
fnins-12-00734 October 12, 2018 Time: 13:5 # 1

HYPOTHESIS AND THEORY
published: 12 October 2018

doi: 10.3389/fnins.2018.00734

Edited by:
Paul E. M. Phillips,

University of Washington,
United States

Reviewed by:
Vijay Mohan K. Namboodiri,

University of North Carolina at Chapel
Hill, United States

Hansem Sohn,
Massachusetts Institute

of Technology, United States

*Correspondence:
Kenji Matsumoto

matsumot@lab.tamagawa.ac.jp
Kaosu Matsumori

kaosu.matsumori@gmail.com

Specialty section:
This article was submitted to

Decision Neuroscience,
a section of the journal

Frontiers in Neuroscience

Received: 27 June 2018
Accepted: 24 September 2018

Published: 12 October 2018

Citation:
Matsumori K, Koike Y and

Matsumoto K (2018) A Biased
Bayesian Inference

for Decision-Making and Cognitive
Control. Front. Neurosci. 12:734.

doi: 10.3389/fnins.2018.00734

A Biased Bayesian Inference for
Decision-Making and Cognitive
Control
Kaosu Matsumori1,2* , Yasuharu Koike3 and Kenji Matsumoto1*

1 Tamagawa University Brain Science Institute, Machida, Tokyo, Japan, 2 Department of Information Processing, Tokyo
Institute of Technology, Yokohama, Kanagawa, Japan, 3 Institute of Innovative Research, Tokyo Institute of Technology,
Yokohama, Kanagawa, Japan

Although classical decision-making studies have assumed that subjects behave in a
Bayes-optimal way, the sub-optimality that causes biases in decision-making is currently
under debate. Here, we propose a synthesis based on exponentially-biased Bayesian
inference, including various decision-making and probability judgments with different
bias levels. We arrange three major parameter estimation methods in a two-dimensional
bias parameter space (prior and likelihood), of the biased Bayesian inference. Then,
we discuss a neural implementation of the biased Bayesian inference on the basis of
changes in weights in neural connections, which we regarded as a combination of
leaky/unstable neural integrator and probabilistic population coding. Finally, we discuss
mechanisms of cognitive control which may regulate the bias levels.

Keywords: sub-optimality, parameter estimation, probability judgment, probabilistic population codes, gain
modulation, two-alternative forced choice, cognitive control, computational psychiatry

INTRODUCTION

Decision-making and cognitive control, which are well developed in primates (especially humans),
are important for adaptive behaviors in a changing environment with uncertainty (Fuster, 2015).
Many studies in various research fields such as Psychology, Neuroscience, and Engineering have
suggested that decision-making and cognitive control are implemented differently in brain regions
which contribute to processing these functions (Stuss and Knight, 2013; Fuster, 2015). However,
the computational principles underlying these processes are still under debate (Gazzaniga, 2009;
Friston, 2010).

Recent theoretical studies suggest a unified view accounting for various cognitive functions
including decision-making and cognitive control on the basis of Bayesian inference (which forces us
to re-assess our prior subjective beliefs using currently observed data, while considering uncertainty
as well), as means of obtaining the distributions (Friston, 2010; Beck et al., 2012; Pouget et al., 2013).
This view has been supported by many empirical studies showing that information is integrated in
a nearly Bayes-optimal way in motor control (Wolpert et al., 1995; Ernst and Banks, 2002; Körding
and Wolpert, 2004), and also in perceptual decision-making (Yang and Shadlen, 2007; van Bergen
et al., 2015).

Körding and Wolpert (2004) showed that previously-learned probability distributions
were combined with newly-added probability distributions in a Bayesian fashion,
in the performance of a reaching task (Körding and Wolpert, 2004). A cursor
indicated the start and end points of the reaching act with a hidden hand,
but an experimental shift was added at the end point, using Gaussian noise.
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In this experiment, human subjects performed the reaching
task by directing their index finger to the target. After learning
the Gaussian distribution of the experimental shift, (first-
probability distribution, i.e., the prior), additional feedback was
given at the midpoint of the reaching with different Gaussian
noises (second probability distribution, the likelihood). Subjects’
behavior suggested that the two probability distributions were
combined in a nearly Bayes-optimal way.

Brunton et al. (2013) showed that the variability of
perceptual decision-making depends on sensory noise but not
on the noise in the information-accumulation processes in
an auditory pulse number-discrimination task as detailed in
a mathematical model (Brunton et al., 2013). Because the
information accumulation processes can be regarded as Bayesian
inference (Bitzer et al., 2014), their findings suggest that the
information accumulation for the perceptual decision-making is
nearly Bayes-optimal.

On the other hand, models that assume bias in the
information accumulation process, such as in Decision Field
Theory and in the “leaky competing accumulator” model
(Busemeyer and Townsend, 1993; Usher and McClelland, 2001),
have also been proposed to explain the contextual effects
(i.e., compromise effect, attractiveness effect, and similarity
effect), as well as the primacy/recency effect. These models take
into account deviations from Bayesian inference, as explained
below. Interestingly, Powers et al. (2017) recently reported that
hallucinations, abnormal perception in schizophrenia, can be
explained by such deviations.

Classical economic decision-making studies have assumed
that humans behave optimally (von Neumann and Morgenstern,
1947). However, the existence of cognitive biases in probability
judgment has been amply shown (Kahneman et al., 1982).
There is a well-known question that leads people to answer
incorrectly: “It is known that the probability of contracting
this disease is 1/10, 000 and correct rates of positive and
negative results obtained by a test for the disease are 99%
for both ill and healthy subjects. Now, supposing the test
results were positive for you. What would you estimate the
probability is that you are actually ill?” People tend to answer
greater than the correct rate such as “90%” despite the
fact that, (mathematically), the correct answer is about 1%
(0.99 · 0.0001

/
(0.99 · 0.0001+ 0.01 · 0.9999) ≈ 0.0098). Here,

they are considered to ignore the prior (or “base rate neglect”)
(Kahneman et al., 1982). Other biases such as “representativeness
bias,” “conservatism,” and “anchoring and adjustment” can also
be considered as deviations from optimal Bayesian inference
(Kahneman et al., 1982).

Thus, various psychological phenomena have been described
as optimal Bayesian inference or systematic deviations,
pertaining perceptual decision-making and economic decision-
making or probability judgment. However, there have been
only limited attempts to explain perceptual decision making
and economic decision-making within a unified framework
(Summerfield and Tsetsos, 2012).

In this paper, we use the perspective of generalized Bayesian
inference by considering the bias, and explain various decision-
making, probability judgment, and cognitive control. We also

consider the possibility that the brain actually implements such
biased Bayesian inference.

First, we describe a Bayesian inference model with two
exponential biases. Next, we arrange major parameter estimation
methods [maximum likelihood (ML) estimation, maximum
posterior probability (MAP) estimation and usual Bayesian
estimation] in a two-dimensional parameter space of biased
Bayesian inference. This parameter space also accounts for
biases in probability judgment which have served as a basis
for the development of behavioral economics. Furthermore, we
discuss the neural implementation of Bayesian inference with
exponential biases on the basis of neural connections weight
changes (Goldman et al., 2009), regarded as a combination
of the leaky competing accumulator model (LCA) (Usher and
McClelland, 2001), and probabilistic population codes (PPC) (Ma
et al., 2006). Finally, we apply our framework to cognitive control.

BIASED BAYESIAN INFERENCE

The Bayesian method is a powerful tool that enables inference
and decision-making even with a limited amount of data,
succeeding where traditional statistical methods have failed
to capture inherent dynamics. This method has been applied
in many research fields, such as Genetics, Linguistics, Image
processing, Cosmology, Ecology, Machine learning, Psychology,
and Neuroscience (Stone, 2013).

In all these cases, the solutions were based on a very
simple Bayes’s theorem, which states that the probability of the
hypothesis H after observation of data D is proportional to the
product of the likelihood within the received data, and the prior
probability of the hypothesis, or: (P (H |D ) ∝ P (D |H ) P (H)).
However, when it comes to human and animal behavior,
deviations from Bayes-optimality have been observed in many
cases (Kahneman et al., 1982). In some studies, such deviations
have been explained by introducing exponential biases (i.e.,
inverse temperature parameters), on Bayesian inference (Nassar
et al., 2010; Soltani and Wang, 2010; Payzan-LeNestour and
Bossaerts, 2011, Payzan-LeNestour and Bossaerts, 2012; Payzan-
LeNestour et al., 2013), mainly because these were found useful
in expressing bias levels. Each exponential bias can be separately
considered as a bias for a corresponding single distribution,
and they are credited for introducing separate biases for prior
probability and likelihood.

Here, We Propose the Importance of Introducing Both
Biases on Prior Probability and Likelihood Simultaneously (see
Figure 1).

P (H |D ) ∝ P (D |H )β P (H)α (1)

where ∝ stands for proportionality, α is the exponential bias
of the prior probability and β is the exponential bias of the
likelihood. Equation (1) can be taken as its logarithm,

log (P (H |D )) = β log P (D |H )+ α log P (H)+ const. (2)

where α is the weight of the logarithm of prior probability, β

is the weight of the logarithm of likelihood, and const. is the
constant term for normalization (see Supplementary Material).
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FIGURE 1 | Exponential bias (P ∝ Pα, 0 ≤ α). Beta distribution is used here for
graphical demonstration. Original distribution (black) is flattened when α < 1
(magenta) and sharpened when α > 1 (green).

α and β was regarded as biases in Equation (1) but as weights
in Equation (2). We will take the former term, biases, in the
present paper so as to keep consistency throughout this paper
and emphasize the deviation from the optimal inference. Some
authors have expressed Bayes’ theorem as the sum of the log-
likelihood ratio and odds ratio (Grether, 1980; Soltani and
Wang, 2010). However, they only considered a 2-alternative
choice task, which cannot address interesting phenomena such
as preference reversals observed in an alternative choice task
with more than two choices, while most decisions we make
are among more than two choices (Churchland and Ditterich,
2012).

Here, we assume that the bias levels (α, β) are positive
(but see Supplementary Material). When α = β = 1, the
inference is just as in usual Bayesian inference. When the
weight of the prior distribution in the inference is smaller
than usual (0 < α < 1), the prior distribution is flatter than
the original. In this case, the influence of the initial prior
on the posterior probability distribution weakens as the
prior is updated (see Supplementary Material). This type of
biasing in inference is called forgetting, because the older the
information becomes, the less influence it has (Peterka, 1981;
Nassar et al., 2010; Payzan-LeNestour and Bossaerts, 2011,
Payzan-LeNestour and Bossaerts, 2012). In a non-stationary
environment fluctuating gradually, the older information is
less important than the newer in predicting the next state.
Thus, forgetting enables us to take into account the non-
stationarity of the environment when we do not have a complete
model of the environment (Peterka, 1981; Kulhavý and Zarrop,
1993).

When the weight of the prior distribution in the inference is
larger than usual (i.e., α > 1), the prior distribution is sharper
than the original (see Figure 2). In this case, the influence of
the prior on the posterior probability distribution is stronger
than usual. We call this type of biasing stereotyping, because
the influence of old information never decreases, but in fact
increases.

FIGURE 2 | Exponentially biased Bayesian inference
(P (H |D ) ∝ P (D |H )β P (H)α) in the bias plane. We consider the bias plane
provided by the two parameters, the weight of prior distribution (α) and the
weight of likelihood (β). Each point in the bias plane corresponds to the
different inference methods and provides corresponding posterior distribution
from a pair of prior and likelihood (representative values of the distribution-like
mode can be taken, but they are not considered here). The inserted graphs
show the inferences assuming the same normal distributions at five typical
points in the plane. Standard (non-biased) Bayesian inference corresponds to
the point with α = β = 1. In the region of 0 ≤ α < 1, the prior distribution is
flatter than the original one. In this case, the influence of the initial prior on
posterior probability distribution weakens as the prior is updated. This type of
biasing in inference is called forgetting (Peterka, 1981; Kulhavý and Zarrop,
1993). In the region of α > 1, the prior distribution is sharper than the original.
In this case, the influence of the prior on posterior probability distribution is
stronger than usual. We call this type of biasing stereotyping. In the region of
0 ≤ β < 1, the likelihood is flatter than the original one. In this case, the
influence of the likelihood on the posterior probability distribution is weak. We
call this type of biasing rigidity. In the region of β > 1, the likelihood is sharper
than the original one. In this case, the influence of the likelihood on posterior
probability distribution is greater. We call this type of biasing flexibility. When β

approaches +∞, the posterior distribution converges to the mode of the
likelihood [the same result as Maximum likelihood (ML) estimation]. Thus,
flexibility provides an intermediate method between Bayesian and ML
estimations. The red region (α < β), emphasizes likelihood more than the prior.
We call the inference of this region ML-like Bayesian inference. The blue region
(α > β), however, emphasizes prior more than likelihood. We call the inference
of this region Robust Bayesian inference. In the region where α, but not β, is
close to 0, the shape of the posterior is mostly determined by likelihood alone.
In the region where β (but not α), is close to 0, the shape of the posterior is
mostly determined by the prior alone. In the region where both α and β are
close to 0, the shape of the posterior is almost flat.

When the weight of the likelihood in the inference
is smaller than usual (i.e., 0 < β < 1), the likelihood is
flatter than the original. In this case, the influence of the
likelihood on the posterior probability distribution is weak.
We call this type of biasing rigidity, because observed data
is taken less into account. When the observed data are
outliers, the posterior distribution can be greatly influenced
by the data. Rigidity reduces the influence of such outlier
data (Agostinelli and Greco, 2012, 2013).
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When the weight of the likelihood in the inference is larger
than usual (i.e., β > 1), the likelihood is sharper than before. In
this case, the influence of the likelihood on posterior probability
distribution is greater. We call this type of biasing flexibility,
because the observed data is strongly influential on the posterior
probability. If β→+∞, the posterior distribution becomes the
mode of the likelihood. Thus, flexibility allows for a compromise
between Bayesian estimation and Maximum Likelihood (ML)
estimations (see Figure 2).

Here, we would like to inform readers that more than two
sources of data can be considered simultaneously. In such cases,
the likelihood weights of the data sources (β1, β2,. . .) might be
different; (see section Cognitive control as gain modulation and
biased Bayesian inference).

Parameter Estimation Based on the
Biased Bayesian Inference
Standard Bayesian inference has been used for Bayesian
estimation and Maximum a-posteriori (MAP) estimation. In
the previous section, we introduced Bayesian inference with
exponential biases. Next, we consider a variety of parameter
estimation methods in the bias plane (α− β plane) for biased
Bayesian inference (Figure 2).

Each point in the bias plane provides a corresponding
posterior distribution based on a pair of priors and likelihood.
So, each point corresponds to the different inference methods.
We can consider different estimation methods depending on
what is returned, as well as representative values of the
distribution such as mean, median and mode, or the distribution
itself.

In the case of returning the representative value of distribution
(here, in this paper, focusing on mode), the point with
(α, β) = (1, 1) corresponds to the standard MAP estimation.
Since the likelihood is weighted more than the prior in the
region where α < β is satisfied, (as shown above the 45◦
line in Figure 2), we call the estimation of this region, ML-
like estimation. In this region, we can consider intermediate
estimation between MAP and ML. In particular, when α = k1
and β = 1, the inference corresponds to the ML estimation
if k1 = 0, MAP estimation if k1 = 1, and the MAP-ML
intermediate estimation (forgetting), if 0 < k1 < 1 (horizontal
arrow in Figure 2). Furthermore, when α = 1 and k2 =

1
/
β, the inference corresponds to the ML method if k2 =

0, MAP estimation if k2 = 1, and another type of MAP-
ML intermediate estimation (flexibility), if 0 < k2 < 1, (vertical
arrow in Figure 2).

By contrast, since the prior is weighted more than the
likelihood in the region where α > β is satisfied (below the 45◦
line in Figure 2), we call the estimation of this region the “robust
estimation.”

In this region, we can consider intermediate estimation
between MAP (and, so to speak), “maximum prior (MP)”
estimation. In particular, when α = k1 and β = 1, the inference
corresponds to MAP estimation if k1 = 1, the MP estimation,
if k1 →+∞, and the MAP-MP intermediate estimation
(stereotyping), if k1 > 1 (horizontal arrow in Figure 2).

Furthermore, when α = 1 and k2 = 1
/
β, the inference

corresponds to the MAP estimation if k2 = 1, the MP method
if k2 →+∞ and another type of MAP-MP intermediate
estimation (rigidity), if k2 > 1; (vertical arrow in Figure 2).

In the case of returning distribution itself, the point with
(α, β) = (1, 1) corresponds to the standard Bayesian estimation.
In the ML-like region, when α = 1 and k2 = 1

/
β, the inference

corresponds to the ML method if k2 = 0 because it is considered a
point estimation that returns arg max P (D |H ) (as the sharpness
of likelihood should be the maximum above the scale break in
Figure 2), thus, Bayesian estimation results if k2 = 1, and the
Bayesian-ML intermediate estimation (flexibility) when 0 < k2 <
1 (Figure 2). In the Robust region, when α = 1 and k2 = 1

/
β, the

inference corresponds to the Bayesian estimation if k2 = 1; the
inference just returns the prior if k2 →+∞, and the Bayesian-
prior intermediate estimation (rigidity), if k2 > 1 (vertical arrow
in Figure 2).

Mapping the Psychological Biases of
Probability Judgment on the Bias Plane
In this section, we map the psychological biases on the bias plane
(Figure 2). In the context of human probability judgment, many
deviations from Bayesian inference are known, such as base-
rate fallacy, representativeness bias, conservation, anchoring and
adjustment etc. (Tversky and Kahneman, 1974; Kahneman et al.,
1982). In the bias plane, base-rate fallacy and representativeness
correspond to the ML-like estimation when α < β (as in
Figure 2), because the likelihood is more influential than the
prior in these deviations. Here, we emphasize the distinction of
the bias which comes from forgetting (α < 1), and from flexibility
(β > 1), which are similar in the aspect that the posterior
distribution is drawn more to the likelihood rather than the prior,
but arises from different mechanisms (Brock, 2012; Pellicano and
Burr, 2012a; Figure 2).

Conservation and anchoring-and-adjusting correspond to
robustness (where α > β), because the prior is more influential
than the likelihood in these deviations. Here we emphasize
the distinction of the bias which comes from stereotyping
(i.e., when α > 1), and from rigidity (when β < 1), which
are similar in the aspect that the posterior distribution is
drawn more from the prior than the likelihood, but comes
from different mechanisms (Figure 2). Note that our approach
is applicable to variable problem situations and ones with
more than two alternatives, while most previous attempts to
quantitatively represent these biases have considered only two
simple alternatives (Grether, 1980; Soltani and Wang, 2010; see
also section 2AFC).

Biased Bayesian inference enables us to take into account
the non-stationarity of the environment when we do not
have a complete model of the environment. So, these
psychological biases may have adaptive meanings and
normative account as suggested by previous studies (Kulhavý
and Zarrop, 1993; Gigerenzer and Goldstein, 1996). Their
studies propose that the bias framework presented here
provides insights into the sources of influences on these
biases.
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NEURAL IMPLEMENTATION OF BIASED
BAYESIAN INFERENCE

Neural Representation of the Probability
Distribution
Some authors have proposed computational models in which
neural circuits perform Bayesian inference (Jazayeri and
Movshon, 2006; Ma et al., 2006). Neural circuits need to represent
probability distributions to perform Bayesian inference. Since
synaptic inputs usually work additively (Kandel et al., 2000),
Bayesian inference can be achieved by summation of neural
activity in the brain. To make it possible to achieve Bayesian
inference by summation, the neural activity should represent a
logarithm of probabilities. In fact, several empirical studies have
reported that neurons encode posterior probability in logarithmic
form (Figure 3A; Yang and Shadlen, 2007; Kira et al., 2015).

Two theoretical methods have been proposed to encode the
log probability distribution in a neural population (Pouget et al.,
2013; Ma and Jazayeri, 2014). The first method is log probability
coding in which the firing rate of each neuron is proportional
to the log or logit of the probability of the event or belief
coded by the neuron (Barlow, 1969; Jazayeri and Movshon, 2006;
Pouget et al., 2013; Figure 3A). By simply pooling the activity
of the neurons considered, the probability distribution can be
represented by the neural population (Yang and Shadlen, 2007;
Pouget et al., 2013). The second, more sophisticated method, is
probabilistic population coding (PPC), in which a basis function
is combined with the log probability coding. And log P (x) can be
written as follows (Ma et al., 2006; Pouget et al., 2013):

log P (x) =
∑

i

rihi (x)+ const. = r · h+ const. (3)

where ri is the firing rate of ith neuron, r = (r1, r2, ..., rn)
T ,

h_i (x) is basis function for an ith neuron, and h =(
h1 (x) , h2 (x) , ..., hn (x)

)T .
In this paper, we propose a neural model of biased Bayesian

inference on the basis of PPC.

Implementing Biased Bayesian Inference
in a Neuronal Population
In considering the implementation of standard and biased
Bayesian inference below, we assume two layers of neuronal
populations with identical basis functions (see Supplementary
Material). The first layer consists of two neural populations
encoding the prior and the likelihood, and the second
layer consists of a neural population encoding the posterior
distribution (Figure 4A).

In PPC, standard Bayesian inference is achieved by summing
the firing rates of corresponding neurons between the neuronal
population encoding the prior, and that encoding the likelihood,
at the next layer of a neuronal-population-encoded posterior
distribution, because summation of their log probabilities is
equivalent to the product of the prior and likelihood (Ma et al.,
2006).

In this paper, we introduced biased Bayesian inference with
exponential biases above (P (H |D ) ∝ P (D |H )β P (H)α).
Biased Bayesian inference can be achieved just by
changing the gain (α, β) of the inputs for the next
(posterior) layer considered in the implementation of
the standard Bayesian inference (Equation 4; Figure 4A).

log
(
P (D |H )β P (H)α

)
= β log P (D |H )+ α log P (H)

= β rlikelihood · h+ α rprior · h+ const.
=
(
β rlikelihood + α rprior

)
· h+ const.

= rposterior · h+ const.

(4)

where rprior , rlikelihood and rposterior are the firing rates of
neural populations encoding the prior, likelihood, and
posterior, respectively. α and β correspond to the bias for
connection weights between prior-encoding neurons and
posterior encoding-neurons and the bias for connection
weight between likelihood-encoding neurons and posterior-
encoding neurons, respectively. Thus, rposterior is calculated as
β rlikelihood + α rprior . Such gain modulation of neuronal firing
rates is ordinarily used in the brain (Desimone and Duncan,
1995; Desimone, 1998) without clearly sophisticated, high cost
mechanism, so biasing by gain modulation may be good a
strategy of the brain to provide solutions that are approximately
optimal.

Recurrent Connection and Neural
Integrator
In Bayesian updating, the posterior distribution generally
becomes the prior distribution for the following iterative time
step. The resolution of the time steps for Bayesian updating
depends on the task; it is trial-based when sensory evidence for
updating the prior is given only at the end of a trial (Glimcher,
2003), whereas it is based on finer temporal steps in a single trial
when sensory evidence is sequentially (or continuously) given
throughout the trial (Bogacz et al., 2006; Kira et al., 2015). Such
repetitive updating can be achieved regardless of the temporal
resolution by a recurrent neural circuit, in which the firing rates
of neurons last across the time steps (Goldman et al., 2009;
Bitzer et al., 2014; Kira et al., 2015; Chandrasekaran, 2017).
Neural integrator models have been considered as a mechanism
for maintain the firing rate with external and recurrent inputs
(Goldman et al., 2009). Since the dynamics of neural integrators
can be described using a firing rate equation (Dayan and Abbott,
2001; Goldman et al., 2009), biased Bayesian inference can
therefore be expressed by Equation (5) (Figure 4B).

τneuron
dr
dt
= −r+ Input = −r+ α r+ β rlikelihood (t) (5)

where τneuron is the intrinsic decay time constant of neurons,
r represents the firing rate of the neurons that encode
prior/posterior distribution, and Input is input to the neurons
that encode prior/posterior distribution (α r+ β rlikelihood (t)), α

is strength of recurrent connection, β is strength of feedforward
connection and rlikelihood is the firing rate of the neuronal
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FIGURE 3 | (A) Log-probability coding. The task sequence used by Yang and Shadlen (2007) (top). After four shapes were presented sequentially around the central
fixation point, the monkey made a saccade to either the red or green choice target. One of the choice targets was in the response field of the recorded neuron. The
shapes were selected randomly in each trial from a set of 10 shapes, which are associated with different weights (log likelihood ratio, log LR), for preferred target
location (inset). The reward was determined probabilistically by summing the log LR associated with the four shapes. Firing rate is linearly correlated with the
summed log LR (bottom). (B) Gain modulation by attention. Sequence of the delayed match-to-sample task used by McAdams and Maunsell (1999) (top). While the
monkey was gazing at the fixation point and holding a lever, a Gabor stimulus was presented in the receptive field of a recorded neuron (dashed oval) with a colored
Gaussian stimulus outside the receptive field during the sampling period. Whereas the monkey was required to pay attention to the orientation of the Gabor pattern
in the attended mode, it was required to pay attention to the color of the Gaussian one in the unattended mode. After the delay period with no stimulus except for
the fixation point, a Gabor and a Gaussian appeared again and the monkey had to report whether the test stimulus at the attended location matched the sample
stimulus during the test period by releasing (match case), or maintaining, hold of the lever. Tuning curves of one V4 neuron for the attended mode (solid symbols) and
the unattended mode (open symbols). The response amplitude significantly increased in the attended mode relative to the unattended mode without significant
changes in the width or base line activity.

population that encodes the likelihood (with external input to be
integrated).

In the neural integrator model, the strength of recurrent input
required for neurons to independently maintain their firing rates
is α (Goldman et al., 2009). When a neuron maintains its firing
rate in the absence of external input, the neural integrator is
called balanced (α = 1), because the firing rate changes due to
recurrent input and intrinsic decay are regarded as balanced.
If the firing rate decreases due to weak recurrent input, it
does not perfectly compensate for the intrinsic decay of the
firing rate, and therefore, the neural integrator is called leaky
(α < 1), and in this case, encoded distribution decays over
time (forgetting). If the firing rate increases due to recurrent
input and overcompensates for the intrinsic decay of the firing

rate, the neural integrator is called unstable (α > 1). In this
case, encoded distribution is sharpened over time (what we call
stereotyping).

Linking Biased Bayesian Inference to the
Two-Alternative Forced Choice (2AFC)
2AFC decision-making has been well-studied (Stone,
1960; Ratcliff, 1978; Busemeyer and Townsend, 1993;
Gold and Shadlen, 2001; Roe et al., 2001; Shadlen and
Newsome, 2001; Usher and McClelland, 2001, 2004;
Wang, 2002; Mazurek et al., 2003; Bogacz et al., 2006;
Wong and Wang, 2006; Kiani et al., 2008; Tsetsos
et al., 2012), because this is one of the simplest cases of
decision-making.
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FIGURE 4 | Neural implementation of biased Bayesian inference (A) Feed-forward implementation. The first layer consists of two neural populations encoding prior
and likelihood, and the second layer consists of neural populations encoding posterior distribution. rprior , rlikelihood , and rposterior indicate the firing rates of the
corresponding populations. Standard Bayesian inference is achieved by summing firing rates of corresponding neurons between the neuronal population encoding
prior and that encoding likelihood at the next layer of the neuronal population encoding the posterior distribution

(
rposterior = rprior + rlikelihood

)
in case that the firing

rates are proportional to log probabilities (Ma et al., 2006; Yang and Shadlen, 2007). The biased Bayesian inference can be achieved just by changing the gain (α, β)

of the inputs for the next (posterior) layer
(
rposterior = α rprior + β rlikelihood

)
. (B) Recurrent implementation. The first layer consists of neural population encoding

likelihood, and the second layer consists of neural population encoding of prior/posterior distributions. rlikelihood and r indicate the firing rates of the corresponding
populations. Input to the second layer that encodes prior/posterior distribution is α r + β rlikelihood (t). α is strength of recurrent connection, β is the strength of
feed-forward connection.

The accumulator models of 2AFC such as the Drift-diffusion
model (DDM) (Ratcliff, 1978), decision field theory (DFT)
(Busemeyer and Townsend, 1993; Roe et al., 2001), and the leaky
competing accumulator model (LCA) (Usher and McClelland,
2001, 2004), typically make three assumptions:

(i) Evidence favoring each alternative is integrated over time in
a single trial;

(ii) The process is subject to random fluctuations; and,
(iii) A decision is made when sufficient evidence has

accumulated favoring one alternative over another
(Bogacz et al., 2006).

These models are drawn from neuronal data particularly in
monkey lateral intraparietal cortex (LIP) (Kiani et al., 2008;
Brunton et al., 2013).

DDM uses an optimal integrator, and this model can be
seen as the continuum limit of the Sequential Probability
Ratio test (SPRT) – the optimal sequential hypothesis-testing
method (Neyman and Pearson, 1933; Wald and Wolfowitz,
1948; Wald, 1973; Bogacz et al., 2006; Kira et al., 2015).
Because the instantaneous drift is considered the likelihood, the
instantaneous drift of DDM can be considered as a form of
Bayesian inference (Bogacz et al., 2006; Bitzer et al., 2014) by
taking the starting point of accumulation as the initial prior.

In contrast to DDM, DFT, and LCA assume leaky neural
integrators instead of the optimal integrator, thereby explaining
many behavioral biases such as the primacy/recency effect
and three preference reversal effects (compromise effect,
attractiveness effect, and similarity effect) (Busemeyer and
Townsend, 1993; Roe et al., 2001; Usher and McClelland, 2001,
2004; Bogacz et al., 2006) in two- or multi-alternative forced
choice tasks. However, the normative Bayesian perspective has
never been applied to DFT or LCA. A simplified form of the DFT
or LCA, the Ornstein–Uhlenbeck process (Bogacz et al., 2006),

is consistent with the recurrent network model (Figure 4B),
whose inputs to the second layer have Gaussian noise. Thus, DFT
and LCA can be considered forms of biased Bayesian inference
(Figure 5). Here, we would like to emphasize that biased Bayesian
inference is a key tool in combining the descriptive richness of
models of 2AFC and the normative Bayesian perspective which
are implemented in PPC (Beck et al., 2012) (Supplementary
Material).

In addition to Bayesian inference, an intrinsic gain/loss
function should also be considered in the selection of “an action
in the environment” (Ernst and Bulthoff, 2004). When different
reward values are contingent on corresponding action selections,
the reward function Rwd (x) dependent on an executed action
x must also be considered (Matsumoto et al., 2003, 2006;
Matsumoto and Tanaka, 2004). The Rwd (x) can be encoded
by population firing rates rreward, as posterior probability P (x)
denoted here as rprior/posterior . Since the expected value of
reward EV (x) is calculated by multiplying the probability of
obtaining the reward with the reward value on the basis
of action x, the combination between the Bayesian inference
and intrinsic gain/loss function may be obtained by simple
multiplication of Rwd (x) and P (x). In other words, EV (x)
can be denoted as rprior/posterior + rreward, where, (log EV (x) =
log P (x)+ log Rwd (x)), (in considering that the firing rates
are proportional to log probabilities). Actually, recent studies
have shown that the difference in reward between directions
changes the starting point of integration, which corresponds
to the prior knowledge, irrespective of mean drift rate in
the diffusion model on the basis of fronto-parietal activity
(Rorie et al., 2010; Summerfield and Koechlin, 2010; Mulder
et al., 2012). Thus, Bayesian inference and the calculation of
the expected value of reward can be achieved by the same
mechanism if one takes the reward value as a prior (Friston et al.,
2013).

Frontiers in Neuroscience | www.frontiersin.org 7 October 2018 | Volume 12 | Article 734

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00734 October 12, 2018 Time: 13:5 # 8

Matsumori et al. Biased Bayesian Inference

0

Choose H1

Choose H2

×αΔt

×βΔt

tn-1      tn

St

FIGURE 5 | Biased Bayesian inference in diffusion model of 2AFC. An example of the decision process used to choose between two hypotheses (H1,H2) on the
basis of the diffusion model is illustrated on the left. The vertical axis is the log posterior probability ratio of hypotheses (log P(H1 |Data )

P(H2 |Data ) ) and the horizontal axis is time.

The diffusion starts from St = log EV(H1)
EV(H2) = log P(H1)·Rwd1

P(H2)·Rwd2
and develops until it reaches either top or bottom threshold (orange line) for decision. (The diffusion

obviously starts from 0 when P (H1) · Rwd1 = P (H2) · Rwd2). The part in the green circle is magnified to show detail (right). The log posterior probability ratio at tn−1

(dashed cyan arrow) becomes log prior probability ratio at tn (solid blue arrow) with the bias α1t, where 1t = tn − tn−1. In this case, the solid blue arrow is shorter
than the dashed cyan arrow, indicating that α < 1 (forgetting). This can be implemented by a leaky integrator (Figure 4B) [Usher and McClelland, 2001]. At tn, the
original log likelihood ratio (dashed pink arrow) inputs as the biased (×β1t ) log likelihood ratio (solid red arrow), and the log posterior probability ratio is made by
adding the biased log likelihood ratio to the log prior probability ratio. In this case, the solid red arrow is longer than the dashed pink arrow, indicating β > 1 (flexibility).

Importantly, the mean drift rate in value integration is also
modulated by spatial visual attention (Krajbich et al., 2010). This
finding suggests that the level of exponential bias for Rwd (x)
changes depending on attention, which could be shifted more by
the higher value of reward associated with the target processed in
the fronto-striatal network (Schultz, 2006; Hikosaka, 2007).

Empirically Testable Predictions in 2AFC
Tasks
There is some concern that Bayesian approaches in psychology
and neuroscience are often “just-so stories” because it can often
provide many degrees of freedom for explanations and they are
not falsifiable (Bowers and Davis, 2012). In the comment paper
for Bowers and Davis (2012) and Griffiths et al. (2012) wrote:
“In evaluating claims about falsifiability, it is useful to distinguish
between a model and a theoretical framework. A model is
proposed to account for a specific phenomenon and makes
specific assumptions in order to do so. A theoretical framework
provides a general perspective and a set of tools for making
models. [...] Models are falsifiable, but frameworks are typically
not” (Griffiths et al., 2012).

Here, we provide some falsifiable predictions about the
behavioral and neural models of biased Bayesian inference for
2AFC tasks, which is a typical model on the basis of our biased
Bayesian inference, the theoretical framework in the present
paper.

As for the biased Bayesian inference behavioral models for
2AFC task, it would be easily falsified merely if the decision
processes were not based on the prior, likelihood, and gain/loss
function, because our model for 2AFC assumes the subjects’
decision processes are based on them as typical Bayesian
inference model is. “Bayesian transfer” is a useful experimental
procedure to determine whether a decision process is based
on the prior, likelihood, and gain/loss function (Maloney and
Mamassian, 2009). In this procedure, subjects are overtrained for

two decision tasks which contain different priors, likelihoods, and
gain/loss functions (Task 1, Task 2) until subjects’ performances
come close to maximizing expected gain in both tasks. Then, it
is tested whether the subjects can transfer the knowledge about
priors, likelihoods, and gain/loss functions acquired in Task 1
and Task 2 into a new task (transfer task). For example, the
transfer task contains the same likelihood and gain/loss function
as those in Task 1 and the same prior as that in Task 2. The
subjects are familiar with the prior, likelihood, and gain/loss
function in the resulting transfer task, but the combination of
prior, likelihood, and gain function is novel. One can state that
subjects’ decision processes are based on the prior, likelihood,
and gain/loss function when the subjects’ performances in the
transfer task immediately close to ideal without further practice
or learning (Maloney and Mamassian, 2009). Actually, Bayesian
transfer should be efficiently applied to 2AFC tasks, because the
prior and gain/loss function can be easily changed by instruction
and the likelihood functions is easily switched with another in the
tasks.

Even if the biased Bayesian inference behavioral models
for 2AFC passed the Bayesian transfer test, the models would
be further falsified if they were non-biased. This falsification
check is important because it has been considered that the
information accumulation for the perceptual decision-making
is nearly Bayes-optimal rather than biased or leaky/unstable,
at least in short time integration (Gold and Shadlen, 2007;
Brunton et al., 2013). In order to check whether the integration is
leaky/unstable (α 6= 1) by behavioral data with the assumption of
constant α and β, one can use psychophysical reverse correlation
(Ahumada, 1996; Neri et al., 1999; Okazawa et al., 2018).
Psychophysical reverse correlation is a technique that estimates
how sensory information is weighted to guide decisions by
quantifying the spatiotemporal stimulus fluctuations that precede
each choice (Okazawa et al., 2018). If sensory weights are constant
throughout the integration process, the integration can be seen as
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perfect integration. Otherwise, one can state that the integration
is leaky/unstable.

As for the biased Bayesian inference neural models, we
proposed it on the basis of the empirical findings that LIP
neurons encode the accumulated information (prior/posterior
distribution) and middle temporal cortex (MT) neurons encode
instant sensory information (likelihood function) (Mazurek et al.,
2003; Gold and Shadlen, 2007). Therefore, the biased Bayesian
inference neural models would be falsified, simply if firing
rates of LIP neurons were explained by perfect integration
(α = 1) because it would just deny our assumption of biased,
leaky/unstable integration (α 6= 1).

The other bias for likelihood (β) can also be considered.
One may be interested in the biases originated from inference
process itself (βconnection), which is different from the biases
originated from representation of probability distributions (βrate)
(Supplementary Material). One can state that the origin of bias
is inference process itself (βconnection 6= 1) if the choice behaviors
change associated with the corresponding changes in firing rates
of LIP neurons without changes in firing rate of MT neurons.
Actually, such a situation can be available in switching between
two tasks, one to discriminate motion direction and the other to
discriminate stereoscopic depth in the same moving random dot
stereogram stimuli (Sasaki and Uka, 2009; Kumano et al., 2016).
Therefore, by using such a context-dependent task switching, the
biased Bayesian inference neural models whose biases originated
from inference process itself would be falsified, if firing rates of
LIP and MT neurons were rather consistent to the neural models
with the biases originated from representation of probability
distributions.

COGNITIVE CONTROL AS GAIN
MODULATION AND BIASED BAYESIAN
INFERENCE

We have already seen that the biased Bayesian inference can be
explained by gain modulation in neuronal populations. Here, we
explain how the bias levels may be regulated by cognitive control.

Cognitive control is thought to occur in two steps: first,
the anterior cingulate cortex (ACC) monitors cognitive control
demands on the basis of uncertainty in response to outcomes and
sends signals to the prefrontal cortex (PFC), and then, the PFC
recruits this cognitive control by sending top–down signals to
various cortical areas (Botvinick et al., 2001, 2004; Matsumoto,
2004; Shenhav et al., 2013).

Application to Stroop task
The Stroop task is a well-known task that has been used to
examine the neural mechanisms of cognitive control. This task
consists of word reading and color naming. In the word reading
task, the subject is asked to report the written color name
of a color, printed in the same color (congruent); or another
(incongruent) (wherein, “green” is the answer for GREEN printed
in red). Since human subjects in modern countries are trained
more to read words as opposed to reporting colors, relatively
low cognitive control is recruited in this task. In the color

naming task, a subject is asked to name the ink color of
a word denoting the same color (congruent) or a different
color (incongruent) (e.g., “red” being the correct answer for the
word “GREEN” printed in red), and relatively high cognitive
control must be recruited to overcome the cognitive interference.
Particularly, the reaction times are longer and the error rates
are higher in the incongruent condition than in the congruent
one – what is now known as the “Stroop effect” (Stroop,
1935).

Botvinick and colleagues proposed a neural network model
of cognitive control focusing on the conflict monitoring
function of the ACC (Figure 6; Botvinick et al., 2001, 2004;
Shenhav et al., 2013). Here, we show that this model can be
considered a neural model of a Bayesian network with biases
(Rao, 2005). When the stimulus is presented, word-and color-
encoding neurons in the perception layer are activated. We
conjecture that these neurons encode log-likelihoods of word and
color.

The succeeding response layer receives input from the
perception layer. We conjecture that the neurons in the response
layer encode prior/posterior distributions for responses such as
“green,” “red” and so on; (here, a flat prior being assumed).
According to Botvinick’s model, because we are more adept
at reading words rather than naming colors due to the more
prevalent experience of enforcement on reading, the connection
between the word-encoding neurons and the response layer is
stronger than that between the color-encoding neurons and the
response layer.

An incongruent stimulus, however (e.g., “GREEN” printed in
red), activates not only the neurons encoding “green” but also the
neurons encoding “red” in the response layer. And, accordingly,
the responses of the two types of neurons should be closer to
each other than the responses to the congruent stimulus, i.e.,
“GREEN” printed in green. The comparable firing rates of the
neurons encoding different responses come into conflict, thus
activating the ACC. The ACC is then believed to send a cognitive
control signal to PFC. In turn, the PFC regulates the gains of word
and color encoding neurons through a top–down signal, which
amounts to regulation of bias levels (βword, βcolor) in our biased
Bayesian inference (Figure 6). The top–down signal augments
the gains of neurons encoding task-relevant information (i.e.,
word-encoding neurons in the word reading task, and color-
encoding neurons in the color naming task), and then the
firing rates of the two types of neurons in response layers for
“green” and “red” become differentiated in accordance with task
requirements. The result being, that the appropriate response is
achieved.

Application to Working Memory
Cognitive control works in a variety of situations requiring
flexible behaviors that use goal-directed, top–down selection
of relevant information, as in, “maintain it tentatively despite
irrelevant distractors, and utilize it to solve a problem” (a process
akin to working memory) (Baddeley, 1986).

Now, we consider working memory within the framework of
biased Bayesian inference. Top–down attentional regulation of
working memory can be regarded as being governed by neural
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FIGURE 6 | Biased Bayesian inference and cognitive control. The network model of cognitive control for the Stroop task (Botvinick et al., 2001) is shown. This model
can be considered a network model of biased Bayesian inference. The bar graphs indicate the mean firing rates of the neural populations, and their outputs to the
target populations is indicated by the connecting arrows’ thickness which is consistent with the firing rates. Before cognitive control, when the stimulus [“GREEN” in
red ink color ((incongruent) in this example)] is presented, word-encoding neurons and color-encoding ones in the perception layer are activated
(r (RED) < r (GREEN), r (red ink) > r (green ink); r (•) being the mean firing rate of the population). We assume that these neurons encode the log-likelihoods of the
word and color of the presented stimulus. The perception layer sends output to the response layer. The incongruent stimulus, “GREEN” printed in red, activates not
only the neurons encoding “green” but also the neurons encoding “red” in the response layer. Then, the firing rates of the two types of neurons should be close to
each other r ("red") = r ("green"); the horizontal dashed line indicates the original level of the firing rates]. (If the congruent stimulus, “GREEN” printed in green, for
example, were presented, the firing rates of the two types of neurons should be distinctively different from each other.) We assume the neurons in the response layer
encode the prior/posterior distribution of the responses. The comparable firing rates of the neurons encoding different responses are considered a conflict, which
thus activates the ACC. The ACC then sends the cognitive control demand signal to the PFC (yellow square). In turn, the PFC regulates the gains of word- and
color-encoding neurons by sending a top–down signal (cyan input), which corresponds to regulation of bias levels (βword, βcolor) in our biased Bayesian inference.
The top–down signal augments the gains of neurons encoding task-relevant information (color encoding neurons in this example), and then the firing rates of the two
types of neurons in the response layer (“green,” “red”) begin to differ in accordance with the task requirements. Thus, the appropriate response is achieved.

integrators whose gains are considered the biases in a biased
Bayesian inference.

Working memory is actively maintained longer than several
seconds even across distracting stimuli (Miller et al., 1996;
Miyake and Shah, 1999). Persistent activity based on top–down
attention might be sustained by a reciprocal positive feedback
loop within a population of neurons in certain cortical regions
including the PFC (Curtis and D’Esposito, 2003; Curtis and Lee,
2010).

The attentional top–down signals from the PFC improve
working memory (Desimone and Duncan, 1995; Miller and
Cohen, 2001; Noudoost et al., 2010; Gazzaley and Nobre, 2012),
suggesting that the top–down signals work to change the gain
of neural connections implemented in working memory circuits.
Here, the attentional top–down signals should contribute to
adaptive modulation of either α or β (Norman and Shallice, 1986;
Desimone and Duncan, 1995; McAdams and Maunsell, 1999;
Botvinick et al., 2001; Miller and Cohen, 2001; Egner and Hirsch,
2005; Maunsell and Treue, 2006; Reynolds and Heeger, 2009;

Cole et al., 2013, 2014), as the gain of the neural connections
corresponds to α in the biased Bayesian inference. Therefore, this
can be regarded as a change in the balance of neural integrators
(i.e., α = 1 corresponds to the balanced integrator, α < 1 to the
leaky integrator, and α > 1, to the unstable integrator; Roe et al.,
2001; Gazzaley and Nobre, 2012).

Application to Top–Down Attention
Top–down attention amplifies the tuning curves of activity in
sensory cortical regions (McAdams and Maunsell, 1999; Treue
and Trujillo, 1999; Maunsell and Treue, 2006; Figure 3B). This
is because the tuning curve amplification itself can be considered
a form of noise reduction (Dayan and Zemel, 1999), and the effect
of the bias (β) on the target of attention should be based on the
top–down attentional signal that reduces the noise of the target.

Tuning curves are not completely flattened even for task-
irrelevant features such as distractors. For example, it is well
known that subjects’ behaviors are affected by distractors in a
variety of tasks that require top–down attention (Stroop, 1935;

Frontiers in Neuroscience | www.frontiersin.org 10 October 2018 | Volume 12 | Article 734

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00734 October 12, 2018 Time: 13:5 # 11

Matsumori et al. Biased Bayesian Inference

Eriksen and Eriksen, 1974). This cannot be explained by standard,
non-biased Bayesian inference assuming binary βs for task-
relevant and task-irrelevant features, but by biased Bayesian
inference that can take arbitrary values as for the βs. This can be
considered a Bayesian version of the biased competition model
(Desimone and Duncan, 1995; Desimone, 1998).

Here, we do not make strong assumptions of normality for
represented probability distributions as Friston et al. (2006) and
Friston (2009), and Friston (2010) did in their considerations of
gain modulation in the context of predictive coding based on a
free energy principle. Our approach sacrifices the mathematical
tractability of theirs, and instead makes the models applicable
to recently developed decision-making and cognitive control
theories by allowing the representation of arbitrary probability
distributions.

One important issue is how to determine the bias levels as
suggested by Shenhav et al. (2013). Also, we would like to note
to readers that some studies have treated the prior as attention
(Angela and Dayan, 2004; Chikkerur et al., 2010). However, these
issues are beyond the scope of this paper.

POSSIBLE RELATIONSHIP AMONG
NEUROMODULATORS/
NEUROTRANSMITTERS, GAIN
MODULATION, AND PSYCHIATRY

Detailed mechanisms of gain modulation and application to
psychiatry are also important (Supplementary Material) (Friston
et al., 2006; Friston, 2009; Friston, 2010; Mante et al., 2013; Miller
and Buschman, 2013), since psychiatric diseases could be caused
by changes in connectivity between the PFC and other regions
which lead to defects in cognitive control (Cole et al., 2014;
Stephan et al., 2015).

Potent candidates that modulate gain for
cognitive or top–down attention control are classical
neuromodulators/neurotransmitters such as norepinephrine,
acetylcholine, glutamate, λ-aminobutyric acid (Friston et al.,
2006; Friston, 2009; Friston, 2010).

Norepinephrine
Norepinephrine (NE)-containing cells in the locus coeruleus
(LC) receive ongoing task utility values [as evaluated by ACC
and orbitofrontal cortex (OFC)], release NE at cortical areas
involved in stimulus judgment and behavioral decision making
to modulate the gain of current task-relevant information
specifically (exploitation) or possible alternatives (exploration)
(Servan-Schreiber et al., 1990; Aston-Jones and Cohen, 2005; Yu
and Dayan, 2005). This gain modulation corresponds to bias
levels (α and β) in the biased Bayesian inference, where the
sharper distribution is led by higher levels of NE (Figure 7).

Attention deficit/hyperactivity disorder (ADHD) patients
show NE dysfunction. They not only show erratic trial-to-trial
exploratory behavior but also high trial-to-trial variability in their
reaction times in 2AFC tasks with probabilistic reinforcement
(Frank et al., 2007; Hauser et al., 2016). Consistent with
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FIGURE 7 | Hypothetical effect of neuromodulators/neurotransmitters.
(A) General scheme of neural implementation of biased Bayesian inference
with a neuromodulators/neurotransmitter. The first layer consists of neural
population encoding likelihood, and the second layer consists of neural
population encoding prior/posterior distribution. α+ λ1 is the strength of the
recurrent connection, andβ+ λ2 is strength of the feedforward connection. λ1

and λ2 are the effects of neuromodulators/neurotransmitters on recurrent and
feedforward connections, respectively. (B) Hypothetical effect of
neuromodulators/neurotransmitters on bias plane.
Neuromodulators/neurotransmitters may change the bias levels in the
inference from (α, β) to (α+ λ1, β+ λ2) where λ1, λ2 ≥ 0 (0◦ ≤ θ ≤ 90◦) for
norepinephrine, and λ1 ≤ 0, λ2 ≥ 0 (90◦ ≤ θ ≤ 180◦) for acetylcholine.
Excitatory/Inhibitory (E/I) balance of neurotransmitters, glutamate and GABA,
might also be regarded as variations in the bias levels in inference. Whereas
λ1, λ2 ≥ 0 (0◦ ≤ θ ≤ 90◦) when E is greater than I, and
λ1, λ2 ≤ 0 (180◦ ≤ θ ≤ 270◦) when I is greater than E.

these behavioral findings, a computational simulation suggests
that appropriate NE release leads to sharper motor cortical
representations and sharper distribution of reaction times (Frank
et al., 2007).

Acetylcholine
Acetylcholine (ACh) release from basal forebrain cells modulates
the gain of processing in cortical circuits involved in memory in
two ways (Hasselmo and McGaughy, 2004; Hasselmo, 2006). ACh
enhances the cortical responses to afferents inputting new inputs
for encoding on one hand, but suppresses the cortical responses
to recurrent feedback for memory maintenance on the other
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hand. Thus, whereas high ACh levels enhance new encoding, low
ACh levels enhance maintenance and following consolidation. Yu
and Dayan (2005) proposed a consistent model suggesting that
ACh levels are high when a presented stimulus does not indicate
an appropriate response with certainty, (here, called the expected
uncertainty), while other inputs may still be informative. This
gain modulation corresponds to a function with an ML-like-
robust axis (β− α) in the biased Bayesian inference (Figure 7):
where high and low ACh levels correspond to ML-like and robust
inferences, respectively (but see Hasselmo, 2006; Hasselmo and
Sarter, 2011).

Patients with Alzheimer’s disease (associated with ACh
hypofunction), show working memory impairment (Baddeley
et al., 1991). This may be caused by robust inference on the basis
of a least input (reduced β), and/or unstable neural integrator
(enlarged α).

Excitatory/Inhibitory (E/I) Balance
Glutamate (Glu) and gamma-aminobutyric acid (GABA),
respectively, act as important excitatory and inhibitory
neurotransmitters in the brain (Kandel et al., 2000). The
ratio of these two neurotransmitters (i.e., “E/I balance” in a
functional unit of neural circuitry), should determine the gain
of intrinsic activity in the circuit. This gain corresponds to α

in the biased Bayesian inference. The functional unit of neural
circuitry receives plenty of glutamatergic and GABAergic inputs
externally. Thus, the E/I balance of these external inputs should
determine the gain of the activity which they evoke in the circuit.
This gain corresponds to α and β in the biased Bayesian inference
(Figure 7).

The E/I balance in cerebral cortex is altered in schizophrenic
patients (Wang, 2001; Kehrer et al., 2008; Murray et al., 2014).
There are two major positive symptoms of schizophrenia:
hallucinations (i.e., perceiving something that is not actually
there), and delusions (erroneous beliefs that usually involve a
misinterpretation of perceptions or experiences). It has been
suggested that neither hallucinations nor delusions occur when
gain levels based on both prior knowledge and external input
from the environment are correct. On the basis of the predictive
coding hypothesis, Corlett et al. (2009) have suggested that
hallucinations occur when the gain level of prior knowledge
exceeds that of external input and delusions occur when the gain
level of external input exceeds that of prior knowledge (Corlett
et al., 2009; Fletcher and Frith, 2009; Teufel et al., 2015; Powers
et al., 2017). Because the gain levels of prior knowledge and
external input are expected to depend on the E/I balance of their
corresponding connections, hallucinations and delusions can be
explained by an abnormal E/I balance.

Autism is a heritable, lifelong neurodevelopmental condition
characterized by difficulties in social communication and
social interaction (called social symptoms), and a range of
restricted activities and sensory abnormalities (called non-social
symptoms) (Pellicano and Burr, 2012b). Some forms of autism
are also thought to be caused by an altered E/I balance in
sensory, mnemonic, social and emotional systems (Rubenstein
and Merzenich, 2003; Nelson and Valakh, 2015). Since E/I
balance determines bias levels in the biased Bayesian inference,

the altered E/I balance in autism implies inappropriately-biased
neural processing (Figure 4). Here, we focus on the process
causing a sensory abnormality in autism, since the construction
of a Bayesian model for social communication and social
interaction has not yet reached consensus.

As we normally experience strong visual illusions such as in
the Kanizsa triangle (Kanizsa, 1955) and Shepard’s table (Shepard,
1990), the brain postulates the most likely interpretation for the
noisy, ambiguous sensory signals corresponding to strong priors
(Pellicano and Burr, 2012b). By contrast, individuals with autism
are less susceptible to such illusions and show more accurate
or overly realistic perceptions, suggesting that their priors are
flattened (Pellicano and Burr, 2012b) (i.e.,α < 1, or forgetting in
the bias plane). However, as Brock (2012) has noted, the same
results can be obtained with a sharpened likelihood, when β > 1
(with flexibility in the bias plane) as well, because these two biases
make similar posterior distributions (ML-like inferences), as we
have explained in Figure 2.

LIMITATIONS

The biased Bayesian models especially in the context of 2AFC
tasks would be empirically identifiable to some extent as
described in section Empirically Testable Predictions in 2AFC
Tasks. However, details of neural implementation of biased
Bayesian inference such as discrimination between the biases
originated from inference process and those originated from
representation of probability distributions and importance of
gain/loss function in the model identifiability issue are not
fully addressed. Also, the proposed models for cognitive control
and those based on assumed neuromodulators/neurotransmitters
functions for understanding mental disorders are insufficient to
test their identifiability. Because the identifiability issue should
be severer due to more parameters than that for usual Bayesian
models, rigorous model comparisons must be done in future
studies that apply the biased Bayesian models.

CONCLUSION

In the present paper, we have discussed the importance of
introducing exponentially-biased Bayesian inference into a
cognitive framework with testable neural correlates. The bias
plane for the biased Bayesian inference is useful in providing
a view-integrating ML estimation, Bayesian estimation, and
MAP estimation, thus enabling us to make intermediate
parameter estimations between ML estimation and Bayesian
(or MAP) estimation. It also explains many psychological
decision biases, such as base-rate fallacy, representativeness,
conservation, anchoring-and-adjusting, primacy/recency
effect, three-preference reversal effects (compromise effect,
attractiveness effect, and similarity effect), as well as cognitive
control. Furthermore, it may provide further insight into the
mechanisms of ADHD, Alzheimer’s disease, and schizophrenia
(including hallucinations and delusions), and, potentially, autism
as well.
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