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Abdominal obesity is important for understanding obesity, which is a worldwide
medical problem. We explored structural and functional brain differences in people with
abdominal and non-abdominal obesity by using multimodal neuroimaging and up-to-
date analysis methods. A total of 274 overweight people, whose body mass index
exceeded 25, were enrolled in this study. Participants were divided into abdominal and
non-abdominal obesity groups using a waist–hip ratio threshold of 0.9 for males and
0.85 for females. Structural and functional brain differences were assessed with diffusion
tensor imaging and resting-state functional magnetic resonance imaging. Centrality
measures were computed from structural fiber tractography, and static and dynamic
functional connectivity matrices. Significant inter-group differences in structural and
functional connectivity were found using degree centrality (DC) values. The associations
between the DC values of the identified regions/networks and behaviors of eating
disorder scores were explored. The highest association was achieved by combining DC
values of the cerebral peduncle, anterior corona radiata, posterior corona radiata (from
structural connectivity), frontoparietal network (from static connectivity), and executive
control network (from dynamic connectivity) compared to the use of structural or
functional connectivity only. Our results demonstrated the effectiveness of multimodal
imaging data and found brain regions or networks that may be responsible for behaviors
of eating disorders in people with abdominal obesity.

Keywords: abdominal obesity, multimodal imaging analysis, probabilistic fiber tractography, static and dynamic
connectivity analysis, eating disorder behaviors

INTRODUCTION

Obesity is a worldwide medical problem that is responsible for inducing insulin resistance, type
2 diabetes, cardiovascular diseases, and some cancers (Raji et al., 2010; Malik et al., 2013; Val-
Laillet et al., 2015). However, medical complications are not always manifested in people with
obesity. A recent study showed that abdominal obesity was associated with increased risk for
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cardiovascular disease and mortality, while non-abdominal
obesity had fewer adverse effects overall, and in some instances
it even elicited protective effects (Zhang et al., 2008). In this
context, the concept of metabolically healthy obesity has been
extensively accepted (Stefan et al., 2013). In addition, previous
studies suggested that abdominal obesity differs from non-
abdominal obesity (Folsom et al., 1993, 2000; Bujalska et al.,
1997; Després and Lemieux, 2006; Després et al., 2008). People
with abdominal obesity have been shown to be at a higher risk
for the metabolic syndrome, which is linked to diabetes and
cardiovascular disease (Folsom et al., 2000; Després and Lemieux,
2006; Després et al., 2008). Folsom et al. (1993, 2000) found
that abdominal obesity was a better biomarker for predicting
mortality than non-abdominal obesity, and Bujalska et al. (1997)
demonstrated that the risk of diabetes was better quantified
with the waist–hip ratio (WHR), a measure of abdominal
obesity, than with the body mass index (BMI), a measure of
general obesity. These studies collectively provided a rationale for
distinguishing abdominal obesity from non-abdominal obesity.
Thus, identifying differences between abdominal and non-
abdominal obesity may provide additional information for the
better understanding of the diverse characteristics of obesity.

Obesity is a heterogeneous disease with a multifactorial
etiology, including the eating behavior, and genetic and
other environmental factors (Brownell and Wadden, 1991;
McLaughlin, 2012). Binge eating behavior is believed to be
genetically determined and is an important factor in obesity
(Bulik et al., 2003; Carnell et al., 2011). However, only few prior
studies have reported an association between dietary patterns and
abdominal obesity (Azadbakht and Esmaillzadeh, 2011; Zhang
et al., 2015). Correspondingly, the elucidation of the mechanisms
based on which adverse eating behaviors may differentially affect
the brain of the people with abdominal and non-abdominal
obesity is largely unknown, and thus constitutes one of the aims
of this study.

Recent studies reported that abdominal obesity is linked to
altered reward and cognitive systems (Hollmann et al., 2012;
Yates et al., 2012; Yau et al., 2012; Val-Laillet et al., 2015; Gaudio
et al., 2017; Olivo et al., 2017), which regulate the appetite
response (Hollmann et al., 2012; Val-Laillet et al., 2015). It has
been shown that the altered reward and cognitive processes are
highly associated with errant eating behaviors (Hollmann et al.,
2012; Yates et al., 2012; Yau et al., 2012; Val-Laillet et al., 2015).
In addition to brain function alterations, structural abnormalities
were identified in people with abdominal obesity, such as altered
fractional anisotropy and volume changes in white matter (Jagust
et al., 2005; Gaudio et al., 2017; Olivo et al., 2017). These studies
collectively suggest that abdominal obesity is possibly related to
both brain structure and function. They also motivated us to
consider multimodal neuroimaging to explore the differences
between people with abdominal and non-abdominal obesity.

Many neuroimaging studies have used connectivity analysis
to quantify brain structure and function (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). Connectivity analysis measures
the connectedness among brain regions or networks. In this
study, we performed connectivity analysis based on graph theory
that requires graph nodes (i.e., brain regions or networks)

and edges (i.e., neuronal fibers or correlation of time series
data between nodes) based on many approaches (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). Connectivity analysis
assesses the entire brain as a complex interconnected network,
and many studies have successfully used connectivity analysis
to explore Alzheimer’s disease, attention deficit/hyperactivity
disorders, and schizophrenia (Seo et al., 2013; Damaraju et al.,
2014; Park et al., 2016a).

Recently, neuroimaging methods, including magnetic
resonance imaging (MRI) and positron emission tomography,
have been used to non-invasively link obesity with brain
structure and function (Tataranni et al., 1999; Jagust et al., 2005;
Hollmann et al., 2012; Lips et al., 2014; Val-Laillet et al., 2015).
However, almost all of the neuroimaging studies compared
people with obesity to those with healthy weights (Jagust
et al., 2005; Hollmann et al., 2012; Val-Laillet et al., 2015).
Studies exploring the brain structure and function of people
with abdominal and non-abdominal obesity are lacking, even
though the two groups may have distinct brain structures and
functions. To fill this gap, we aimed to compare structural
and functional brain connectivity between abdominal and
non-abdominal obesity groups by applying network analysis
using diffusion tensor imaging (DTI) and resting-state functional
MRI (rs-fMRI). Motivated by the recent findings of functional
network changes and their associations with eating behaviors in
people with obesity (Park et al., 2016b), we aimed to associate
identified neuroimaging findings of abdominal obesity with
eating behaviors.

MATERIALS AND METHODS

Imaging Data and Participants
T1-weighted structural data, DTI, and rs-fMRI data were
obtained from the openly accessible Nathan Kline Institute-
Rockland Sample (NKI-RS) database (Nooner et al., 2012).
All imaging data were scanned with a 3T Siemens Magnetom
Trio Tim scanner. The scanning parameters for the T1-
weighted structural data acquisitions were as follows: repetition
time (TR) = 1,900 ms, echo time (TE) = 2.52 ms, flip
angle = 9◦, field-of-view (FOV) = 250 mm × 250 mm, 1 mm3

voxel resolution, and 176 slices. The DTI parameters were
as follows: TR = 2,400 ms, TE = 85 ms, flip angle = 90◦,
FOV = 212 mm × 180 mm, 2 mm3 voxel resolution, 64 slices,
b-value = 1,500 s/mm2, and gradient = 137. The rs-fMRI
parameters were as follows: TR = 645 ms, TE = 30 ms, flip
angle= 60◦, FOV= 222 mm× 222 mm, 3 mm3 voxel resolution,
40 slices, and 900 volumes. Of the 650 total participants,
participants with a BMI of 25 or greater and those with
full demographic information and eating disorder examination
questionnaire (EDE-Q) scores were considered in this study.
Participants with severe head motion were excluded (see the
Section “Preprocessing of Rs-fMRI Data”). The selected 274
participants were divided into abdominal and non-abdominal
obesity groups based on WHR. Participants with a WHR larger
than 0.9 for males and 0.85 for females were classified in the
abdominal obesity group, and the remaining participants were
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classified in the non-abdominal obesity group (World Health
Organization, 2008). Detailed demographics are reported in
Table 1. The Institutional Review Board (IRB) of Sungkyunkwan
University approved this retrospective study. Our study was
performed in full accordance with local IRB guidelines and
informed consent was obtained from all participants.

Tractography and Connectivity Analysis
of DTI Data
Probabilistic tractography of DTI data was performed using the
FSL software (Jenkinson et al., 2012). The original DTI data
were corrected for distortions due to eddy currents and head
motion. DTI data were reconstructed based on the corresponding
gradient table using the FDT toolbox. The diffusion parameters
were computed with the Bedpostx toolbox, and probabilistic
tractography was performed with the ProbtrackX toolbox in
FSL (Jenkinson et al., 2012). Specifically, fibers were repeatedly
sampled 5,000 times based on diffusion parameters that
originated from the seed region and a probabilistic distribution
of neuronal fibers was constructed. The probability of fibers
connecting two brain regions was computed based on a
probabilistic distribution of neuronal fibers, and the value was
entered into a matrix called the fiber probability matrix. The
nodes of the fiber probability matrix (i.e., brain regions) were
defined by the ICBM DTI-81 atlas. A weighted and directed
network model was applied to the fiber probability matrix and
degree centrality (DC) values were computed. DC values were
defined in a directed network model as the sum of in-degree
and out-degree values that, respectively, included the column
and row sums of the edge weights connected to the given
node in the matrix (Rubinov and Sporns, 2010). DC values
represent the importance of the node (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010). DC values were used to identify
brain regions that differed significantly between people with
abdominal and non-abdominal obesity. The group differences in
DC values between people with abdominal and non-abdominal
obesity were assessed using permutation tests followed by false

TABLE 1 | Participant demographics.

Parameter Abdominal
obesity (n = 152)

Non-abdominal
obesity (n = 122)

P-value

Age 54.94 (17.23) 40.84 (19.09) <0.001

Sex (Male:Female) 69:83 47:75 0.2527∗

BMI 31.37 (5.01) 29.84 (4.40) 0.0086

WHR Male 0.98 (0.06) 0.84 (0.04) <0.001

Female 0.91 (0.05) 0.79 (0.05) <0.001

EDE-Q-R 1.44 (1.40) 1.67 (1.56) 0.2053

EDE-Q-E 0.35 (0.69) 0.46 (0.86) 0.2495

EDE-Q-S 1.85 (1.41) 1.87 (1.50) 0.8925

EDE-Q-W 1.54 (1.19) 1.58 (1.31) 0.7843

∗Chi-square test. BMI, body mass index; WHR, waist–hip ratio; EDE-Q-R, eating
disorder examination questionnaire restraint; EDE-Q-E, eating disorder examination
questionnaire eating concern; EDE-Q-S, eating disorder examination questionnaire
shape concern; EDE-Q-W, eating disorder examination questionnaire weight
concern.

discovery rate (FDR) procedure to avoid multiple comparisons
issues (Benjamini and Hochberg, 1995; Chen et al., 2013; Smith
et al., 2013). We randomly assigned participants to either the
abdominal or non-abdominal obesity group 5,000 times and
created a null distribution of differences in DC values. If the
differences in DC values of a region did not belong to the 95% of
the null distribution, the region was considered significant. The
p-values were further corrected using FDR (p < 0.05, corrected)
(Benjamini and Hochberg, 1995). The overall processing flow of
the DTI data is represented in the DTI part of Figure 1.

Preprocessing of Rs-fMRI Data
Rs-fMRI data were preprocessed using the AFNI and FSL
software (Cox, 1996; Jenkinson et al., 2012). The volumes of
the first 10 s were discarded to adjust for the hemodynamic
response delay. The frame-wise displacement (FD) between
fMRI time series volumes was calculated and the volumes
whose FDs exceeded 0.5 mm were eliminated (Power et al.,
2012). We excluded participants who had more than 10% of
the time series volumes removed. Volumes were adjusted for
head motion and slice timing. The skull was removed, and the
intensity was normalized with the mean value of 10,000 across
4D volumes. Rs-fMRI data were registered onto the T1-weighted
structural data, followed by a subsequent registration onto the
Montreal Neurological Institute (MNI) brain template. From
the registered rs-fMRI data, nuisance variables of cerebrospinal
fluid, white matter, head motion, cardiac, and large-vein-related
artifacts were removed using the FMRIB’s ICA-based X-noiseifier
(FIX) software (Salimi-Khorshidi et al., 2014). The first step of
ICA-FIX performed a single independent component analysis
(ICA) on an individual rs-fMRI data. From the decomposed
independent components (ICs), a large number of temporal and
spatial features were calculated. The calculated features were
then input into a multilevel classifier, and signal and noise ICs
were distinguished using the pretrained data by the Human
Connectome Project (Salimi-Khorshidi et al., 2014). The noise
ICs were regressed out from the rs-fMRI time series. A bandpass
filter with a frequency between 0.009 and 0.08 and spatial
smoothing with a full-width-at-half-maximum of 6 mm were
applied.

Group ICA
The rs-fMRI data from all participants were temporally
concatenated, and group ICA was performed using the FSL
MELODIC software (Beckmann et al., 2005; Jenkinson et al.,
2012). The ICA produces spatial ICs by using probabilistic
principal component analysis (Beckmann and Smith, 2004;
Beckmann et al., 2005; Minka, 2000; Smith et al., 2012). The
generated ICs were classified into signal or noise components
according to two criteria. First, the ICs were compared with
known resting state networks (RSNs) by using a cross-correlation,
and those lower than 0.2 were considered as noise (Smith et al.,
2009). Second, signal and noise components were classified
by visual inspection considering the spatial and temporal
characteristics (Kelly et al., 2010; Griffanti et al., 2017). Signal
components showed a large spatial overlap with gray matter and
a low overlap with white matter, cerebrospinal fluid, and blood
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FIGURE 1 | Flowchart of processing steps adopted in this analysis.

vessels. The time series of the signal components was a regular
wave without notable spikes, and had a power spectrum of at least
one low-frequency peak between 0.01 and 0.1 Hz (Kelly et al.,
2010; Griffanti et al., 2017).

Static and Dynamic Connectivity
Analyses of fMRI Data
The static and dynamic connectivity analyses with weighted
and undirected network models were performed to quantify the
functional characteristics of rs-fMRI. Graph nodes were defined
as functionally interpretable ICs, and graph edges were defined as
the Pearson correlation of time series between two nodes. For the
static connectivity analysis, a connectivity matrix was constructed
by computing the Pearson correlation of the entire time series
between nodes, which yielded one connectivity matrix for each
participant. A soft thresholding approach was adopted to avoid

binarizing edge weights with the use of Equation 1.

wij =

(
rij + 1

2

)β

(1)

where rij is the correlation coefficient between nodes i and
j (Mumford et al., 2010; Schwarz and McGonigle, 2011). β

was set to six to conform to an unsigned network (Mumford
et al., 2010). The elements of the soft thresholded matrix were
converted to z-values using the Fisher’s r-to-z transformation.
DC values were extracted from the z-transformed matrix by
summing the edge weights connected to the given node in
the column direction of the matrix and were then used to
compare groups. The differences in DC values between people
with abdominal and non-abdominal obesity were assessed based
on 5,000 permutations, and the p-values were corrected using
FDR (p < 0.05, corrected).
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The dynamic connectivity analysis used a sliding window
technique (Allen et al., 2012; Damaraju et al., 2014). A window
size of 172 TRs (111 s) and a stride of 1 TR (0.645 s) were used to
capture the lowest frequency (0.009 Hz) of the data (Hutchison
et al., 2013; Damaraju et al., 2014). A rectangular window was
convolved with a Gaussian kernel of size three. Finally, many
dynamic connectivity matrices (mean of 770.45 and a standard
deviation [SD] of 26.14) were constructed. L1 regularization
was applied to the matrices to avoid ill-posed problems due to
the limited information on the short time series segments. The
regularization parameter λ was optimized with a cross-validation
framework by maximizing the following log-likelihood function
(Equation 2).

log detθ− tr(Sθ)− λ ||θ||1 (2)

where θ is the precision matrix, S is the empirical covariance
matrix, tr is the trace, and | | .| |1 is the L1 norm (Friedman
et al., 2008; Allen et al., 2012; Damaraju et al., 2014).
Regularized dynamic connectivity matrices were concatenated
across participants and grouped into several clusters by a
K-means clustering algorithm to define brain states (Allen
et al., 2012; Damaraju et al., 2014). The number of clusters
was determined using the silhouette coefficient and elbow
method (Allen et al., 2012; Kodinariya and Makwana, 2013;
Damaraju et al., 2014). The most common number of clusters
was considered as the optimal number and was used for
group-level clustering of the concatenated dynamic connectivity
matrices. Using the determined number of clusters, participant-
level states were defined by applying the K-means clustering
algorithm for each participant. We started with the participant-
level cluster that explained the largest variance, and we matched
it with the group-level state that yielded the maximum Pearson’s
correlation (Park et al., 2018). We repeated the process for the
subsequent participant-level cluster with the largest variance
explained excluding the clusters that had already been processed.
This allowed us to map each participant-level state with
a corresponding group-level state. The dynamic connectivity
matrices of each state were averaged, and DC values were
extracted from the mean state matrices for each participant.
The brain networks with significant differences in DC values
between people with abdominal and non-abdominal obesity
were assessed based on the 5,000 permutations followed by
FDR at a significance level of 0.05. The overall rs-fMRI
processing steps are summarized in the rs-fMRI part of
Figure 1.

Representative Brain States
Group-level states were defined from the dynamic connectivity
analysis, and each state was associated with brain networks
by computing the hubness of nodes for each state. For
each group-level state, the betweenness centrality (BC) values
of all nodes were calculated and normalized by dividing
them with the mean value. Nodes with normalized BC
values higher than 1.5 were defined as hub nodes, and were
considered as a representative network for the state (Seo et al.,
2013).

Correlation Between DC Values and
Behaviors of Eating Disorder Scores
DC values of the brain regions or networks that yielded
significant group-wise differences in structural or functional
connectivity between abdominal and non-abdominal obesity
were correlated with behaviors of eating disorders assessed with
the EDE-Q (Fairburn and Beglin, 1994; Mond et al., 2004). The
EDE-Q assessment contained four subscales of restraint (EDE-
Q-R), eating concern (EDE-Q-E), shape concern (EDE-Q-S),
and weight concern (EDE-Q-W), which were based on the self-
reported questionnaire (Fairburn and Beglin, 1994; Mond et al.,
2004). A multiple linear regression model was constructed in
accordance to Equation 3.

EDE−Q = β · DC + age+ C (3)

where DC is the DC value of the brain region or network
identified in the structural or functional connectivity analysis,
β is the regression coefficient, and C is a constant. Age was
added as a covariate to adjust for the difference between people
with abdominal and non-abdominal obesity groups. A regression
model was also constructed with DC values of brain regions
and networks identified in both the structural and functional
connectivity analyses in accordance to Equation 4.

EDE−Q = β1 · DCs + β2 · DCf + age+ C (4)

where DCs denotes the DC values of the brain regions identified
in the structural connectivity analysis, and DCf indicates the
DC values of the brain networks identified in the functional
connectivity analysis. The correlation analysis is summarized in
the correlation analysis part of Figure 1.

Statistics
The structural and functional group differences in DC values
between people with abdominal and non-abdominal obesity were
assessed using permutation tests followed by FDR. Participants
were randomly assigned to the abdominal and non-abdominal
obesity groups 5,000 times, and a null distribution was created.
A brain region or network with DC values outside the
95% of the null distribution was considered to be associated
with significant differences between the abdominal and non-
abdominal obesity groups. The p-values were further corrected
using the FDR approach suggested by Benjamini and Hochberg
(p < 0.05, corrected) (Benjamini and Hochberg, 1995). The
representative networks of group-level states in the dynamic
connectivity analysis were defined using normalized BC values
that were higher than 1.5. Correlation between DC values
and EDE-Q scores were computed using a multiple linear
regression model. The quality of the correlation was quantified
using R2 and p-values. The DC values of the identified
brain regions or networks were correlated with four EDE-Q
scores. The correlation results were corrected for the identified
brain regions/networks, and for the four EDE-Q scores with
FDR (Benjamini and Hochberg, 1995). All statistical analyses
were performed in MATLAB (Mathworks Inc., Natick, MA,
United States).
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RESULTS

Nodes for Connectivity Analysis
The structural characteristics of the brain were quantified with a
fiber probability matrix. The nodes of the fiber probability matrix
were defined by the ICBM DTI-81 atlas (Figure 2A). Functional
characteristics of the brain were quantified with rs-fMRI. Group
ICA was performed to define brain networks. Twenty spatial
ICs that explained 94.1% of the variance were automatically
generated and four ICs were eliminated as noise components.
The 16 functionally interpretable ICs (mean correlation with
RSNs of r = 0.48, with an SD of 0.14) were considered to be
graph nodes (Figure 2A). ICs 1–3 constitute the visual network
(VN), ICs 4 and 5 constitute the default mode network (DMN),
ICs 6–8 constitute the executive control network (ECN), ICs 9
and 10 constitute the frontoparietal network (FPN), ICs 11 and
12 constitute the sensorimotor network (SMN), ICs 13 and 14
constitute the auditory network (AN), IC 15 denotes the basal
ganglia (BG) with part of the ECN, and IC 16 is the cerebellum.

Differences in Structural and Functional
Connectivity
We compared the structural brain differences between
people with abdominal and non-abdominal obesity using
the probabilistic fiber tractography approach derived from DTI.
DC values, which represent the importance of a given node, were
calculated from the fiber probability matrix. DC values were used
to identify significant differences between groups. The pontine
crossing tract, fornix, corticospinal tract, medial lemniscus,
inferior and superior cerebellar peduncles, cerebral peduncle,
internal capsule, anterior, superior, and posterior corona radiata,
thalamic radiation, sagittal stratum, superior longitudinal
fasciculus, and superior fronto-occipital fasciculus, showed
significant between group differences (p < 0.05, permutation
followed by FDR correction) (Supplementary Table S1).

The inter-group differences in the static and dynamic
connectivity analyses were performed by using the 16 ICs as
the graph nodes. One connectivity matrix was constructed for
each participant for the static connectivity analysis. DC values
were computed from the connectivity matrix and VN (ICs
#1–3), DMN (IC #5), ECN (IC #6), FPN (ICs #9 and 10),
and SMN (ICs #11 and 12), yielded significant differences in
DC values between people with abdominal and non-abdominal
obesity groups (Supplementary Table S2, p < 0.05, permutation
followed by FDR correction). For the dynamic connectivity
analysis, many connectivity matrices (mean of 770.45 and SD of
26.14) were constructed, and the matrices were grouped into nine
clusters (i.e., brain states) using a K-means clustering algorithm
(Figure 3). For each group-level state, the hubness of any node
was computed, and if the given node satisfied the hub node
criterion, it was considered as a representative network for the
state (Seo et al., 2013). The ECN (IC #8, normalized BC 1.51)
in state 3, ECN (IC #7, normalized BC 1.57), and FPN (IC
#10, normalized BC 1.56) in state 5, DMN (IC #5, normalized
BC 1.77), FPN (IC #9, normalized BC 1.63), and SMN (IC
#11, normalized BC 1.63) in state 6, two ECNs (ICs #6 and

8, normalized BCs 1.81 and 1.52, respectively), AN (IC #14,
normalized BC 1.79), and cerebellum (IC #16, normalized BC
1.51) in state 7, DMN (IC #4, normalized BC 1.52), ECN (IC #6,
normalized BC 1.57), SMN (IC #11, normalized BC 1.57), AN (IC
#13, normalized BC 1.63), and cerebellum (IC #16, normalized
BC 1.55) in state 8, and AN (IC #14, normalized BC 1.54) in state
9, were identified as the representative networks (Figure 4). The
connectivity matrices were clustered and averaged to yield a mean
state matrix for each brain state. DC values were extracted from
the mean state matrices, and the groups were then compared.
VN (IC #2), DMN (IC #5), ECN (IC #6), FPN (ICs #9 and
10), and SMN (ICs #11 and 12), showed significant (p < 0.05,
permutation followed by FDR correction) inter-group differences
in DC values, and the results for each state were reported in the
Supplementary Table S3.

Correlation Between DC Values and
Behaviors of Eating Disorder Scores
We calculated the correlation between the DC values of the
identified brain regions from structural connectivity analysis or
brain networks from the functional connectivity analysis and
EDE-Q scores. The correlation between neuroimaging findings
and the behaviors of eating disorders was explored as an eating
disorder that was reported to be associated with abdominal
obesity (Dallman et al., 2003; Gluck et al., 2004; Daubenmier
et al., 2011; Succurro et al., 2015).

When only the estimated DC values from the structural
connectivity analysis were used, the right cerebral peduncle, the
right anterior, and posterior corona radiata were significantly
correlated with EDE-Q scores (Figure 2B and Table 2, p < 0.05,
FDR corrected). In the case of the static connectivity analysis,
FPN (IC #9) yielded significant correlations with EDE-Q-S and
W scores (Figure 2B and Table 2, p< 0.05, FDR corrected). In the
case of the dynamic connectivity analysis, no networks showed
significant correlation with EDE-Q scores at the significance level
of 0.05. When we relaxed the significance level to 0.1, ECN (IC #8)
in state 5 was correlated with the EDE-Q-S score (Figure 2B and
Table 2, p < 0.1, FDR corrected).

We performed further correlation analysis that combined
the DC values identified from the single-modal results. We
considered various combinations of the following DC values:
the right cerebral peduncle and right anterior and posterior
corona radiata from structural connectivity analysis, FPN
(IC #9) from the static functional connectivity analysis, and
the ECN (IC #8) in state 5 from the dynamic functional
connectivity analysis (Table 3). Our results showed that EDE-
Q scores elicited the highest correlations with the DC values
that combined the identified brain regions and networks from
the structural connectivity, static functional connectivity, and
dynamic functional connectivity analyses, followed by the
structural connectivity and dynamic functional connectivity
analyses, the structural connectivity and static functional
connectivity analyses, structural connectivity analysis only,
static and dynamic functional connectivity analyses, static
functional connectivity analysis only, and the dynamic functional
connectivity analysis only.
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FIGURE 2 | (A) ROIs used in this study. (Left) ICBM DTI-81 atlas and (right) 16 functionally interpretable ICs. (B) Brain regions and networks that showed significant
associations with EDE-Q scores. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor
network; AN, auditory network; BG, basal ganglia.

DISCUSSION

We explored the differences in structural and functional
connectivity in brain regions and networks related to the
behaviors of eating disorders between people with abdominal
and non-abdominal obesity with the use of DTI and rs-
fMRI. Probabilistic fiber tractography and static and dynamic
connectivity analyses were used to quantify the characteristics
of brain regions and networks. The DC values of several brain
regions and networks showed significant inter-group differences.
We further explored the relationship between structural and
functional connectivity and key behaviors of eating disorders, and
significant correlations were found. Our results indicated that
altered brain structure and function in people with abdominal
and non-abdominal obesity were associated with eating disorders
behaviors.

We found that the functional connectivity in FPN and ECN
showed significant inter-group differences between people with
abdominal and non-abdominal obesity. Furthermore, significant
associations with key behaviors of eating disorders were observed.
The FPN and ECN mainly contain the dorsolateral prefrontal
cortex which controls cognitive functions, such as planning,
working memory, and inhibition (Le et al., 2007; Stice et al.,
2008; Davids et al., 2010). Some considered obesity as a type of
psychological disease related to deranged eating behaviors, which
results from a dysfunctional fronto-striatal circuitry (Volkow
et al., 2009). Previous studies observed that the impaired
inhibitory control in people with obesity suggesting the lateral
prefrontal cortex is an important region of the fronto-striatal
circuit that controls the regulation of eating behaviors (DelParigi
et al., 2004; Wang et al., 2004; Le et al., 2006). One study showed
that altered activity in the dorsolateral prefrontal cortex broke
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FIGURE 3 | Nine group-level brain states. VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN,
sensorimotor network; AN, auditory network; BG, basal ganglia.

FIGURE 4 | Representative networks of each group-level states. Elements of the matrix represent the hubness of BC. Representative networks are marked with the
symbols “+.” VN, visual network; DMN, default mode network; ECN, executive control network; FPN, frontoparietal network; SMN, sensorimotor network; AN,
auditory network; BG, basal ganglia; ICs, independent components.

the balance between the reward and cognitive systems and led
to errant eating behaviors (Val-Laillet et al., 2015). In addition,
previous studies found an imbalance in the prefrontal and limbic
brain circuits that support aspects of cognition- and reward-
related eating behaviors (Carnell et al., 2011; Brooks et al., 2013;
Vainik et al., 2013). In summary, it is possible that lack of
regulatory influences from the dorsolateral prefrontal cortex in

people with obesity might cause a psychological dependence on
food and overeating (Wang et al., 2004).

One possible interpretation of our findings on differences
between people with abdominal and non-abdominal obesity
is that insulin levels may influence brain function during rest
in brain networks that control reward and food regulation.
Abdominal obesity is known to be strongly related to insulin
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TABLE 2 | Brain regions and networks that yielded significant correlations
between the DC values of the identified regions/networks and the EDE-Q scores.

Information Region/Network EDE-Q R2 P-value

DTI Right cerebral peduncle E 0.0377 0.0109

S 0.0324 0.0153

W 0.0530 0.0025

Right anterior corona radiata R 0.0323 0.0468

Right posterior corona radiata R 0.0288 0.0407

S 0.0283 0.0407

fMRI: Static FPN (IC #9) S 0.0270 0.0491

W 0.0363 0.0268

fMRI: Dynamic ECN (IC #8) in state 5 S 0.0285 0.0794

The significance of the dynamic connectivity analysis was 0.1. P-values were
corrected using FDR. DC, degree centrality; EDE-Q-R, eating disorder examination
questionnaire restraint; EDE-Q-E, eating disorder examination questionnaire eating
concern; EDE-Q-S, eating disorder examination questionnaire shape concern;
EDE-Q-W, eating disorder examination questionnaire weight concern; FPN,
frontoparietal network; ECN, executive control network.

resistance, and it has been recognized as a key determinant
of the metabolic syndrome (Carr et al., 2004; Després and
Lemieux, 2006). A previous study reported that individuals
who were resistant to insulin showed an increase of functional
connectivity in the reward network, but a reduction in
cognitive control networks (Kullmann et al., 2012). In addition,
altered brain activity in the frontoparietal executive system
was found in metabolic syndrome patients (Hoth et al.,
2011). Interestingly, a study that utilized intranasal insulin
administration reported altered brain activity in cognitive
brain regions and altered functional connectivity between
the hippocampal region and DMN (Kullmann et al., 2017).
The change of functional connectivity in the hippocampal
region was significantly correlated with visceral adipose
tissue and the change in subjective feeling of hunger after
intranasal insulin administration (Kullmann et al., 2017). These
studies collectively suggest that abdominal obesity may be
indirectly related to altered function in cognitive related brain
areas.

In addition to functional connectivity differences, the
inter-group structural connectivity differences were observed in
many brain regions (Supplementary Table S1). Among them, the
anterior and posterior corona radiata and the cerebral peduncle
yielded significant associations with behaviors of eating disorders.
The corona radiata is part of the limbic-thalamo-cortical circuitry
that is critical for reward and cognitive processes (Catani et al.,
2002; Kalivas and Volkow, 2005; Olivo et al., 2017). The corona
radiata is a key region that projects thalamic information onto the
prefrontal cortex, and the alteration in this region is shown to be
associated with cognitive dysfunction and central taste disorders
(Shott et al., 2015; Olivo et al., 2017). Previous studies found
that fractional anisotropy in corona radiata showed abnormalities
in people with anorexia nervosa (Gaudio et al., 2017), and it
was significantly related to the behaviors of eating disorders
(Olivo et al., 2017). They also reported that altered white matter
integrity in corona radiata was associated with dysfunctions
in reward and cognitive related processes, which led to eating
disorders (Olivo et al., 2017). Our results and these studies were
consistent in that altered structural connectivity in corona radiata
was related to the behaviors of eating disorders. In addition to
the corona radiata, we found significant inter-group structural
connectivity differences in the cerebral peduncle and associations
with the behaviors of eating disorders. The cerebral peduncle
is included in the corticospinal tracts that contain large fiber
tracts (Ramnani, 2006; Koyama et al., 2013). The fiber tracts
of the cerebral peduncle primarily originate from the prefrontal
cortex in the human (Ramnani, 2006). The prefrontal cortex
controls the process of reward, inhibitory control, and executive
decision making (Holland and Gallagher, 2004; Kringelbach
and Rolls, 2004; Petrovich et al., 2007). It is an important
region that modulates an individual’s eating behavior (van Vugt,
2009). Previous studies observed altered white matter integrity of
the cerebral peduncle, including the cortico-spinal and cortico-
bulbar tracts in people with obesity (Civardi et al., 2004;
Karlsson et al., 2013; Ryan and Walther, 2014; van Bloemendaal
et al., 2016; Papageorgiou et al., 2017). Taken together, the
structural connectivity in the cerebral peduncle, which is strongly

TABLE 3 | Correlation analysis between DC values of both the brain regions and networks that showed a good correlation in the first step and EDE-Q scores.

Information EDE-Q

R E S W

R2 P-value R2 P-value R2 P-value R2 P-value

Only DTI 0.0453 0.0139 0.0530 0.0054 0.0602 0.0022 0.0765 <0.001

Only fMRI: Static 0.0130 0.1691 0.0113 0.2132 0.0270 0.0245 0.0363 0.0067

Only fMRI: Dynamic 0.0072 0.3777 0.0118 0.2005 0.0285 0.0198 0.0174 0.0921

fMRI: Static and dynamic 0.0183 0.1725 0.0195 0.1490 0.0566 0.0013 0.0589 <0.001

DTI and fMRI: Static 0.0516 0.0139 0.0567 0.0077 0.0759 <0.001 0.1105 <0.001

DTI and fMRI: Dynamic 0.0497 0.0174 0.0609 0.0046 0.0868 <0.001 0.0953 <0.001

DTI and fMRI: Static and dynamic 0.0576 0.0140 0.0662 0.0053 0.1087 <0.001 0.1294 <0.001

P-values were corrected using FDR. Significant results (p < 0.05) are reported in bold italics. DC, degree centrality; EDE-Q-R, eating disorder examination questionnaire
restraint; EDE-Q-E, eating disorder examination questionnaire eating concern; EDE-Q-S, eating disorder examination questionnaire shape concern; EDE-Q-W, eating
disorder examination questionnaire weight concern.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 741

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00741 October 9, 2018 Time: 19:56 # 10

Park et al. Connectivity Changes in Abdominal Obesity

connected to the prefrontal cortex, may be indirectly related to
eating behaviors in people with obesity. However, the cerebral
peduncle contains fiber tracts that originate from the motor,
temporal, and parietal cortices, as well as the prefrontal cortex
(Ramnani, 2006). Thus, additional experiments are required to
elucidate the relationship between structural connectivity in the
cerebral peduncle and eating behaviors in more detail.

In the correlation analyses conducted herein, we found that
the DC values computed from multimodality imaging data
(i.e., both DTI and rs-fMRI) explained the behaviors of eating
disorders with higher R2 values compared to those from single-
modality imaging data (i.e., DTI or rs-fMRI alone) (Table 3). This
result may be attributed to the heterogeneity of obesity associated
with eating behaviors, genetic factors, or insulin resistance
(Brownell and Wadden, 1991; McLaughlin, 2012). Using only
structural or functional characteristics of the brain may not
provide sufficient information to quantify the diverse aspects
of obesity. The results indicate that multimodality imaging
data provides complementary information to understand the
links between the brain and behaviors of eating disorders. In
this study, both static and dynamic functional connectivity
analyses were considered, and the dynamic connectivity results
correlated better with behaviors of eating disorders. Unlike
the static connectivity analysis, many connectivity matrices
that reflect the temporal dynamics of the brain states were
constructed in the dynamic connectivity analysis. The additional
information may better link changes in the brain structure
and function to behaviors associated with eating disorders.
Our study suggested that using the structural and functional
information and using dynamic, rather than static, connectivity
analysis could best explain the elicited behaviors of eating
disorders.

Our study has a few limitations. Although we associated
brain states derived from dynamic connectivity analysis with
representative brain networks, we could not match the brain
states with specific cognitive conditions owing to validation
difficulties. In future studies, we will collect various clinical scores
to correlate cognitive conditions with brain states. In this study,
we used WHR instead of other direct measures of abdominal
obesity, such as visceral fat from abdominal MRI and body fat
measures from bioelectrical impedance analyses. The NKI-RS
database did not provide such measures, and we were thus limited
to the use of WHR.

In this study, we found significant brain structural and
functional differences between people with abdominal and

non-abdominal obesity and strong associations between the
connectivity values and EDE-Q scores in the cerebral peduncle,
anterior and posterior corona radiata, ECN, and FPN. When both
the structural and dynamic functional connectivity were used,
the relationships between brain connectivity and the behaviors
of the eating disorders were strengthened, thus indicating that
multimodal imaging data is more effective than single-modal
imaging data. Our reported results are expected to provide more
evidence on the mechanisms associated with abdominal obesity
and behaviors of eating disorders.
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