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Cannabinoid-based interventions are being explored for central nervous system (CNS)
pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma.
As these disease states involve dysregulation of myelin integrity and/or remyelination,
it is important to consider effects of the endocannabinoid system on oligodendrocytes
and their precursors. In this review, we examine research reports on the effects of the
endocannabinoid system (ECS) components on oligodendrocytes and their precursors,
with a focus on therapeutic implications. Cannabinoid ligands and modulators of
the endocannabinoid system promote cell signaling in oligodendrocyte precursor
survival, proliferation, migration and differentiation, and mature oligodendrocyte survival
and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at
both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and
promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia
promote proliferation and conversion to progenitors fated to become oligodendroglia,
whereas CB2 receptors promote OPC migration in neonatal development. OPCs
produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK
pathways responsible for differentiation to arborized, myelin basic protein (MBP)-
producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive
oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved
viability of oligodendrocytes. In transient and permanent middle cerebral artery
occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and
maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several
models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists
ameliorated the damage by promoting OPC survival and oligodendrocyte function.
Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and
survival should be considered.

Keywords: 2-arachidonoylglycerol (2-AG), CP55940, HU210, multiple sclerosis (MS), neural stem cells (NSCs),
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INTRODUCTION

Phytocannabinoid use in management of multiple sclerosis
(MS) symptoms (Consroe et al., 1997) has led to clinical
trial evidence for the efficacy of tetrahydrocannabinol
(THC)/cannabidiol (CBD) oromucosal spray (Sativex) in
controlling spasticity and pain (Wade et al., 2010; Giacoppo
et al., 2017). MS, a demyelinating disease characterized by
persistent neuroinflammation and progressive central nervous
system (CNS) demyelination (Kutzelnigg and Lassmann,
2014), is only one of many demyelinating neurodegenerative
diseases involving oligodendrocytes, the myelinating cells of
the CNS. The endocannabinoid system (ECS) (Howlett et al.,
2002; Pertwee et al., 2010) involvement in neuroprotection
(Panikashvili et al., 2001; van der Stelt and Di Marzo, 2005;
Martinez-Orgado et al., 2007; Sanchez and García-Merino,
2012) and the immune system in CNS diseases (Croxford and
Yamamura, 2005; Rom and Persidsky, 2013; Chiurchiu et al.,
2015; Olah et al., 2017) have been reviewed. Here, we address
ECS effects on oligodendrocytes and their precursors, in order to
evaluate the evolving research around cannabinoids in healthy
development and in demyelinating neurodegenerative diseases.

CANNABINOIDS, OLIGODENDROCYTE
PRECURSOR CELLS AND
OLIGODENDROCYTES IN HEALTH

Oligodendrocytes, myelinating cells of the vertebrate CNS, enable
neurons to signal more energy-efficiently and at higher speed due
to saltatory conduction, and maintain axonal integrity through
trophic and metabolic support (Michalski and Kothary, 2015;
Simons and Nave, 2015). Generation of oligodendrocytes is
an ongoing process, starting in embryonic development and
continuing throughout life (Baumann and Pham-Dinh, 2001;
Trotter et al., 2010; Dimou and Gallo, 2015; Michalski and
Kothary, 2015). In brief, oligodendrocyte precursor cells (OPCs),
also known as NG2-glia, O-2A progenitors, polydendrocytes,
or synantocytes, arise from neural stem cells (NSCs), and
preferentially populate distinct areas of the developing CNS
in lineage- and time-specific waves (Richardson et al., 2006).
Upon arrival, many undergo apoptosis, while many others
either mature into myelinating oligodendrocytes or persist as
progenitors and remain capable of self-renewal as well as
production of mature oligodendrocytes well into adulthood
(Dawson et al., 2003). These progenitors become distributed
throughout gray and white matter and maintain their respective
domains by continuously sampling their environment, able to
expand to neighboring areas vacated by other OPCs (Kirby et al.,
2006; Hughes et al., 2013).

Despite this interchangeability, it is becoming increasingly
clear that oligodendrocyte precursors represent a heterogeneous
group, distinct in their origin, signaling, and ability to revert
differentiation to produce neurons and astrocytes (Trotter et al.,
2010; Dimou and Gallo, 2015; Nishiyama et al., 2016; Vigano
and Dimou, 2016). Regardless of the differences, all OPCs rely
on the processes of proliferation, migration, and differentiation

to become mature, functioning oligodendrocytes (Baumann and
Pham-Dinh, 2001; Miron et al., 2011; Dubois et al., 2014;
Sampaio-Baptista and Johansen-Berg, 2017). As these steps are
differentially regulated (Marinelli et al., 2016), it is important to
look at the effects of cannabinoid agonists on each (see Figure 1).

Survival
Reports of cannabinoid receptors in newborn rat white matter
by immunostaining (Berrendero et al., 1999), led to subsequent
studies exploring cells in vitro. OPCs were isolated from newborn
Wistar rat forebrains and expanded by incubation in serum-
free defined media with supplements including platelet-derived
growth factor (PDGF) and fibroblast growth factor (FGF)
(Molina-Holgado et al., 2002). OPCs could be differentiated into
myelin basic protein (MBP)-producing mature oligodendrocytes
by incubation in serum-free defined media in which PDGF and
FGF were replaced by triiodothyronine (T3). As ascertained
by RT-PCR, Western blot, and immunohistochemistry, both
OPC and mature oligodendrocytes expressed both CB1 and CB2
cannabinoid receptors (Molina-Holgado et al., 2002). Because
activation of cannabinoid receptors confers neuroprotection (van
der Stelt and Di Marzo, 2005; Martinez-Orgado et al., 2007;
Sanchez and García-Merino, 2012), the influence of cannabinoid
agonists on viability of OPCs was investigated. Upon incubation
in serum-free DMEM/F12 media for 12 h, nearly half of OPCs
underwent apoptosis (Molina-Holgado et al., 2002). However,
most were rescued by concurrent supplementation with CB1
agonist arachidonyl-2′-chloroethylamide (ACEA, 25 nM) or
CB1/CB2 agonists WIN55212-2 (25 nM) or HU210 (500 nM).
Co-treatment with CB1 antagonist SR141716 (1 µM) abolished
the anti-apoptotic effect of ACEA, but not of WIN55212-2 or
HU210. Both SR141716 plus CB2 antagonist SR144528 (1 µM)
were required to nullify the pro-survival effect of HU210. These
results show that the activation of either CB1 or CB2 receptors

FIGURE 1 | Evidence for CB1 or CB2 receptor activation or endogenous
2-Arachidonoylglycerol modulation of Oligodendrocyte Precursor Cell Life
Cycle. +, Promote; O, No effect; ?, Unknown. See the text for details and
original references.
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could be sufficient in promoting OPC survival under conditions
of trophic factor deprivation. The mechanism includes activation
of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, a
known modulator of OPC survival (Vemuri and McMorris, 1996;
Ebner et al., 2000). Applying each of the three agonists correlated
with increased Akt phosphorylation, while co-treatment with
PI3K inhibitors LY294002 (10 µM) or wortmannin (100 nM)
nullified the effects of WIN55212-2 and HU210 on both Akt
phosphorylation and cell survival (Molina-Holgado et al., 2002).
Thus, stimulation of Akt/PI3K pathways via CB1 and CB2
receptors present in OPCs can curtail apoptotic processes and
promote survival.

Proliferation
Molina-Holgado and colleagues explored the ability of the
endocannabinoid system to modulate OPC proliferation and
self-renewal (Gomez et al., 2015). In cultured OPCs (Molina-
Holgado et al., 2002), 24-h blockade of CB1 receptors with
AM281 (1 µM), CB2 receptors with AM630 (1 µM), or synthesis
of 2-arachidonoylglycerol (2-AG) by diacylglycerol lipase α

and β (DAGLs) with RHC80267 (5 µM), led to reduction
in PDGF/FGF-stimulated OPC proliferation. In the absence
of PDGF and FGF, OPC proliferation increased in response
to 24-h application of CB1 agonist ACEA (0.5 µM), CB2
agonist JWH133 (0.5 µM), 2-AG (1 µM), or JZL184 (1 µM)
which blocks the 2-AG metabolizing enzyme monoacylglycerol
lipase (MAGL). The effect depended on phosphorylation of
Akt and mammalian target of rapamycin (mTOR), as their
blockers LY294002 (5 µM) and rapamycin (3 nM), respectively
(24 h), decreased the proliferative effects of ACEA, JWH133,
and JZL184. Extracellular signal regulated-kinase (ERK) 1/2
phosphorylation was decreased in cells treated with the 2-
AG synthesis inhibitor RHC80267, as well as with CB1 and
CB2 antagonists AM281 and AM630, respectively. These results
extend the impact of cannabinoid receptor activation from
promoting OPC survival (Molina-Holgado et al., 2002) to
increasing proliferation, while also implicating cannabinoid-
mediated Akt/mTOR and ERK pathways, known to play a role
throughout OPC development to myelination (Gonsalvez et al.,
2016; Figlia et al., 2018).

Migration
NSCs of postnatal subventricular zone (SVZ) emigrate the
neurogenic niche in the form of neuroblasts or OPCs (Marshall
et al., 2003). In rat CNS, both myelination and SVZ gliogenesis
peak at postnatal day (PD) 15 (Bjelke and Seiger, 1989; Hamano
et al., 1996), making this an optimal time-point for exploring
cannabinoid effects on OPC proliferation and migration from
postnatal SVZ. Immunohistochemical analysis of PD7 and
PD15 Wistar rat brain revealed that the CB1 receptor was
primarily expressed by radial glia (Aré-Martín et al., 2007),
which can transform to NSCs (Merkle et al., 2004). However,
the CB2 receptor co-stained with poly-sialylated neural cell
adhesion molecule (PSA-NCAM) (Aré-Martín et al., 2007), a
marker of migration in OPCs and neuroblasts (Doetsch et al.,
1999; Menn et al., 2006). The CB1 agonist ACEA (escalating
dose 1.25–2.5 mg/kg, SC daily PD1 to PD14) increased PD15

SVZ staining for 4A4, a marker of radial glia proliferation
(Howard et al., 2006), and Olig2 (Aré-Martín et al., 2007), which
is expressed in glial precursors fated to become oligodendrocytes
(Mitew et al., 2014). Similar treatment with CB2 agonist JWH056
(escalating dose 2.5–5.0 mg/kg, SC) increased SVZ staining
for PSA-NCAM. Activation of both CB1 and CB2 receptors
by WIN55212-2 (escalating dose 2.5–5.0 mg/kg, SC) increased
MBP staining in the external capsule, which was inhibited
below control values by concurrent administration of either
SR141716 (CB1) or SR144528 (CB2) antagonists (escalating dose
2–4 mg/kg, SC) (Aré-Martín et al., 2007). These results support
the involvement of CB1 receptors in radial glia proliferation
and conversion to oligodendrocytes, but CB2 receptors in OPC
migration, leading to functional oligodendrocytes in neonatal
myelination.

Studies have examined cannabinoid agonist impact on rodent
SVZ proliferation beyond the newborn stage. In juvenile (PD35-
PD48) Lewis rats, WIN55212-2 (2 mg/kg, IP bid, 2-weeks)
increased SVZ BrdU staining, without changing the ratio of
progenitors committed to neuronal or OPC fates, or the number
of cells undergoing caspase-3 mediated apoptosis (Bortolato et al.,
2014). These results are consistent with findings that genetic
ablation of CB1 receptors decreased progenitor proliferation in
adult mouse SVZ (Jin et al., 2004; Kim et al., 2006). In adult
mice, cannabidiol (CBD; 3 mg/kg IP daily for 14 days) increased
SVZ proliferative markers Ki67 and BrdU staining (Schiavon
et al., 2016). However, CBD at 30 mg/kg decreased proliferation
markers (Schiavon et al., 2016), highlighting the importance of
dose.

Differentiation to Mature
Oligodendrocytes
Molina-Holgado et al. (2002) investigated OPC differentiation
using isolated OPCs differentiated with T3 (30 ng/mL, 48 h)
in the absence of PDGF/FGF (Gomez et al., 2011). Activating
either cannabinoid receptor (ACEA for CB1 and JWH133 for
CB2, 0.5 µM) increased OPC branching and accumulation of
MBP (Western blot). The CB1/CB2 agonist HU210 (0.5 µM)
evoked the same responses, which could be abolished by either
AM281 (CB1) or AM630 (CB2; 1 µM). The mechanism for
HU210-mediated OPC arborization and production of MBP
involved PI3K/Akt and mTOR pathways, as these effects were
blocked with LY290042 (2.5 µM) and rapamycin (0.75 nM),
respectively. Gomez et al. (2010) found the Western blot level
of DAGLs to be higher in OPCs, whereas the level of MAGL
was higher in mature oligodendrocytes, culminating in the
finding that OPCs accumulated a greater content of 2-AG than
mature oligodendrocytes. Levels of anandamide (AEA) were
low and did not differ between the cell stages (Gomez et al.,
2010). Differentiation, denoted by branching morphology and
levels of MBP after 96 h, was increased by MAGL inhibitor
JZL184 (1 µM), and decreased by DAGL inhibitor RHC80267
(5 µM), with exogenous 2-AG (2 µM) abolishing the effect of
blocking its synthesis. Inhibition of the ERK pathway by the MEK
blocker PD98059 (10 µM) abolished Western blot staining for
MBP, implicating the ERK pathway in differentiation. In a CB1
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receptor mRNA-expressing human oligodendrocyte precursor
line HOG16, WIN55212-2 (1 µM, 24 h) increased MBP mRNA
expression, particularly in cells treated with T3-supplemented
differentiating medium (Tomas-Roig et al., 2016). Collectively,
these studies suggest that endogenous 2-AG in OPCs triggers
the ERK pathway, leading to the maturation of arborized, MBP-
producing oligodendrocytes.

THE ECS AND
OPCS-OLIGODENDROCYTES IN
MODELS OF DISEASE

The role of cannabinoids in OPCs and oligodendrocytes
under stress has been evaluated in models of insults such as
excitotoxicity (Shouman et al., 2006; Bernal-Chico et al., 2015),
reactive oxygen species (ROS) toxicity (Ribeiro et al., 2013), KCl-
induced depolarization (Mato et al., 2009), as well as in models of
stroke (Fernández-López et al., 2010; Sun et al., 2013a,b), spinal
cord injury (SCI) (Marsicano et al., 2003; Arevalo-Martin et al.,
2010), and demyelination (Solbrig et al., 2010; Ribeiro et al., 2013;
Bernal-Chico et al., 2015; Wen et al., 2015; Feliu et al., 2017).

Cannabinoids and
OPC-Oligodendrocytes in Cytopathology
Models
The ability of cannabinoid agonists to protect neurons from
excitotoxicity is well known (Shen and Thayer, 1998; Hansen
et al., 2002; Marsicano et al., 2003; van der Stelt and Di Marzo,
2005). Likewise, ECS involvement in OPC and oligodendrocyte
excitotoxicity has recently been explored (Shouman et al., 2006;
Bernal-Chico et al., 2015). Newborn (PD5) Sprague Dawley
rats received AMPA/kainate agonist bromowillardine (15 µg,
IC), immediately followed by AEA (10 mg/kg, IP) (Shouman
et al., 2006). AEA significantly increased OPC density within the
periventricular white matter lesion after 1 day, and increased
MBP staining after 5 days. The ECS in excitotoxicity was also
investigated in mature oligodendrocytes (Bernal-Chico et al.,
2015). OPCs were isolated from the cerebral cortex of newborn
wildtype or CB1-KO Sprague-Dawley rats and differentiated
with T3 minus growth factors. Oligodendrocytes were exposed
to AMPA plus cyclothiazide (10 µM:100 µM) for 15 min,
resulting in excessive cytosolic calcium, reactive oxygen species
(ROS) production, and cell death (Bernal-Chico et al., 2015).
A 30-min pretreatment with CB1 agonist ACEA (25 nM),
endocannabinoids AEA or 2-AG (1 µM), or MAGL inhibitor
JZL184 (25 nM) reduced cell death (Bernal-Chico et al., 2015). No
protection occurred in oligodendrocytes lacking CB1 receptors,
or pretreated with CB2 agonist JWH133 (25 nM) or the
inhibitor of AEA metabolizing enzyme fatty acid amide hydrolase
(FAAH) URB597 (10 nM – 1 µM). These findings implicate
endocannabinoids and CB1 receptors in improved viability of
oligodendrocytes in excitotoxic conditions.

Due to their high metabolic demand, oligodendrocytes are
vulnerable to elevated levels of ROS (McTigue and Tripathi,
2008; Roth and Nunez, 2016), although less so than their

precursors (Back et al., 1998). To investigate how cannabinoid
agonists affect oligodendrocyte survival, precursors isolated from
PD2-PD3 Sprague-Dawley rat brains were differentiated by T3
plus ciliary neurotrophic factor for 2 weeks, and exposed to
a peroxynitrite generator SIN-1 (1 mM) (Zhang et al., 2006,
2007) for 2 h (Ribeiro et al., 2013). Concurrent treatment with
CB1/CB2 agonists CP55940 (1–3 µM), WIN55212-2 (10 µM), or
anandamide/THC hybrid CB52 (3–10 µM), reduced cell death.
CB52’s mechanism included activation of CB2 receptors, as CB2
antagonist AM630 (10 µM), but not CB1 antagonist AM281
(10 µM) reduced its effectiveness, while CB2 agonists AM1241
and JWH015 partially replicated it (Ribeiro et al., 2013).

The ability of CB1 agonists to inhibit depolarization-
dependent calcium channels, as observed in neurons (Howlett
et al., 2002), was explored in oligodendrocytes (Mato et al., 2009).
Precursors were isolated from optic nerve of PD12 Sprague-
Dawley rats, differentiated by 2-day incubation in defined media,
and exposed to KCl (50 mM, 1 min) to induce depolarization
(Mato et al., 2009). Resulting calcium influx was decreased by
CB1 agonist ACEA (1 µM) or CB1/CB2 agonists THC (3 µM),
CP55940 (3 µM), AEA (3 µM) or 2-AG (3 µM), but not
CB2 agonist JWH133 (3 µM). Oligodendrocytes from CB1-
KO mice were less responsive to AEA and ACEA, although
not completely unresponsive, suggesting other targets exist such
as transient receptor potential vanilloid receptor-1 (TRPV1)
(Ross, 2003; Ruparel et al., 2011), expressed in oligodendrocytes
(Gonzalez-Reyes et al., 2013). In contrast, CBD (100 nM, 20–
30 min) reduced oligodendrocyte viability, in part through an
increase in intracellular calcium (Mato et al., 2010). CBD (1 µM,
10 min) increased oligodendrocyte production of ROS, and
induced apoptosis through mitochondria-mediated activation
of caspase-8 and -9 and their downstream effector caspase-3,
as well as poly-(ADP ribose) polymerase-1 (PARP-1), triggered
by caspase-independent mitochondrial apoptosis-induced factor
(AIF) (Hong et al., 2004).

ECS and Oligodendrocytes in Stroke and
Traumatic Injury
Oligodendrocytes are vulnerable to ischemic conditions and
their replacement via OPCs has been found to aid recovery
(Dewar et al., 2003; Zhang et al., 2013, 2016). The impact
of the ECS was studied in adult (Sun et al., 2013a,b) and
neonatal (Fernández-López et al., 2010) rat models of middle
cerebral artery occlusion (MCAO). In transient (2 h) MCAO
(Sun et al., 2013a), WIN55212-2 (9 mg/kg, IP immediately after
reperfusion and daily) increased staining for penumbral OPCs
and mature oligodendrocytes at 4, 7, and 14 days post ischemia
(DPI), and penumbral myelin density at 14 DPI. WIN55212-
2 reduced penumbral expression of caspase-3 in OPCs at
7 DPI, which correlated with reduced ERK1/2 phosphorylation.
These effects were ameliorated by CB1 antagonist SR141716
(1 mg/kg, IV). In adult male Sprague-Dawley rats, WIN55212-
2 (9 mg/kg, IV) was given within 2 h after permanent MCAO,
with anoxia damage quantitated after 24 h (Sun et al., 2013b).
WIN55212-2 treatment increased OPC proliferation within the
penumbra and ipsilateral SVZ, and decreased penumbral OPC
expression of tau-1, an oligodendrocyte marker of ischemic
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stress (Dewar and Dawson, 1995; Irving et al., 1996). Both
effects were partially due to CB1 receptor activation (Sun
et al., 2013b). In a permanent MCAO model in neonatal
PD7 Wistar rats (Fernández-López et al., 2010), WIN55212-
2 (1 mg/kg, IP daily for 7 days) increased ipsilateral SVZ
OPC proliferation and number of penumbral OPCs at 7 DPI.
WIN55212-2 increased the number of mature penumbral
oligodendrocytes at 14 and 28 DPI, and accelerated complete
MBP recovery. Consistent with earlier findings (Goncalves
et al., 2008; Bortolato et al., 2014), WIN55212-2 increased
SVZ OPC proliferation even in the absence of ischemia.
Although preclinical results appear promising for cannabinoid
pharmacotherapies for anoxic demyelination, SVZ neurogenic
response to stroke varies greatly between rodents and humans
(Kahle and Bix, 2013).

The endocannabinoid 2-AG has been shown to be
neuroprotective after traumatic brain injury (Panikashvili
et al., 2001), and 2-AG is elevated after spinal trauma (Marsicano
et al., 2003; Garcia-Ovejero et al., 2009). Thus, the impact of
2-AG on oligodendrocyte survival was explored in a model of
contusive SCI generated by a dropped weight in male adult
Wistar rats (Arevalo-Martin et al., 2010). 2-AG (5 mg/kg, IP
30 min after injury) preserved myelin integrity and reduced
oligodendrocyte death at the epicenter (1 day post-injury), with
the same effects seen as far as 10 mm rostral of epicenter (1 and
7 days post-injury). Co-administration of both CB1 and CB2
antagonists (AM281 and AM630, respectively; 3 mg/kg, IP), but
not by either alone, could reverse the effects of 2-AG. These
results support the idea that improved oligodendrocyte survival
and preserved white matter integrity underlie the cannabinoid-
mediated improvement in SCI recovery (Arevalo-Martin et al.,
2012).

ECS and Models of Demyelination
To investigate demyelination in a mouse model of experimental
autoimmune encephalomyelitis (EAE), PD49 or PD56 C57BL/6
mice received a single injection of myelin oligodendrocyte
glycoprotein peptide (MOG 35-55), followed by injections of
pertussis toxin on the day of MOG inoculation and again 2 days
afterward (Bernal-Chico et al., 2015). MAGL inhibitor JZL184
(8 mg/kg, IP daily for 3 weeks, starting on day 14 postinoculation)
ameliorated the reduction in spinal cord white matter staining
(Bernal-Chico et al., 2015). Similar results in the EAE model were
achieved by THC (Moreno-Martet et al., 2015), CBD (Giacoppo
et al., 2015), cannabigerol quinone (Carrillo-Salinas et al., 2014),
and CB2 agonist HU308 (Shao et al., 2014). The effects of
CB52 on demyelination EAE (Ribeiro et al., 2013) showed that
when initiated before symptom development (3 days) or after
clinical disease onset (12 or 20 days), CB52 (2 mg/kg, IP daily)
ameliorated the loss of staining for spinal cord myelin and mature
oligodendrocytes at day-30. In contrast to CB52’s action on
cultured oligodendrocytes in vitro (Ribeiro et al., 2013), both of its
effects in vivo were blocked by CB1 antagonist AM281 (2 mg/kg),
but not by CB2 antagonist AM630 (2 mg/kg).

Microglia are an integral part of demyelinating diseases’
neuroimmune complex (Gonzalez et al., 2014). In microglia, CB1
receptors are expressed at low levels constitutively; however, CB2

receptors become upregulated when microglia become activated
(Cabral et al., 2008). Endocannabinoids 2-AG and AEA have been
shown to drive microglia toward alternative, anti-inflammatory
activation state, M2, and away from classic, pro-inflammatory
polarization, M1, which in turn causes microglia to upregulate
its own 2-AG synthesizing enzymes (Mecha et al., 2015). Because
microglial 2-AG has been shown to promote OPC differentiation
(Miron et al., 2013), blocking its degradation could be of use
in counteracting demyelination. This has been explored in a
mouse model of EAE (Wen et al., 2015), by inhibiting the 2-AG
hydrolyzing microglial enzyme ABHD6 (Li et al., 2007; Marrs
et al., 2010; Murataeva et al., 2014) with WWL70 (10 mg/kg,
IP daily starting at the onset of clinical symptoms on day-
11 postinoculation). WWL70 increased cerebral 2-AG at day-
21, and ameliorated the loss of staining of spinal cord myelin
and mature oligodendrocytes in wildtype mice on day-28 (Wen
et al., 2015). These results were not seen in CB2-KO mice,
nor when WWL70 was co-administered with CB2 antagonist
AM630 (3 mg/kg), suggesting that microglial 2-AG accumulation
is dependent upon CB2 receptor signaling. Co-administration
with CB1 antagonist AM281 failed to interfere with WWL70’s
effects.

OPC gliogenesis in Borna Disease Virus (BDV)
encephalomyelitis, generated in PD28 male Lewis rats (Solbrig
et al., 2010), demonstrated that WIN55212-2 (1 mg/kg, IP daily
for 7-days starting 1 week after virus inoculation) increased OPC
proliferation in striatum, decreased apoptosis of proliferating
cells, skewed precursor differentiation away from astrocytes and
toward oligodendrocytes, and promoted OPC maturation. In
uninfected controls, WIN55212-2 increased proliferation in both
PFC and striatum.

In Theiler’s murine encephalomyelitis virus-induced
demyelinating disease (TMEV-IDD), PD28 female CJL/J
mice received an intracerebral injection of the Daniel strain
virus (Feliu et al., 2017). When started after symptom onset at
day-75, a 10-day treatment with MAGL inhibitor UCM03025
(5 mg/kg, IP) increased the spinal cord populations of both
mature oligodendrocytes and OPCs, and restored MBP level to
that of sham controls (Feliu et al., 2017).

In the cuprizone oligodendrotoxic model (Bernal-Chico et al.,
2015), PD56 C57BL/6 mice were fed a cuprizone-supplemented
diet (0.3%) for 3 weeks. Concurrent MAGL inhibitor JZL184
(8 mg/kg, IP daily) ameliorated cuprizone-induced reduction
in corpus callosum MBP staining (Bernal-Chico et al., 2015),
implicating 2-AG-mediated protection.

Seizures are known to accompany demyelination in
experimental models (DePaula-Silva et al., 2017; Lapato et al.,
2017; Spatola and Dalmau, 2017) as well as MS (Koch et al., 2008;
Anderson and Rodriguez, 2011; Sponsler and Kendrick-Adey,
2011). The ECS promotion of OPCs (Solbrig et al., 2010; Feliu
et al., 2017) and mature oligodendrocytes (Ribeiro et al., 2013;
Wen et al., 2015; Feliu et al., 2017) may counteract demyelination
observed in patients with intractable epilepsy (Hu et al., 2016).

CBD and OPCs in Inflammation
CBD has been promoted for potential therapeutic applications
(Devinsky et al., 2014; Blessing et al., 2015; Ibeas Bih et al., 2015)
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including anti-inflammation (Burstein, 2015). Inflammation
underlies a range of pathologies including neurodegeneration
(Glass et al., 2010; Cunningham, 2013), stroke (Turner and
Vink, 2007; Ahmad et al., 2014), and demyelination (Popescu
and Lucchinetti, 2012; Kutzelnigg and Lassmann, 2014). To
examine CBD’s anti-inflammatory impact on OPC survival,
cultured OPCs isolated from the forebrain of newborn Wistar
rats were exposed to inflammation-related stressors (Mecha et al.,
2012). Treatment with CBD (1 µM) reduced: (1) caspase-3-
mediated apoptosis resulting from lipopolysaccharides (LPS)
and interferon-γ (IFNγ)-mediated inflammation (48 h); (2)
cell death induced by endoplasmic reticulum stress instigated
by tunicamycin (1 µg/ml, 24 h); and (3) cell detachment
and ROS production in response to hydrogen peroxide
(2 h). CBD was unable to increase OPC proliferation in
culture (Mecha et al., 2012), in contrast to its chronic
administration in SVZ of adult Swiss mice (Schiavon et al.,
2016). CBD did not promote apoptosis in culture, as observed
in unstressed cultured oligodendrocytes (Mato et al., 2010).
CBD’s cellular mechanism(s) have yet to be established for
OPC and oligodendrocyte function, but might counter the
endocannabinoid responses at their receptors. Further, CBD may
target other cell types in the neuro-immune complex, explaining
differences between in vitro vs. in vivo models.

PERSPECTIVES

Although much has been learned about the impact of
cannabinoid agonists on oligodendrocytes in health and disease,
many questions remain unexplored, such as the cannabinoid
impact on OPC local migration (Kirby et al., 2006; Hughes
et al., 2013) and glutamate signaling (Spitzer et al., 2016),
the oligodendrocyte’s ability to produce myelin and provide
metabolic support to axons (Zecca et al., 2004; Saab et al.,
2013; Simons and Nave, 2015). Cannabinoid agonists also
comprise structurally and functional distinct ligands (Howlett

et al., 2002; Pertwee et al., 2010; Laprairie et al., 2017; Priestley
et al., 2017), and as such, it is important to characterize
their pharmacological profiles in cell pathologies related to
oligodendrocytes and other cell types in the neuro-immune
complex. Although the impact of cannabinoid extracts on MS
disease progression remains inconclusive (Pertwee, 2007; Pryce
et al., 2015), the outlook is optimistic (Arévalo-Martin et al., 2008;
Chiurchiu et al., 2015, 2018). Evidence of cannabinoid agonist
effects on oligodendrocyte survival and OPC lifecycle suggests
their usefulness in CNS pathologies such as demyelination
(Popescu and Lucchinetti, 2012; Kutzelnigg and Lassmann,
2014), neurodegeneration (Ettle et al., 2016; Tauheed et al.,
2016), ischemia (Dewar et al., 2003; Mifsud et al., 2014), epilepsy
(Friedman and Devinsky, 2015; Stockings et al., 2018), and
traumatic injuries to spinal cord (Alizadeh and Abdolrezaee-
Karimi, 2016; Levine, 2016; Arevalo-Martin et al., 2016) and brain
(Armstrong et al., 2016; Takase et al., 2018).
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