLTP of 80 and 20% respectively. Values on the diagonal represent

correct classifications. (D) Mean neuron firing rate and mean activity ratio of the FE layer for all 10, 000 samples of the validation set and for 4 different population sizes.

accuracies for populations of 100, 400, 1600, and 6400 neurons in
the FE layer: 84.84, 90.15, 93.87, and 95.68%, while for a PLTP =

20% CA is 86.25, 90.35, 93.54, 95.7%. These results demonstrate
that there is no significant difference between processing the
majority of incoming STDP weight updates or just a fraction
of them. Another visible trend from Figure 9B is that, as the
number of neurons in the FE layer increases, configurations
with smallerWsum (less active synapses per neuron) yield higher

classification accuracies, while for smaller population sizes larger
Wsum result in higher CA. Figure 9B presents the CA along with
the confidence intervals (CI).

Figure 9C shows the confusion matrix of the MNIST test set
for the 6,400 neurons case for a PLTP of 80 and 20%. Values
on the diagonal represent correct classifications. While executing
simulations with the validation set we discovered that the activity
of the FE layer after stochastic STDP learning for the larger

Frontiers in Neuroscience | www.frontiersin.org 17 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

populations is very sparse and the average firing rate is very low.
For example, themean firing rate of the FE layer for 6400 neurons
on the validation set is 0.26Hz, while less than 20% of the neurons
are active per sample on average. These findings are summarized
in Figure 9(D).

As before, results were compared with pure random 1-
bit weights, without normalization (blue traces in Figure 9B),
and with normalization (red traces in Figure 9B). We can
see again a systematic beneficial trend when using STDP
with respect to using random weights, which is clearer now
than for the Poker dataset case, since the confidence intervals
are now much narrower. The benefit tends to be larger
for smaller number of neurons in the FE layer, as in the
previous case.

As a final experiment, we used the simple classifier for the
output layer in order to investigate if the reason why the
results produced with 1-bit weights STDP and random 1-bit
weights withWsum are similar is because of the high-performance
classifier being too powerful or our proposed stochastic binary
STDP not generating good features. For a FE layer of 1600
neurons and for features learned with stochastic 1-bit weights
STDP the simple classifier achieved a CA of 75.6%, while for
random 1-bit weights with the same Wsum = 16 the CA was
47.6%. These results verified our hypothesis that the reason why
the results we achieved with the 1-bit weights STDP and random
1-bit weights withWsum show similar trend is because our high-
performance classifier is indeed too powerful and overcomes the
poor features generated randomly. On the other hand, when

TABLE 3 | Comparison of reported results on DVS-recorded Poker datasets (“Fast” and “Slow”).

TABLE 4 | Comparison of reported results on spiking versions of the static MNIST dataset.

Experimental results with STDP learning rule are marked in red color.

Frontiers in Neuroscience | www.frontiersin.org 18 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

using the simpler but lower-performance classifier, stochastic
STDP provides better features, improving overall CAwith respect
to using random weights.

4. DISCUSSION

There is a growing interest in exploiting SNNs for practical
hardware applications, not only because they approximate
better the inherent operations of the brain, but also because
only meaningful information, represented by spikes/events,
consume computing resources and energy. Originally, there
was almost no work on training SNNs directly in the spiking
domain, and many research efforts were inverted in efficiently
mapping conventional (frame-driven) ANNs (Artificial Neural
Networks), conveniently trained in the frame-domain, to their
SNN counterpart (O’Connor et al., 2013; Pérez-Carrasco et al.,
2013; Diehl et al., 2015). However, recently, there has been a
growing success in training networks directly in the spiking
domain, either by developing some type of backpropagation
technique for the spiking domain (Lee et al., 2016; Neftci et al.,
2017; Mostafa, 2018), by exploiting STDP at some level of the
network (Querlioz et al., 2013; Diehl and Cook, 2015; Neftci
et al., 2015, 2016; Kheradpisheh et al., 2016), or by some ad-hoc
technique (Lagorce et al., 2016; Negri, 2018).

For the simple 4-class DVS-recorded poker card recognition
datasets (Serrano-Gotarredona and Linares-Barranco, 2015;
Soto, 2017), reported results are summarized in Table 3.
There are two poker card dataset versions. The fast one
(Serrano-Gotarredona and Linares-Barranco, 2015) of visual
field resolution 32 × 32 pixels, where symbols cross the screen
in about 20–30 ms. And the slow one (Soto, 2017) of visual
field resolution 128 × 128 pixels, where symbols move slowly
and recordings are cut into sequences of about between 0.75 (10
kesl) and 3.75 (50 kesl) seconds. The fast set has been used by
several researchers. In the original paper using the fast dataset
(Pérez-Carrasco et al., 2013), 91% of CA was achieved with

around the first 500 events, which corresponds to about the first
1–3 ms of a recording. This was achieved by training a 3-layer
ConvNet in the frame-domain using backpropagation and then
mapping it to an SNN. Orchard (Orchard et al., 2015) used a 1-
layer ConvNet with 18 Gabor filters with a heuristic classification
method, achieving 97.5% CA after processing the full recordings,
each with about 5 k events. The HOTS technique (Lagorce et al.,
2016) based on computing with space-time surfaces, achieved
100% CA by processing also the full recordings. Recently,
another mapping method from the frame-domain to SNN was
reported (Kaiser et al., 2017) based on applying Contrastive
Divergence (CD) on a hidden layer of a generative model
with 10 convolutional feature maps, achieving 91% CA after
processing the full recordings. Negri developed a method based
on histrogramming, which is capable of recognizing extremely
fast (0.6 ms or less than 50 events), with a reasonable accuracy
of 96%. Stromatias et al. (Stromatias et al., 2017) used a 1-layer
ConvNet with 18 Gabor filters followed by an SNN classifier.
They achieved 99.77% CA on the fast set and 100% on the
slow set. For all the above methods, synaptic weights used
the full resolution of 64-bit floating point precision, except for
(Stromatias et al., 2017) who used integer precision of 24-bit
for the classifier layer and 32-bit for the convolution layer. In
this work we used just 1-bit precision for the first layer, trained
with STDP directly in the spiking domain, with the same 24-bit
integer resolution classifier layer than (Stromatias et al., 2017),
achieving 100% CA on the slow set. Unfortunately, we could
not use the fast set because we needed more training samples
for STDP.

Table 4 shows SNN results reported for spiking versions of
the MNIST dataset. As indicated in the last column, the original
frame-based data set is converted artificially into spikes by either
mapping a pixel value into an average frequency of a spike train
with Poisson distribution, by mapping the pixel value to a delay
(resulting in one spike per pixel), or by flashing the MNIST
digit on a monitor while recording spikes with a DVS spiking

TABLE 5 | Comparison of reported results on STDP MLP FPGA Hardware.

Frontiers in Neuroscience | www.frontiersin.org 19 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

retina sensor (O’Connor et al., 2013)14. Table 4 is divided in two
parts by a double horizontal line. The top part uses synaptic
weights with high resolution, while for the bottom part synapse
weight resolution has been reduced to 8-bit or less. The entries
shown in red correspond to networks that have used STDP for
some of their weights training. The second last column indicates
whether the models are generative or not15. Column “Structure”
indicates the number of layers of each system and the number
of neurons (or convolutional feature maps) per layer. Column
“Type” indicates whether the architecture is a pure MLP (multi-
layer preceptron), includes convolutional layers (CONV), or is a
generative model using a DBN (deep belief network) with RBMs
(Restricted Boltzmann Machine). Columns “FE Training” and
“Classifier Training” specify how the hidden and output classifier
layers have been trained. The columns on“Resolution” indicate
the resolution used for the weights of the synapses in the hidden
and the classifier layers. Column “Classification Accuracy” (CA)
compares the recognition performance obtained for the different
architectures and methods. We can see that for the systems
using some type of synaptic precision reduction (below 8-bit)
combined with STDP, the technique presented in this paper
shows the best CA for the specific cases analyzed. The only system
with weight precision reduction (8-bit) but without STDP that
improves our CA is the one by Neftci (Neftci et al., 2017) based
on event-driven random backpropagation. For the cases with
full precision but using STDP, only (Kheradpisheh et al., 2018)
improves our CA, but at the expense of using three convolution
layers. Table 4 also includes (under “This Work”) the results we
obtained with fixed-random weights, which are very similar to
the ones obtained by STDP.

The above Tables 3, 4 show that using 1-bit weights for the
FE layer (whether fixed-random or trained by STDP) results,
from the computational point of view, in overall CAs which
are comparable to related state of the art results on limited
precision weights and STDP learning systems. However, the
most interesting benefits of the presented 1-bit weight technique
is its efficiency for hardware implementations. There are not
many STDP hardware systems reported, implemented on FPGAs.

14We did not consider here MNIST spiking datasets obtained by motion induced
recordings with DVS cameras, like N-MNIST (Orchard et al., 2015) or MNIST-
DVS (Serrano-Gotarredona and Linares-Barranco, 2015). This will be the subject
of future work.
15Although our system is not generative, we have included here some generative
models that use STDP.

Table 5 compares similar hardware systems implementing on-
line STDP on spiking neural networks. Spartan-3 FPGAs
use (according to our experience) about 10% more resources
than Spartan-6 for the same system. As we can see, our
technique results in about two orders of magnitude in resources
consumption (slices per neuron) efficiency with respect to (Rice
et al., 2009), and about one order of magnitude with respect to
(Cassidy et al., 2007) (and without using Block-RAM). This is
achieved thanks to the fact of using 1-bit weights, resulting in
high reductions in memory resources, computing resources, and
communication resources.

There are some more recent works reporting on STDP
based synapses implemented on FPGAs (Pedroni et al., 2016;
Jokar and Soleimani, 2017; Nouri et al., 2018; Lammie et al.,
2018). Unfortunately, hardware resources are reported only
for a single STDP synapse/unit, making it difficult to compare
with a full STDP system implementation, since it is not clear
how reported synaptic resources can be shared or time-
multiplexed at system level. Also, the resources for the rest
of computing/memory/communication requirements are not
specified.

AUTHOR CONTRIBUTIONS

ES and AY developed the learning rules, ES worked on the
software simulations of orientation selectivity and MNIST, MS
on the software simulations of poker-DVS, AY developed all the
hardware experiments, TS-G and BL-B supervised the work.

FUNDING

This work was supported in part by the EU H2020 grants 644096
ECOMODE and 687299 NEURAM3, by Samsung Advanced
Institute of Technology grant NPP, and by Spanish grant from
the Ministry of Economy and Competitivity TEC2015-63884-
C2-1-P (COGNET) (with support from the European Regional
Development Fund). AY was supported by an FPI scholarship
from the Spanish Ministry of Economy and Competitivity.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://figshare.com/s/ec1fc61a8e795b942063

REFERENCES

Barbour, B., Brunel, N., Hakim, V., and Nadal, J.-P. (2007). What can we
learn from synaptic weight distributions? Trends Neurosci. 30, 622–629.
doi: 10.1016/j.tins.2007.09.005

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell
type. J. Neurosci. 18, 10464–10472.

Bi, G., and Poo, M. M. (2001). Synaptic modification by correlated
activity: Hebb’s postulate revisited. Ann. Rev. Neurosci. 24, 139–166.
doi: 10.1146/annurev.neuro.24.1.139

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.
(2012). Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.
doi: 10.1016/j.neunet.2012.02.022

Bienenstock, E., Cooper, L., and Munro, P. (1982). Theory for the development
of neuron selectivity: orientation specificity and binocular interaction in visual
cortex. J. Neurosci. 2, 32–48.

Biswas, A., and Chandrakasan, A. P. (2018). “Conv-ram: An energy-efficient sram
with embedded convolution computation for low-power cnn-based machine
learning applications,” in Proceedings of the 2018 International Solid-State

Circuits Conference (San Francisco, CA).
Bong, K., Choi, S., Kim, C., Kang, S., and Kim, Y. (2017). “A 0.62mw ultra-

low-power convolutional-neural-network face-recognition processor and a cis
integrated with always-on haar-like face detector,” in Proceedings of the 2017

International Solid-State Circuits Conference (San Francisco, CA), 344–346.

Frontiers in Neuroscience | www.frontiersin.org 20 October 2018 | Volume 12 | Article 665

https://doi.org/10.1016/j.tins.2007.09.005
https://doi.org/10.1146/annurev.neuro.24.1.139
https://doi.org/10.1016/j.neunet.2012.02.022
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.

Heidelberg: Physica-Verlag HD.
Camuñas-Mesa, L., Acosta-Jiménez, A., Zamarreno-Ramos, C., Serrano-

Gotarredona, T., and Linares-Barranco, B. (2011). A 32 x 32 pixel convolution
processor chip for address event vision sensors with 155 ns event latency and
20 Meps throughput. IEEE Trans. Circuits Syst. I Regul. Pap. 58, 777–790.
doi: 10.1109/TCSI.2010.2078851

Camuñas-Mesa, L., Pérez-Carrasco, J., Zamarreño-Ramos, C., Serrano-
Gotarredona, T., and Linares-Barranco, B. (2010). “On scalable spiking
convnet hardware for cortex-like visual sensory processing systems,” in Circuits

and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on

(Paris), 249–252.
Camuñas-Mesa, L., Zamarreno-Ramos, C., Linares-Barranco, A., Acosta-

Jiménez, A. J., Serrano-Gotarredona, T., and Linares-Barranco, B.
(2012). An event-driven multi-kernel convolution processor module
for event-driven vision sensors. IEEE J. Solid State Circuits 47, 504–517.
doi: 10.1109/JSSC.2011.2167409

Cassenaer, S., and Laurent, G. (2006). Hebbian stdp in mushroom bodies facilitates
the synchronous flow of olfactory information in locusts. Nature 448, 709–713.
doi: 10.1038/nature05973

Cassidy, A., Denham, S., Kanold, P., and Andreou, A. (2007). “Fpga based silicon
spiking neural array,” in 2007 IEEE Biomedical Circuits and Systems Conference

(Montréal, QC), 75–78.
Cassidy, A. S., Merolla, P., Arthur, J. V., Esser, S. K., Jackson, B., Alvarez-Icaza,

R., et al. (2013). “Cognitive computing building block: a versatile and efficient
digital neuron model for neurosynaptic cores,” in The 2013 International Joint

Conference on Neural Networks (IJCNN) (Dallas, TX), 1–10.
Chen, Y. H., Krishna, T., and Emer, J. (2016). “Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks,” in
Proceedings of the 2016 International Solid-State Circuits Conference (San
Francisco, CA), 262–263.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015). “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in Advances

in Neural Information Processing Systems 28, eds C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Curran Associates, Inc.), 3123–3131.

Dan, Y., and Poo, M. (1998). Hebbian depression of isolated neuromuscular
synapse in vitro. Science 256, 1570–1573.

Davies,M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359
Delbruck, T. (2007). Real time sensory-motor processing for event-based sensors

and systems. Available online at: https://sourceforge.net/p/jaer/wiki/Home/
Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., and Pfeiffer, M. (2015). “Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8.
Feldman, D. (2000). Timing-based ltp and ltd at vertical inputs to

layer ii/iii pyramidal cells in rat barrel cortex. Neuron 27, 45–56.
doi: 10.1016/S0896-6273(00)00008-8

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker
project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber,
S. B., et al. (2015). A framework for plasticity implementation on the
spinnaker neural architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.
00429

Gerstner, W., Ritz, R., and Hemmen, J. L. (1993). Why spikes? hebbian learning
and retrieval of time-resolved excitation patterns. Biol. Cybern. 69, 503–515.

Gonugondla, S. K., Kang, M., and Shanbhag, N. (2018). “A 42pj/decision
3.12tops/w robust in-memory machine learning classifier with on-chip
training,” in Proceedings of the 2018 International Solid-State Circuits

Conference (San Francisco, CA).
Guo, M., Huang, J., and Chen, S. (2017). “Live demonstration: A 768×640 pixels

200Meps dynamic vision sensor,” in 2017 IEEE International Symposium on

Circuits and Systems (ISCAS) (Baltimore, MD), 1.
Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning

machine: theory and applications. Neurocomputing 70, 489–501.
doi: 10.1016/j.neucom.2005.12.126

Iakymchuk, T., Rosado, A., Linares-Barranco, A., Jiménez-Fernández, A., Jiménez-
Moreno, G., Serrano-Gotarredona, T., et al. (2014). “An AER Handshake-Less
Modular Infrastructure PCBwith x8 2.5Gbps LVDS Serial Links,” Proceedings of
the IEEE International Symposium on Circuits and Systems (Melbourne, VIC),
1556–1559.

Jacob, V., Brasier, D. J., Erchova, I., Feldman, D., and Shulz, D. E. (2007). Spike-
timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J.
Neurosci. 27, 1271–1284. doi: 10.1523/JNEUROSCI.4264-06.2007

Jeyabalaratnam, J., Bharmauria, V., Bachatene, L., Cattan, S., Angers, A.,
and Molotchnikoff, S. (2013). Adaptation shifts preferred orientation
of tuning curve in the mouse visual cortex. PLoS ONE 8:e64294.
doi: 10.1371/journal.pone.0064294

Jokar, E., and Soleimani, H. (2017). Digital multiplierless realization of a calcium-
based plasticity model. IEEE Trans. Circuits Syst. II. Express Briefs 64, 832–836.
doi: 10.1109/TCSII.2016.2621823

Kaiser, J., Zimmerer, D., Tieck, J. C. V., Ulbrich, S., Roennau, A., and Dillmann,
R. (2017). “Spiking convolutional deep belief networks,” in Artificial Neural

Networks and Machine Learning – ICANN 2017, eds A. Lintas, S. Rovetta, P.
Verschure, and A. Villa (Cham: Springer International Publishing), 3–11.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2016).
STDP-based spiking deep neural networks for object recognition. CoRR,
abs/1611.01421.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).
Stdp-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Khwa, W.-S., Chen, J.-J., Li, J.-F., Si, X., Yang, E.-Y., Sun, X., et al. (2018). “A
65nm 4kb algorithm-dependent computing-in- memory sram unit-macro with
2.3ns and 55.8tops/w fully parallel product-sum operation for binary dnn
edge processors,” in Proceedings of the 2018 International Solid-State Circuits

Conference (San Francisco, CA).
Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). HOTS:

a Hierarchy Of event-based Time-Surfaces for pattern recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 39, 1346–1359. doi: 10.1109/TPAMI.2016.2574707
Lammie, C., Hamilton, T., and Rahimi, M. (2018). “Unsupervised character

recognition with a simplified fpga neuromorphic system,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence).
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.
Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.
doi: 10.3389/fnins.2016.00508

Leñero-Bardallo, J. A., Serrano-Gotarredona,T., and Linares-Barranco, B. (2011).
A 3.6µs latency asynchronous frame-free event-driven dynamic-vision-sensor.
IEEE J. Solid State Circuits 46, 1443–1455. doi: 10.1109/JSSC.2011.2118490

Lichtsteiner, P., Posch, C., and Delbrück, T. (2008). A 128×128 120dB 30mW
asynchronous vision sensor that responds to relative intensity change. IEEE J.

Solid State Circuits 43, 566–576. doi: 10.1109/ISSCC.2006.1696265
Maass, W. (2000). On the computational power of winner-Take-All. Neural

Comput. 12, 2519–2535. doi: 10.1162/089976600300014827
Markram, H., Lübke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of

synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275,
213–215.

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008). Spike timing dependent
plasticity finds the start of repeating patterns in continuous spike trains. PLoS
ONE 3:e1377. doi: 10.1371/journal.pone.0001377

Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2009). Competitive
stdp-based spike pattern learning. Neural Comput. 21, 1259–1276.
doi: 10.1162/neco.2008.06-08-804

Masquelier, T. and Thorpe, S. (2007). Unsupervised learning of visual features
through spike timing dependent plasticity. PLOS Comput. Biol. 3:e31.
doi: 10.1371/journal.pcbi.0030031

Moore, B. IV., and Freeman, R. (2012). Development of orientation tuning
in simple cells of primary visual cortex. J. Neurophysiol. 107, 2506–2516.
doi: 10.1152/jn.00719.2011

Mostafa, H. (2018). Supervised learning based on temporal coding in spiking
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235.
doi: 10.1109/TNNLS.2017.2726060

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-Dalini, A., and
Ganjtabesh, M. (2017). First-spike based visual categorization using reward-
modulated stdp. arXiv[preprint]arXiv:1705.09132.

Frontiers in Neuroscience | www.frontiersin.org 21 October 2018 | Volume 12 | Article 665

https://doi.org/10.1109/TCSI.2010.2078851
https://doi.org/10.1109/JSSC.2011.2167409
https://doi.org/10.1038/nature05973
https://doi.org/10.1109/MM.2018.112130359
https://sourceforge.net/p/jaer/wiki/Home/
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1016/S0896-6273(00)00008-8
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1523/JNEUROSCI.4264-06.2007
https://doi.org/10.1371/journal.pone.0064294
https://doi.org/10.1109/TCSII.2016.2621823
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2011.2118490
https://doi.org/10.1109/ISSCC.2006.1696265
https://doi.org/10.1162/089976600300014827
https://doi.org/10.1371/journal.pone.0001377
https://doi.org/10.1162/neco.2008.06-08-804
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1152/jn.00719.2011
https://doi.org/10.1109/TNNLS.2017.2726060
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

Mu, Y., and Poo, M. M. (2006). Spike timing-dependent ltp/ltd mediates visual
experience-dependent plasticity in a developing retinotectal system.Neuron 50,
115–125. doi: 10.1016/j.neuron.2006.03.009

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G.
(2015). Event-driven contrastive divergence: neural sampling foundations.
Front. Neurosci. 9:104. doi: 10.3389/fnins.2015.00104

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven
random back-propagation: enabling neuromorphic deep learning machines.
Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs, G.
(2016). Stochastic synapses enable efficient brain-inspired learning machines.
Front. Neurosci. 10:241. doi: 10.3389/fnins.2016.00241

Negri, P. (2018). Shapes characterization on address event representation using
histograms of oriented events and an extended LBP approach. CoRR,
arXiv[Preprint]arXiv:1802.03327.

Nouri, M., Jalilian, M., Hayati, M., and Abbott, D. (2018). A digital
neuromorphic realization of pair-based and triplet-based spike-timing-
dependent synaptic plasticity. IEEE Trans. Circuits Syst. II Express Briefs 65,
804–808. doi: 10.1109/TCSII.2017.2750214

Nowotny, T. (2014). Two challenges of correct validation in pattern recognition.
Front. Robot. AI 1:5. doi: 10.3389/frobt.2014.00005

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-
time classification and sensor fusion with a spiking deep belief network. Front.
Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,
and Benosman, R. (2015). HFirst: a temporal approach to object
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 2028–2040.
doi: 10.1109/TPAMI.2015.2392947

Pedroni, B. U., Sheik, S., Joshi, S., Detorakis, G., Paul, S., Augustine, C.,
et al. (2016). “Forward table-based presynaptic event-triggered spike-timing-
dependent plasticity,” in 2016 IEEE Biomedical Circuits and Systems Conference

(BioCAS) (Shanghai), 580–583.
Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., and Linares-Barranco, B. (2013). Mapping from frame-driven to
frame-free event-driven vision systems by low-rate rate coding and coincidence
processing. Application to feedforward convNets. IEEE Trans. Pattern Anal.

Mach. Intell. 35, 2706–2719. doi: 10.1109/TPAMI.2013.71
Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video
compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.
doi: 10.1109/JSSC.2010.2085952

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device
variations in a spiking neural network with memristive nanodevices. IEEE
Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.2250995

Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). “Xnor-
net: Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision (Amsterdam: Springer), 525–542.

Rice, K. L., Bhuiyan, M. A., Taha, T. M., Vutsinas, C. N., and Smith, M. C. (2009).
“Fpga implementation of izhikevich spiking neural networks for character
recognition,” in 2009 International Conference on Reconfigurable Computing

and FPGAs (Quintana Roo), 451–456.
Roberts, P. D., and Bell, C. C. (2002). Spike timing dependent synaptic plasticity in

biological systems. Biol. Cybern. 87, 392–403. doi: 10.1007/s00422-002-0361-y
Roclin, D., Bichler, O., Gamrat, C., Thorpe, S. J., and Klein, J. O. (2013).

“Design study of efficient digital order-based STDP neuron implementations
for extracting temporal features,” in The 2013 International Joint Conference on

Neural Networks (IJCNN) (Dallas, TX), 1–7.
Seo, J.-S., and Seok, M. (2015). “Digital cmos neuromorphic processor design

featuring unsupervised online learning,” in 2015 IFIP/IEEE International

Conference on Very Large Scale Integration (VLSI-SoC) (Daejeon: IEEE),
49–51.

Serrano-Gotarredona, R., Öster, M., Lichtsteiner, P., Linares-Barranco, A.,
Paz-Vicente, R., Gómez-Rodríguez, F., et al. (2009). CAVIAR: A 45k
neuron, 5M synapse, 12G connect/s AER hardware sensory-processing-
learning-actuating system for high speed visual object recognition and
tracking. IEEE Trans. Neural Netw. 20, 1417–1438. doi: 10.1109/TNN.2009.
2023653

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128 × 128 1.5%
contrast sensitivity 0.9% FPN 3 µs latency 4 mW asynchronous frame-free
dynamic vision sensor using transimpedance preamplifiers. IEEE J. Solid State

Circuits 48, 827–838. doi: 10.1109/JSSC.2012.2230553
Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. their history, how they were made, and other details. Front.
Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L.,
and Furber, S. (2015). “ConvNets experiments on SpiNNaker,” in
2015 IEEE International Symposium on Circuits and Systems (ISCAS),
2405–2408.

Sim, J., Park, J., Kim, M., Bae, D., and Choi, Y. (2016). “A 1.42tops/w deep
convolutional neural network recognition processor for intelligent ioe systems,”
in Proceedings of the 2016 International Solid-State Circuits Conference (San
Francisco, CA), 264–265.

Son, B., Suh, Y., Kim, S., Jung, H., Kim, J. S., Shin, C., et al. (2017). “4.1 A
640x480 dynamic vision sensor with a 9um pixel and 300Meps address-event
representation,” in 2017 IEEE International Solid-State Circuits Conference

(ISSCC) (San Francisco, CA), 66–67.
Soto, M. (2017). Slow Poker DVS Data Set. Available online at: http://www2.imse-

cnm.csic.es/caviar/SLOWPOKERDVS.html
Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-

C. (2015). Robustness of spiking deep belief networks to noise and reduced
bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9:222.
doi: 10.3389/fnins.2015.00222

Stromatias, E., Soto, M., Serrano-Gotarredona, T., and Linares-Barranco,
B. (2017). An event-driven classifier for spiking neural networks fed
with synthetic or dynamic vision sensor data. Front. Neurosci. 11:350.
doi: 10.3389/fnins.2017.00350

Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume,
D., et al. (2013). Bio-inspired stochastic computing using binary cbram
synapses. IEEE Trans. Electron Devices 60, 2402–2409. doi: 10.1109/TED.2013.
2263000

Thorpe, S., and Gautrais, J. (1998). “Rank order coding,” in Computational

Neuroscience (Boston, MA:Springer US), 113–118.
Whatmough, P., Lee, S., Lee, H., and Rama, S. (2017). “A 28nm soc with a 1.2ghz

568nj/prediction sparse deep-neural-network engine with >0.1 timing error
rate tolerance for iot applications,” in Proceedings of the 2017 International

Solid-State Circuits Conference (San Francisco, CA), 242–243.
Yousefzadeh, A. (2017a). Real Time Demo, Binary STDP Neurons Learns Poker

Card Symbols. Available online at: https://youtu.be/Gv2iVvoLL6A
Yousefzadeh, A. (2017b). Real Time Demo, Binary STDP Online Learning in FPGA

for Rotating Bar. Available online at: https://youtu.be/iH6VJl70X5s
Yousefzadeh, A., Masquelier, T., Serrano-Gotarredona, T., and Linares-Barranco,

B. (2017). “Hardware implementation of convolutional STDP for on-line
visual feature learning,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore, MD), 1–4.
Zamarreno-Ramos, C., Linares-Barranco, A., Serrano-Gotarredona, T., and

Linares-Barranco, B. (2013). Multicasting mesh aer: a scalable assembly
approach for reconfigurable neuromorphic structured aer systems.
application to convnets. IEEE Trans. Biomed. Circuits Syst. 7, 82–102.
doi: 10.1109/TBCAS.2012.2195725

Zhang, L., Tao, H., Holt, C., Harris, W., and Poo, M. (1998). A critical window for
cooperation and competition among developing retinotectal synapses. Nature
395, 37–44.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Yousefzadeh, Stromatias, Soto, Serrano-Gotarredona and Linares-

Barranco. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 22 October 2018 | Volume 12 | Article 665

https://doi.org/10.1016/j.neuron.2006.03.009
https://doi.org/10.3389/fnins.2015.00104
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1109/TCSII.2017.2750214
https://doi.org/10.3389/frobt.2014.00005
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1007/s00422-002-0361-y
https://doi.org/10.1109/TNN.2009.2023653
https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.3389/fnins.2015.00481
http://www2.imse-cnm.csic.es/caviar/SLOWPOKERDVS.html
http://www2.imse-cnm.csic.es/caviar/SLOWPOKERDVS.html
https://doi.org/10.3389/fnins.2015.00222
https://doi.org/10.3389/fnins.2017.00350
https://doi.org/10.1109/TED.2013.2263000
https://youtu.be/Gv2iVvoLL6A
https://youtu.be/iH6VJl70X5s
https://doi.org/10.1109/TBCAS.2012.2195725
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Yousefzadeh et al. Stochastic STDP Hardware With 1-bit Weights

APPENDIX

In MegaSim the user can describe any arbitrary topology in a
text-based file known as the netlist file, where different modules
(or populations) are interconnected throughAER (Address Event
Representation) links, called nodes, as shown in Figure A1A. An
AER link is a physical high-speed digital multi-bit bus where
events are sent at very high speed (typically in the order of a
few nano-seconds per event), normally using an asynchronous
handshaking protocol with request (Req) and acknowledge (Ack)
signals (Serrano-Gotarredona et al., 2009; Zamarreno-Ramos
et al., 2013). The modules send events (spikes) through their
output ports to the AER links, which are received by the
destination modules through their input ports. Both, input and
output ports can be shorted among different modules (see for
example nodes 3, 8, 20, and 21 in Figure A1A).

For each node there is one event list in a separate file. An
event list reports all the events that have been (or will be)
communicated through this node (link). If an event has already
been processed, it is properly time-stamped. In MegaSim, each
event is described by a set of timestamp parameters, and a set
of event parameters. Figure A1B shows a section of such an
event list. There are 3 timing parameters: tpR is the time at
which an event is “created” inside a module and queued for
transfer, tReq is the time at which this event is physically placed
on the intercommunication node, and tAck is the time at which
this event physically disappears from the intercommunication
node, meaning the physical event communication has finished.
If tpR = tAck = −1, it means that this event is still waiting to be
processed by MegaSim. The AER events used in MegaSim have
these three timing values and n event parameters. The default
event parameters are [x, y, s], to signify the (x, y) address and the
sign or polarity (on/off) of an event16.

A system topology like the one shown in Figure A1A

is represented by a netlist text file. Each line in the netlist file

16Event parameters can be any arbitrary set of parameters as long it is properly
interpreted by the source and destination modules.

FIGURE A1 | Illustration of generic multi-module/population for MegaSim Event-Driven simulation. (A) Nodes and links, (B) a section of an event list, (C) Megasim’s

data flow and control diagram.

represents a module with its input nodes and output nodes.
Each module can be a population of neurons (like a fully
connected perceptron layer, a convolution feature map, etc)
or any arbitrary event processing algorithm. All modules
are described behaviorally in the C programming language.
Additionally, each module line includes the names of a separate
parameter file and initial state file for this module. Each
netlist must contain at least one event stimulus node, which
can be either data recorded by a physical sensor (like a
DVS Lichtsteiner et al., 2008; Posch et al., 2011; Leñero-
Bardallo et al., 2011; Serrano-Gotarredona and Linares-Barranco,
2013), or synthetically generated events. At the beginning of
a simulation all node files are empty, except for the stimulus
nodes, which contain all their events but with unprocessed
timestamps. Operation is fully asynchronous. However, one
can optionally include a clock module that provides an output
event after a fixed delay with respect to its input event, and
provide a feedback from the output port to the input port,
together with a single initial event as stimulus, as shown in
Figure A1A.

The simulator data flow and control diagram is depicted in
Figure A1C: MegaSim checks all available nodes for the earliest
“unprocessed” event (tpR = tAck = −1). As soon as it finds
one, it marks it as “processed” and calls the receiving modules
to perform the necessary processing. Should a module generate
a new event at one of the output ports, the event will be
written on that node with the current time timestamp for tpR
(or larger value, in case a processing delay is modeled) and will
be marked as “unprocessed”. All unprocessed events are sorted
according to their tpR timestamps. The simulation ends when
a maximum simulation time Tmax has been reached or when
there are no more “unprocessed” events. When the simulation
finishes, there is a separate event file for each node containing its
list of events. Each node event list (or combination of lists) can
be visualized off-line after the simulation is finished using jAER
(Delbruck, 2007), or in real-time while the simulation is running.
All MegaSim simulation files are available as supplementary
material.

Frontiers in Neuroscience | www.frontiersin.org 23 October 2018 | Volume 12 | Article 665

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights
	1. Introduction
	2. Materials and Methods
	2.1. Review of Some STDP Rules
	2.2. Engineering STDP
	2.3. Engineering Stochastic STDP With 1-bit Weights
	2.4. Network Architecture
	2.5. Event-Based Classifier
	2.6. Experimentation Platforms
	2.6.1. MegaSim Software Simulator
	2.6.2. Hardware Implementation
	2.6.2.1. Neuron block
	2.6.2.2. STDP unit
	2.6.2.3. Multi-core configuration

	3. Results
	3.1. Development of Orientation Selectivity
	3.2. Recognition of DVS-Recorded Poker Card Symbols
	3.2.1. Software Results
	3.2.2. Hardware Results
	3.2.3. Trading off Bit-Resolution for Number of Neurons While Maintaining Similar Hardware Resources
	3.2.4. Bandwidth Limitations of STDP Hardware During Learning

	3.3. Recognition on the MNIST Data Set

	4. Discussion
	Author Contributions
	Funding
	Supplementary Material
	References
	Appendix

