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Spinal cord injury (SCI) can have a significant impact on an individual’s life. Herein,
we discuss how resveratrol improves SCI by inhibiting nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) signaling pathway. Evidences show
resveratrol suppresses NF-κB signaling pathway to exert its beneficial effects on various
diseases. NF-κB signaling pathway plays a significant role in the pathophysiological
mechanisms of SCI including increase in inflammation, augmentation of damage caused
by free radicals and lipid peroxidation as well as facilitation of apoptosis and axonal
demyelination. We also discuss mechanisms between resveratrol and NF-κB signaling
pathway in the wake of SCI, which can be potential targets for resveratrol to treat SCI.
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INTRODUCTION

Spinal cord injury (SCI) is a severe complication of the spine, leading to severe dysfunction below
injured segment. SCI puts pressure on a country’s health services whiles also burdening an affected
individual’s family and society. The International Spinal Cord Society Prevention Committee
estimates global-incident rate to be 23 traumatic SCI cases per million (Lee et al., 2014). SCI is
categorized into primary injury and secondary injury phases on the basis of its pathophysiology.
Although primary injury is transient and can be caused by a mechanical force, it, nevertheless,
creates a basic environment for succeeding pathological events. Secondary injury includes a chain
of pathological events such as apoptosis, inflammatory response, and excitotoxicity (Silva et al.,
2014). SCI can result in different spinal cord dysfunctions and induce complications in other organs
such as the lung (Jiang et al., 2016). As primary injury phase is transient, SCI treatment could focus
on the secondary injury phase. With that said, there is presently no effective SCI treatment.

Several researches have demonstrated NF-κB to be a crucial mediator of cellular responses
to numerous physiological stimuli. NF-κB signaling pathway has been shown to participate in
mediating SCI pathophysiology, subsequently playing a pivotal role in repairing SCI. Inhibition

Abbreviations: Bcl-2, B-cell lymphoma-2; BSCB, blood-spinal cord barrier; COX, cyclooxygenase; ERK, extracellular
signal-regulated protein kinase; FAK, focal adhesion kinases; Fn14, fibroblast growth factor-inducible 14; HDAC, histone
deacetylase; HSYA, hydroxysafflor yellow A; IKK, IκB kinase; IL, interleukin; JNK, c-Jun N-terminal kinase; miR-372,
microRNA-372; MLKL, mixed lineage kinase domain-like; MMP, metalloproteinase; MnSOD, Mn-superoxide dismutase;
MyD88, myeloid differentiation primary response gene 88; NEMO, NF-κB essential modulator; NF-κB, nuclear factor kappa-
light-chain-enhancer of activated B cells; NIK, NF-κB inducing kinase; NOS, nitric oxide synthase; NPCs, neural precursor
cells; NSC, neural stem cell; PI3K, phosphoinositide 3-kinase; RIPK1, receptor-interacting protein kinase 1; ROS, reactive
oxygen species; SCI, spinal cord injury; SIRT1, Sirtuin 1; TAK1, TGF-b-activated kinase 1; TGFβ, transforming growth
factor-β; TLRs, Toll-like receptors; TNFR1, tumor necrosis factor receptor 1; TWEAK, TNF-like weak inducer of apoptosis.
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of NF-κB by different drugs potentially alleviates SCI (Zhang
et al., 2014, 2016; Ni et al., 2015). In view of this, inhibition of
NF-κB could be a potential target for SCI improvement.

Resveratrol, a potent inhibitor of NF-κB, is non-toxic,
inexpensive and has multiple pharmacological effects on SCI
recovery (Zhao et al., 2017). Resveratrol can modulate cellular
growth, autophagy, and immune response by regulating some
signaling pathways such as NF-kB, SIRT1, PI3K/Akt/mTOR,
ROS/Nrf2/NAF-1, and MAPK pathways (Kulkarni and Cantó,
2015; Chai et al., 2017; Cheng et al., 2018). This review aims
to systematically analyze resveratrol’s role in regulating NF-κB
signaling pathway in the wake of SCI.

PATHOPHYSIOLOGY OF SCI

Secondary injury phase involves a number of pathophysiological
processes including vascular changes such as hemorrhage
and breakdown of BSCB, inflammation, peroxidation of lipid
membranes and neural cell apoptosis (Silva et al., 2014). Spinal
cord edema after SCI induces BSCB opening, leading to release
of deleterious substances from blood cells such as neutrophils
and macrophages, ultimately resulting in cell death as well as
permanent neurological disability (Lee et al., 2012). Inflammatory
response is important in SCI development. Inflammation
follows immune response, which protects against pathogen.
However, excessive inflammation causes damage to body. Major
participatory cells of inflammation in SCI include macrophages,
endothelial cells, microglia and astrocytes. Classical macrophage
(M1) promotes inflammation while alternative macrophage
(M2) has a contrasting effect on inflammation. M1 phenotype,
activated by Th1 cytokines, LPS-induced signal transducer and
activator of transcription 1 signaling, induces pro-inflammatory
cytokines (TNF-α, IL-1, IL-1β, IL-6, and IL-12) and nitric oxide,
leading to SCI disruption. On the contrary, Th2-induced M2
phenotype promotes anti-inflammatory cytokines (IL-10, TGF-
β), contributing to attenuation of damage in injured spinal
cord (Mantovani et al., 2004). Kopper and Gensel (2017)
reported myelin lipid debris, a hallmark of SCI, to be a
potent macrophage stimulus. Additionally, it was the target
of complement-mediated clearance and inflammation, which
was possibly cleared through macrophage surface receptors.
Downstream results are determined by myelin-driven events
that make macrophages a double-edged sword. Although
macrophages are able to promote axonal growth, stem cell
differentiation and tissue revascularization to facilitate repair
of injured spinal cord, they (i.e., macrophages) can also
contribute to SCI pathology through several mechanisms such
as release of pro-inflammatory cytokine (Kopper and Gensel,
2017). Inflammation is thought to have an antithetical effect
on neuroprotection in SCI. Changing process of different
inflammatory factors and cells is different on temporal sequence
after CNS trauma (Donnelly and Popovich, 2008). At some point
during inflammatory response from destructive to constructive,
drugs could improve the pathological process by interfering
with inflammatory cells and their released products. In an
experimental study of NSC transplantation in SCI, results

evinced NSC transplantation to modulate inflammation and
enhance neurological function following SCI by reducing
M1 macrophages’ inflammatory activity and infiltration of
neutrophils (Cheng et al., 2016).

Reactive oxygen species (ROS) and oxidative stress are
important events that have been associated with SCI. Both
neuronal and glia cells in injured spinal cord are sensitive
to oxidative and electrophilic stress (Jia et al., 2012). Ketone
metabolite, β-hydroxybutyrate, has been reported to have the
capability of inhibiting class I HDACs so as to attenuate
oxidative stress in SCI. Selected suppression of either HDAC1
or HDAC2 systematically mediates FOXO3a, NOX2 and NOX4
expressions (Kong et al., 2017). Regarding excitotoxicity, studies
have reported glutamate receptors to mediate cell death, which
was potentiated by TNF-α (Beattie et al., 2002). All these disparate
mechanisms could potentially interact with each other and
culminate in axonal demyelination, glial scars and neuronal
diminution.

NF-κB SIGNALING PATHWAY
FOLLOWING SCI

Nuclear factor kappa-light-chain-enhancer of activated B cells
is comprised of NF-κB family, inhibitor of NF-κB (IκB) and
IKK. NF-κB family, also called NF-κB/Rel family, includes
NF-κB1 (p50), NF-κB2 (p52), p65 (RelA), c-Rel and RelB.
IκB family consists of IκBα, IκBβ and IκBε (Ahn and
Aggarwal, 2005; Heise et al., 2014). IKK is a large protein
complex that modulates phosphorylation of κB inhibitor.
In resting cells, inactive NF-κB has been associated with
inhibitor proteins, IκBα, IκBβ, or IκBε, masking its nuclear
localization sequence and inhibiting its DNA-binding activity
(O’Dea et al., 2007). In spinal cord, NF-κB transcription
factors are expressed in glial cells and blood vessels, which
functions mainly in mediating various mechanisms such as
inflammation.

Exhibition of Inflammation
Inflammatory signs can be detected during acute phase of
SCI as cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β),
interleukin-6 (IL-6) and interleukin receptors (IL-4R and
IL-2Ra) are upregulated from 0.5 to 6 h following injury.
Four main inflammatory cells (neutrophils, monocytes,
lymphocytes and microglias) are assembled and release
inflammatory cytokines. These pro-inflammatory factors,
at low concentration, could trigger inflammation in order
to protect normal tissues in spinal cord. When these pro-
inflammatory factors are overexpressed, they tend to activate
transcription factors such as NF-κB that could cause cell death,
subsequently altering role of pro-inflammatory factors from
positive to negative (Bareyre and Schwab, 2003). Following
that, inflammation could create an environment that instigates
other pathological events. Among transcription factors that are
negative result of inflammation, NF-κB is of great importance.
Once stimulated by either inflammatory intercellular signals
or other signals like oxidative stresses such as free radicals,
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metabolic stress, or genotoxic stress in SCI, NF-κB signaling
pathway could be induced by “classical” and “alternative”
pathways.

In the “classical” pathway, NF-κB is mediated by activation of
a number of cell surface receptors, including TLRs, IL-1 receptor,
and TNF receptor. TLRs, a type I transmembrane proteins
with extracellular domains, has a close contact relationship with
NF-κB. In one of TLR signaling pathway, MyD88-dependent
pathway, TLR recruits toll-interleukin 1 receptor domain
containing adaptor protein at the cell membrane, facilitating
recruitment of MyD88, which in turn could trigger early-phase
activation of NF-κB. In another TLR signaling pathway, namely
TIR-domain-containing adapter-inducing interferon-β (TRIF)-
dependent pathway, TLR4 forms a signaling complex with TRIF-
related adaptor molecule and TRIF, potentially culminating in
late-phase activation of NF-κB, interferon regulatory factor 3
activation and interferon-β transcription (Kawai and Akira,
2010). IKK phosphorylates two N-terminal serines of IκBα and
IκBβ leading to poly ubiquitination of IκBs. Then, IκBs degrade
via 26S proteasome that possibly activates NF-κB (Zandi et al.,
1998; O’Dea et al., 2007). Eventually, NF-κB liberated from IκBs
enters the nucleus to activate target gene expression, leading to
possible differential effect on gene expression.

The “alternative” pathway triggered by activation of
TNF-receptor initiates NIK to stimulate IKKα-induced
phosphorylation and proteolytic processing of cytoplasmic
NF-κB2 precursor. Activated NF-κB2, RelB and NIK form
a complex to enter the nucleus, potentially activating gene
expression. This pathway is mainly involved in immune response
(Brasier, 2006). Various pro-inflammatory molecules like TNF-α,
IL-1, IL-6 and inducible NOS are mediated by nucleus NF-κB
complex, possibly engendering inflammation in spinal cord.

Hydroxysafflor yellow A (HSYA) has anti-inflammatory and
anti-oxidative effects on neuronal protection (Zhang et al., 2014).
Pei et al. (2017) study evidenced effects of HSYA inhibiting
NF-κB activation and curtailing TNF-α and IL-6 in spinal
cord after HSYA treatment, which confirms the vital role of
NF-κB in exhibition of inflammation in SCI. Also, expression
of miR-372 is stimulated in cultured human NSCs by IL-1β

possibly binding with NF-κB at its promoter region. Thus, miR-
372 could potentially be involved in inflammatory signaling
mediated by NF-κB (Zhou et al., 2017). Again, TWEAK,
Fn14 and NF-κB had a synchronous alteration in a conducted
study. Down-regulation of TWEAK curtailed TNF-α and IL-1β

expressions. This suggests stimulation of TWEAK-Fn14 pathway
might promote NF-κB expression and possibly culminate in
elevated expression level of inflammatory cytokines (Xu et al.,
2016).

Free Radicals and Lipid Peroxidation
Free radicals are mainly from endoplasmic reticulum
and mitochondria. Reactions between free radicals and
polyunsaturated fatty acid of plasma membrane peroxidates and
disrupt normal phospholipid structure of cellular biomembrane
system (Jamme et al., 1995). NF-κB can be mediated by free
radicals. NF-κB activation is induced by TNF-α, IL-1β, TLRs,
or antigen receptor (TCR, BCR) ligation, which promotes

expression of a number of genes (Gloire et al., 2006). These
genes, which include mitochondrial MnSOD, are involved
in anti-oxidative stress response. MnSOD is an enzyme that
inhibits TNF-α-induced ROS production and cell death
(Kamata et al., 2005). Inhibition of NF-κB sustains oxidative
stress and stimulates either apoptosis or necrosis of cells.
In contrast to ROS, induced NOS from different sources
like endothelial cells and neurons trigger S-nitrosylation of
JNK1 and IKKb protein kinases to impede autophagic flux in
mammalian cells. S-nitrosylation of JNK1 stabilizes Beclin 1/B-
cell lymphoma-2 (Bcl-2) complexes by reducing phosphorylation
of Bcl-2, which can potentially block early steps of formatting
autophagic membranes. S-nitrosylation of IKKb has same effect
as JNK1 on Adenosine 5′-monophosphate (AMP)-activated
protein kinase phosphorylation in suppressing autophagy
initiation (Kaminskyy and Zhivotovsky, 2014). NF-κB, c-Fos and
c-Jun expressions, as activators of oxidative response markers,
suggest possible augmented production of ROS is likely to give
rise to cascades of oxidative destruction. Also, lipid peroxidation
and nucleic acid oxidation are elevated in injured spinal cord
and motor neurons. Consequently, increased degeneration of
ROS could contribute to motor neuronal death in spinal cord,
which is an early causal event in the wake of SCI (Xu et al.,
2005).

Apoptosis and Demyelination of Axons
Though neuronal damage in SCI occurs predominantly
through necrosis, apoptosis cannot be ignored. Intracellular
hypercalcemia induced by loss of ionic homeostasis after
SCI activates calcium-dependent proteases and results in
mitochondria dysfunction, eventually leading to apoptotic
cell death (Schanne et al., 1979). Signaling pathways such
as Fas/FasL have been evidenced to mediate apoptosis. NF-
κB has been reported to be involved in apoptosis. A recent
study evinced that during early phase of SCI, TWEAK might
assemble pro-inflammatory factors to instigate cell apoptosis
through its effect on NF-κB expression (Xu et al., 2016).
RIPK1 functions as a node which drives cell survival and
inflammation mediated by NF-κB, caspase-8-dependent
apoptotic and RIPK3/MLKL-dependent necroptotic cell
death (Takahashi et al., 2014). Interplay between IKK/NF-κB
and RIPK1 signaling is an important determinant of tissue
homeostasis and inflammation. In the intestine and liver,
NEMO regulates RIPK1 kinase activity-mediated apoptosis
through NF-κB-dependent and independent functions, which
are crucial for inhibiting chronic tissue injury and inflammation
(Kondylis et al., 2017). A new function of TAK1 was reported
to regulate checkpoint of early NF-κB-independent cell death
in TNFR1 apoptotic pathway. Ub chains conjugated with
RIPK1 or other TNFR1 complex I functions as scaffolds in the
recruitment and activation of TAK1-binding protein 2/3–TAK1
complex and inhibition of IKK complex (NEMO-IKKa-IKKb),
potentially triggering off mitogen-activated protein kinases and
classical NF-κB signaling pathways that collectively promotes
gene transcription, preventing cell death and sustaining
inflammation. Thus, a pro-survival TNFR1 ligation will switch
to a pro-apoptotic one when NF-κB response is potentially

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 690

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00690 October 1, 2018 Time: 16:45 # 4

Xu et al. Resveratrol Improves Spinal Cord Injury

inhibited (Dondelinger et al., 2013). Besides, ROS is related
to apoptosis. A previous study reported ROS generation to be
required for TNF-mediated necroptosis (Vanlangenakker et al.,
2011). ROS scavenging has the potentiality of inhibiting caspase
activation and assembly of complex IIb on TNF stimulation
(Dondelinger et al., 2013). Microglia-derived TNF-α was
found to induce Puma expression, a member of BH3-only
family in NPCs via an NF-κB-dependent mechanism. More
specifically, NF-κB was activated in NPCs cultivated with
conditioned media from activated microglia. Also, NF-κB
inhibitor, BAY-117082, blocks Puma induction, and NPC
apoptosis (Guadagno et al., 2013). There are reports stating
taxifolin might possibly reduce neuronal apoptosis induced
by cholesterol oxidation product through suppression of cell
death mediated by Akt and NF-κB activation (Kim et al.,
2017). In the only contrasting study, neuroprotective effect of
neuronal IKK-2 in autoimmune demyelination was reported
(Emmanouil et al., 2011). In rats, loss of oligodendrocytes
could possibly lead to axonal demyelination and peaks at about
24 h following injury. Persistent demyelination is related to
atrophy and potential death occurring in related cell bodies
(Rowland et al., 2008). When demyelination happens in SCI,
microglia phagocytizes myelin debris (Blank and Prinz, 2014).
Degenerated myelin containing inhibitory molecules like
NogoA and Oligodendrocyte-myelin glycoprotein activates
FAK/PI3K/Akt/NF-κB pathway in macrophages and promotes
expression of inflammatory mediators (Sun et al., 2010).
Activated astrocytes and microglia potentially enhances NF-κB
activation. However, there are no reports of NF-κB activation
in oligodendrocytes. During remyelination, NF-κB in recruited
oligodendrocyte progenitor cells is activated. These progenitor
cells, which engage demyelinated axons, are differentiated
into remyelinating oligodendrocytes (Blank and Prinz, 2014).
A study found E6020 to induce TLR4-dependent cytokine
expression such as TNFα, IL1β, IL-6 and NF-κB signaling
in vitro. Injection of E6020 with lysolecithin into rat spinal cord
white matter increased axonal sparing, accelerated myelin debris
clearance, enhanced Schwann cell infiltration into demyelinated
lesions and increased number of remyelinated axons (Church
et al., 2017). Taking all these studies into consideration, NF-
κB signaling pathway is predominately involved in various
pathophysiological mechanisms of SCI, especially with regards
to inflammation.

RESVERATROL INHIBITS NF-κB
SIGNALING PATHWAY

Resveratrol (trans-3,5,4-trihydroxystilbene), a small natural
polyphenol found in red wine, grapes, peanuts and other different
kinds of plant sources is widely studied and used in therapies of
different diseases. Resveratrol, used in Indian herbal, traditional
Chinese, and Japanese medicine for human health, can be traced
back 2000 years ago, with a prime example of a well-known
Indian herbal preparation being “darakchasava.” Resveratrol is a
naturally polyphenolic phytoalexin first identified from Veratrum
grandiflorum in 1939 (Takaoka, 1939) and later detected in dried

roots of Polygonum cuspidatum, in the leaf epidermis and
skin of grape berries. Resveratrol was initially applied to treat
injuries (Langcake and Pryce, 1976). Cardiovascular effect of
red wine was called “the French paradox,” with resveratrol
attracting widespread attention in the early 1990s (Renaud
and de Lorgeril, 1992). Wood et al. (2004) initially reported
resveratrol to extend lifespan in yeast and in worms. Since then,
numerous beneficial effects of resveratrol have been reported
in different pathological conditions, experimental models and
clinical studies. A growing body of evidence shows resveratrol
might play potential therapeutic roles in cardiovascular disease,
cancer, ischemic injury, sarcopenia, diabetes, obesity, respiratory
diseases, osteoarthritis and neurodegeneration (Table 1). It
has various pharmacological effects such as anti-oxidative,
anti-inflammation, cardiovascular protection, anti-diabetic,
restoration of immune system function (Lai et al., 2017), anti-
apoptosis (Huang et al., 2014), anti-nociception (Pan et al.,
2016), anti-depression (Finnell et al., 2016), anti-cancer activities
(Chin et al., 2015; Kumar et al., 2015), neuronal protection
(Nalagoni and Karnati, 2016) and regulation of metabolism
(Luo et al., 2017). Biological activity of resveratrol can possibly
be achieved by mediating NF-κB (Tsang et al., 2016), heme
oxygenase-1 (HO-1) (Sakata et al., 2010), mitogen-activated
protein kinase (MAPK) (Ma et al., 2015), endothelial nitric
oxide synthase (eNOS) (Xia et al., 2010), nuclear factor E2-
related factor-2 (Nfr2) (Cheng et al., 2018), estrogen receptor
(ER) (Saluzzo et al., 2016) and HDAC SIRT1 (Chai et al.,
2017). Based on enumerated effects, there are reports positing
resveratrol could potentially be employed in the treatment
of medical conditions such as Alzheimer’s disease (Moussa
et al., 2017), diabetes, cardiovascular diseases as well prostate
and breast cancers (Chin et al., 2015; Kumar et al., 2015; Zare
Javid et al., 2017). Resveratrol functions via several signaling
pathways, one being NF-κB. Accumulating studies indicate
inhibition of NF-κB signaling pathway by resveratrol potentially
plays a significant role in various pathological processes
(Figure 1).

Reports evidence resveratrol to suppress various cytokines
such as TGFβ, MMP, COX-2, TNF-α, IL-1β, IL-6 and intercellular
cell adhesion molecule-1 (ICAM-1). All these demonstrate the
linkage between resveratrol and NF-κB owing to expression of
these cytokines being mediated by NF-κB signaling pathway. In
liver diseases, prevention of fibrosis by resveratrol is concomitant
with preventing translocation of NF-κB and down-regulating
profibrotic cytokine TGFβ (Chávez et al., 2008). In a rat
model of early polymicrobial sepsis-induced acute kidney injury,
resveratrol significantly improved tubular epithelial cell injury
and renal function, subsequently enhancing rat survival rate. This
was concomitant with substantial decrement of TNF-α, IL-1β and
IL-6 expressions in serum content and renal mRNA (Wang et al.,
2017). Resveratrol reduces ICAM-1 expression in attenuation
of endothelial inflammation, which is partly mediated through
miR-221/222/AMPK/p38/NF-κB pathway (Liu et al., 2017). In
human fibroblast-like synoviocytes, resveratrol was reported to
inhibit COX-2/PGE expression so as to suppress particulate
matter-induced inflammatory signaling pathways (Tsai et al.,
2017). Moreover, resveratrol acts on two critical transcription
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TABLE 1 | Summary of beneficial effects of Resveratrol (RES).

Diseases Species Dose Results Reference

Brain injury Rat and mouse 60 or 90 mg/kg RES has an efficient neuroprotection against
subarachnoid hemorrhage

Zhang et al., 2017

Cardiovascular disease Rat 15 mg/kg RES improves left ventricular function and decreases
myocardial hypertrophy, fibrosis, and severity of heart
failure.

Riba et al., 2017

Neurodegeneration Mouse 10 mg/kg RES significantly attenuates acute neurological deficits,
neurodegeneration and cerebral edema after
intracerebral hemorrhage

Bonsack et al., 2017

Sarcopenia Rat 125 mg/kg RES reduces apoptotic signaling in muscles of old
animals

Bennett et al., 2013

Acute pancreatitis Rat 10–50 mg/kg RES attenuates pancreatic oxidative damage by
down-regulating NF-κB and PI3K signaling pathways

Tsang et al., 2016

Obesity Mouse 15 mg/kg RES increases Cidea mRNA level and UCP1 protein
expression

Arias et al., 2017

Diabetes Mouse 40 mg/kg

Zhao et al., 2018

RES attenuates testicular apoptosis in type 1 diabetic
mice

Respiratory diseases Mouse 50 mg/kg,
40 µg/ml

RES relieves LPS-induced inhibition on SIRT1
expression and restrains activation effects of LPS on
MAPKs and NF-κB activation

Ma et al., 2015

Kidney injury Rat 0.23 µg/kg RES inhibits inflammatory responses and improves
renal function after renal Ischemia-reperfusion injury

Li et al., 2018

Colorectal cancer Human 5 µM RES induces apoptosis, suppresses NF-κB activation Buhrmann et al., 2018

Thyroid cancer Rat 100 µM RES inhibits NF-κB/p65 signaling, IL-6 and COX-2
expressions

Zheng et al., 2018

Breast cancer Human 0–100 µM RES inhibits breast cancer cellular proliferation Poschner et al., 2018

Pancreatic cancer Human 50 µM RES promotes pancreatic cancer apoptosis through
ROS/Nrf2/NAF-1 pathway

Cheng et al., 2018

ovarian cancer Human 10, 20, or 30 µM RES reduces cell growth and metabolism of SKOV-3
aggregates

Tino et al., 2016

Liver cancer Human 100 µM RES inhibits PI3K/AKT pathway by SIRT1 activation Chai et al., 2017

Gastric cancer Human 100 µM RES inhibits growth of MGC-803 cells by inhibiting Wnt
signaling pathway

Dai et al., 2018

Prostate cancer Mouse 625 mg/kg

Harper et al., 2007

RES suppresses prostate cancer progression

Osteoarthritis Rat 50 mg/kg RES reduces inflammatory responses by inhibiting
NF-κB expression

Wei et al., 2018

factors to downregulate COX-2 expression: p50/p65 under the
control of signaling cascade IKKBα/IκBα and activator protein-
1 complex of MAPK/ERK/p38/JNK (Bhat and Pezzuto, 2002;
Kundu et al., 2006; Cianciulli et al., 2012). In ovarian cancer cell
aggregates, resveratrol and acetyl-resveratrol potentially inhibits
cell growth, which is correlated with decreased secretion of
vascular endothelial growth factor and attenuation of NF-κB
(Tino et al., 2016). As an NF-κB signal transduction inhibitor,
resveratrol inhibits MMP-9 and COX-2 so as to prevent
disruption of blood brain barrier during neuroinflammation
in carcinogen-induced brain endothelial cells (Annabi et al.,
2012).

Inhibition of p65 subunit translocation by resveratrol to the
nucleus is a mechanism that was deduced from an experimental
hepatocarcinogenesis model (Bishayee et al., 2010). Resveratrol
decreases IκB phosphorylation as well as phosphorylation,

acetylation and translocation of NF-κB p65 induced by TNF-
α (Liu et al., 2017). Reduction of IκB phosphorylation, p65
protein levels in nucleus and NF-κB transcriptional activity
by resveratrol is involved in resveratrol-induced apoptosis (Li
et al., 2013). Resveratrol can potentially regulate levels of NF-
κB-mediated miRNAs. Resveratrol inhibits miR-21 expression
to suppress NF-κB activity (Li et al., 2013). Resveratrol was
reported to downregulate miR-21 expression and other comiRs
including miR-30a-5p, miR-19 as well as their targeted or related
components (Wang et al., 2015). Interestingly, in U251 cells,
over-expression of miR-21 reversed resveratrol on NF-κB activity
and apoptosis (Li et al., 2013).

Also, resveratrol requires the enzyme, SIRT1, so as to
inhibit upregulation of NF-κB-regulated gene products in
promoting chondrogenic differentiation of mesenchymal stem
cells (Buhrmann et al., 2014).
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FIGURE 1 | Negative effects of resveratrol on NF-κB via several pathways in SCI. In TNFR1 apoptotic pathway, Ub chains conjugated with RIPK1 function as
scaffolds in the recruitment and activation of TAK1-binding protein 2/3–TAK1 complex and inhibition of IKK complex (NEMO-IKKa-IKKb), subsequently triggering off
the classical NF-κB signaling pathways that collectively promote transcription of genes, which prevents cell death and sustains inflammation. In MyD88-dependent
pathway, TLR recruits toll-interleukin 1 receptor domain containing adaptor protein at the cell membrane, subsequently facilitating recruitment of MyD88, which in
turn triggers early-phase activation of NF-κB. Recruitment of TRAM and TRIF leads to late-phase activation of NF-κB. IKK phosphorylates IκBα and IκBβ leading to
poly ubiquitination of IκBs. Degradation of IκBs results in activation of NF-κB. Besides, degenerated myelin activates FAK/PI3K/Akt/NF-κB pathway in macrophages
and promotes expression of inflammatory mediators. Stimulation of TWEAK-Fn14 pathway also promotes NF-κB expression. On the contrary, SIRT1 inhibits NF-κB
activation. Eventually, NF-κB enters the nucleus to activate target gene expression. Resveratrol potentially enhances SIRT1 and AMPK expressions. AMPK activation
increases NAD+/NADH ratio and triggers its downstream whereas SIRT1 acts as an anti-inflammatory NAD+-dependent deacetylating enzyme via direct
deacetylation of subunit of NF-κB such as p65, SIRT1 directly interacts with RelA/p65. Also, resveratrol suppresses IKK activity.

RESVERATROL’S STIMULATION OF SCI
AMELIORATION IS CORRELATED TO
NF-κB SIGNALING PATHWAY INHIBITION

Though resveratrol has multiple beneficial health effects such
as anti-inflammation and anti-apoptosis, some of these effects
on SCI protection still remain unclear. Resveratrol significantly
exerts effect on preserving structure and morphology of damaged
tissues, protecting neurons from traumatic injury-induced
apoptosis and promoting locomotive activity of hindlimb
motor neurons in rats following SCI, which is possibly
related to its pleiotropic effects including anti-oxidation, anti-
inflammation and anti-apoptosis. Resveratrol improves recovery
of injured tissues in spinal cord via mediating participatory
cytokines. Regarding anti-oxidation, resveratrol can reversely

increase superoxide dismutase and decrease malondialdehyde
to inhibit oxidation in SCI. Thus, resveratrol can potentially
accelerate scavenging and protect cellular structure from
damage to inhibit overproduction of free radicals. Concerning
anti-inflammation, resveratrol can potentially curtail injury-
induced myeloperoxidase and other inflammatory factors such
as IL-10 and TNF-α and relieve neutrophil infiltration to
inhibit inflammation cascade. On the subject of anti-apoptosis,
resveratrol could elevate expression of Bcl-2, the anti-apoptotic
substrate while inhibiting Bax and caspase-3, which attenuates
triggering of apoptosis and reducing neuronal death (Liu et al.,
2011).

Also, resveratrol could mediate SIRT1-AMPK signaling
pathway to regulate autophagy and apoptosis that possibly
plays a neuroprotective role in SCI. Resveratrol was found to
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enhance SIRT1 and AMPK expressions. Apoptotic expression is
significantly suppressed by resveratrol on protein and mRNA
level, which could possibly be related to the up-regulation of
SIRT1/AMPK signaling pathway in the wake of SCI. Both SIRT1
and AMPK are crucial substrates in mediating autophagy (Zhao
et al., 2017). AMPK activation increases NAD+/NADH ratio
and triggers its downstream whereas SIRT1 acts as an anti-
inflammatory NAD+-dependent deacetylating enzyme via direct
deacetylation of subunit of NF-κB such as p65 (Yeung et al.,
2004; Yang et al., 2012). SIRT1 directly interacts with RelA/p65
via deacetylation of RelA/p65 on lysine 310, a site crucial for
NF-κB transcriptional activity, to inhibit NF-κB transcription.
Employment of resveratrol potentiates SIRT1 protein on cIAP-2
gene, an effect that possibly correlates with liberating cIAP-
2 gene from regulation of NF-κB and sensitizing cells to
TNFα-induced apoptosis (Yeung et al., 2004). Besides, SIRT1 can
potentially inversely activate AMPK or induce phosphorylation
of peroxisome proliferators activated receptor-γ coactivator-1α,
thereby inhibiting RelA/p65-mediated NF-κB signaling. AMPK
has been evinced to be a negative regulator of NF-κB signaling
and is involved in inflammatory response in macrophages
(Racioppi et al., 2012; O’Neill and Hardie, 2013). These negative
effects by SIRT1-AMPK signaling pathway on NF-κB activity
leads to enhanced IL-12 production and anti-inflammation (Liu
et al., 2016).

There is the possibility of resveratrol inhibiting NF-κB activity
via SIRT1-AMPK signaling pathway to exert its beneficial
effects on improving SCI. Hence, SIRT1-AMPK signaling
pathway can be a possible bridge connecting autophagy and
inflammation. Studies have indicated polydatin, a glucoside
of resveratrol, to possess potent antioxidative effects. It has
the potentiality of partly solving the problem of poor viability
of transplanted bone marrow stem cells (BMSCs), which
limits therapeutic efficacy. Thus, polydatin with BMSCs could
possibly improve therapeutic effect of SCI (Chen et al., 2016).
Resveratrol attenuates SCI-induced inflammatory damage
in rats’ lungs, which was accompanied by curtailment of
pro-inflammatory factors, up-regulation of SIRT1 and anti-
inflammatory cytokines as well as suppression of NF-κB
activity (Liu et al., 2015). Resveratrol was also demonstrated

to exert some effect on enervated sub-lesional bone loss
that is associated with repressed oxidative stress, curtailed
inflammation, depressed peroxisome proliferators-activated
receptor γ signaling and restored Wnt/β-catenin and insulin-
like growth factors-1 signaling in SCI rats (Wang et al.,
2013).

CONCLUSION

Nuclear factor kappa-light-chain-enhancer of activated B cells
signaling pathway plays a crucial role in exhibition of
inflammation, promotion of damage caused by free radicals
and lipid peroxidation as well as facilitation of apoptosis and
axonal demyelination in SCI. Resveratrol has been studied in
the treatment of various diseases in different organs via NF-
κB signaling pathway. Beneficial effect of resveratrol in SCI
is explicated as evidenced previously. Thus, we hypothesize
resveratrol to potentially improve SCI by inhibiting NF-κB
signaling pathway. With that said, more direct researches are
needed to explore interior mechanisms between resveratrol and
NF-κB signaling pathway following SCI, which in turn could
support promising value of resveratrol in SCI therapy. Finally,
appropriate and precise phase at which resveratrol can be
employed needs to be elucidated.
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