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This work presents sPyNNaker 4.0.0, the latest version of the software package

for simulating PyNN-defined spiking neural networks (SNNs) on the SpiNNaker

neuromorphic platform. Operations underpinning realtime SNN execution are presented,

including an event-based operating system facilitating efficient time-driven neuron state

updates and pipelined event-driven spike processing. Preprocessing, realtime execution,

and neuron/synapse model implementations are discussed, all in the context of a simple

example SNN. Simulation results are demonstrated, together with performance profiling

providing insights into how software interacts with the underlying hardware to achieve

realtime execution. System performance is shown to be within a factor of 2 of the

original design target of 10,000 synaptic events per millisecond, however SNN topology

is shown to influence performance considerably. A cost model is therefore developed

characterizing the effect of network connectivity and SNN partitioning. This model

enables users to estimate SNN simulation performance, allows the SpiNNaker team to

make predictions on the impact of performance improvements, and helps demonstrate

the continued potential of the SpiNNaker neuromorphic hardware.

Keywords: neuromorphic, PyNN, SpiNNaker machine, spiking neural network (SNN), realtime

1. INTRODUCTION

A platform enabling efficient simulation of large-scale networks of spiking neurons (distinct from
artificial neural networks, as used in the deep learning community) has the ability to provide
advances in multiple areas of research. These include: exploration of scale within the field of
computational neuroscience; understanding of brain-like information processing and how it can
be harnessed in traditional computational problems; and the ability to embed brain-like systems in
physical applications, e.g., facilitating efficient realtime processing in robots such as controllable
prosthetics and driver-less vehicles. The benefits of using bespoke hardware to address such
problems are well known, and have led to development of the field of neuromorphic engineering
(Indiveri and Horiuchi, 2011). Multiple platforms now exist capable of high performance
simulation of large numbers of neurons and synapses, often at speeds greatly exceeding biological
realtime. Example systems include the Stanford NeuroGrid (Benjamin et al., 2014), IBMTrueNorth
(Akopyan et al., 2015), and the BrainScaleS platform (Schemmel et al., 2010) from Heidelberg
University; with many bespoke chip-level systems also being developed (Qiao et al., 2015). These
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systems share a common feature that they offer predefined
simulation capability through neurons modeled in analog
hardware or digital hardware with fixed software. However, a
number of neuromorphic systems instead focus on delivering
a flexible platform offering researchers the opportunity to
reconfigure simulation functionality to meet their problem
requirements. Examples include the Intel Loihi (Davies et al.,
2018) system, which has configurable features such as a synaptic
plasticity engine for learning; and the SpiNNaker system, which
is comprised of fully-programmable ARM cores (Furber, 2016).
While this flexible nature compromises these platforms relative
to other neuromorphic systems in terms of absolute energy
consumption or processing speed, it makes them valuable
research tools enabling exploration of new and emerging
concepts in computational neuroscience and beyond.

For example, this flexibility has led to the SpiNNaker platform
executing large-scale networks of neurons (Sen-Bhattacharya
et al., 2017; van Albada et al., 2018), and performing analysis
of cognitive tasks such as action selection (Sen-Bhattacharya
et al., 2018). Applications of learning in SNNs have also
been investigated, such as the study of learning based on
Bayesian inference in Knight et al. (2016), and reinforcement
learning in Mikaitis et al. (2018). Outside the field of
computational neuroscience, SpiNNaker has also been applied
to constraint satisfaction problems, e.g., solving computationally
hard Sudoku or map color problems in Fonseca Guerra and
Furber (2017). In addition to these processing applications,
the embodiment of SpiNNaker systems in multiple physical
autonomous robots has also been demonstrated, with perhaps
the most impressive application being the combination of
musculoskeletal robotic hardware with neural control systems
implemented on SpiNNaker (Christoph et al., 2016). However,
despite these advances, significant challenges are yet to be
faced across all of the aforementioned fields. Developing
understanding of memory, action selection, and attention will
all be crucial in order to take the next steps in understanding
of both the brain and brain-inspired systems. The SpiNNaker
approach of using programmable ARM cores to simulate neurons
and synapses enables upgrading and expansion of system
functionality hand-in-hand with developments across the fields
of theoretical neuroscience, parallel computing, and robotics.
This not only facilitates research in these fields, but provides
valuable insights into the design of higher performing, but more
“rigid,” hardware-based neuromorphic solutions. However, the
creation of such software is unlike that for most other computing
machinery (Furber et al., 2013; Brown et al., 2015; Lin et al., 2018);
and while development of the SpiNNaker hardware has been well
documented (Furber et al., 2013, 2014; Painkras et al., 2013), the
software has until now been given less focus.

This paper gives a complete overview of the current state-
of-the art in SpiNNaker software pertaining to modeling
spiking neural networks. As such, it will focus on describing
the software within the sPyNNaker repository1, including the
internal operations used to simulate networks of neurons, use of
hardware resources, and user interaction. This description will

1https://github.com/SpiNNakerManchester/sPyNNaker

assume the existence of SpiNNTools, the low-level graph-based
software for managing execution of general parallel software
on the SpiNNaker machine, as described in Rowley et al.
(2018). While versions of SpiNNaker software have in part been
published previously (Jin et al., 2010; Sharp et al., 2011, 2012;
Davies et al., 2012), this work contributes a comprehensive
overview of the underlying operations and associated hardware
interactions which have guided API design. It is hoped this
will provide insight to users of the system, and hence improve
performance when extending the software framework for future
neural applications. As background for the remainder of the
paper, this introduction is followed by a high-level overview
of both the SpiNNaker hardware, and the PyNN interface
for defining networks of spiking neurons. A methods and
implementation section follows, providing an in-depth look at
the sPyNNaker API developed by the SpiNNaker software team
based at the University of Manchester, UK. Results exhibiting
performance profiling are then provided. Finally, a discussion
section completes the paper, together with suggestions for the
future direction of the API.

2. BACKGROUND

2.1. The SpiNNaker Platform—Hardware to
Simulate 1 Billion Neurons
The SpiNNaker hardware was designed to simulate in realtime
networks of spiking neurons, with neurons and synapses
modeled in software. The machine targets large-scale networks
containing approximately 109 neurons and 1012 synapses, giving
a 103 mean fan in/out per neuron (Furber et al., 2013), and was
scoped to handle mean firing rates of 10Hz (with peak rates of
100Hz). The machine was sized according to the computational
power required to simulate synapses, as these typically dominate
neural network processing. Assuming processing of a single
synaptic event requires 20 instructions (where a synaptic event
is defined as a single neuron receiving a single spike), the
machine was sized to provide 2 × 108MIPS to handle 1013

synaptic events per second. For simplicity and cost reasons, off-
the-shelf components were used, specifically the ARM9 core
for processing. At 200MHz clock speed, 106 ARM9 cores are
required for synaptic processing, and it follows that each ARM
core should simultaneously model 103 of the 109 neurons. The
remainder of this section gives an overview of the subsequent
SpiNNaker chip, including details on chip layout and features
pertinent to neural simulation.

The SpiNNaker chip houses 18 cores, together with network
on chip (NoC) and an external RAM controller—as shown in
Figure 1. Each core contains: an ARM968 (ARM, 2004), direct
memory access (DMA) controller, communications controller,
network interface controller, and other peripherals including
the timer. Each core operates at 200MHz clock speed, and
typically runs an application simulating a group of neurons.
Each core has 96 kB of tightly coupled memory (TCM), which
to avoid contention is split: 32 kB for instructions (ITCM) and
64 kB for data (DTCM). Application code is compiled into an
ARM968 executable and loaded to ITCM, while DTCM contains
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FIGURE 1 | The SpiNNaker Chip, containing: 18 cores, each with local

instruction and data memory; network on chip; and SDRAM controller

providing access to 128MB of chip-level shared memory.

application data including heap, stack and other read/write and
zero initialized data. Each chip has an additional 128MB of
shared memory (SDRAM), directly accessible by all cores on the
chip. Access times to these different memories vary considerably,
and are therefore a key consideration when designing SpiNNaker
software applications.

• Access to DTCM is fast at≈ 5ns/word (where unless otherwise
stated a word is 32 bits), but is limited to only the local core.
• SDRAM can be accessed via bridge, however this is relatively

slow at > 100 ns/word, and subject to contention with other
cores.
• A direct memory access (DMA) controller is therefore

provided for each core, enabling efficient bulk transfer of data
from SDRAM to core DTCM. Setup of the DMA incurs a fixed
overhead, however data is then transferred at ≈ 10 ns/word,
independently from the processor.

A single DMA request can transfer up to 64 kB, but is broken
down into smaller data bursts to facilitate transfer. This burst
size is typically set at 16 double words, with a small time
penalty incurred during setup of each burst. DMA requests are
subject to contention at the SDRAM controller, however each
DMA controller can submit only a single burst request at a
time, introducing a fair queuing policy between cores. Note also
that the requests themselves are subject to contention, which
can lead to latency in initiation of DMA operations. Despite
this contention between DMA requests, the SDRAM controller
bandwidth has the capacity to sustain DMA transfers to multiple
cores simultaneously, both reading and writing data to and from
SDRAM. However, when three or more cores read, and two or
more cores write, performance becomes bandwidth limited—
with maximum bandwidth reported as 900MBs−1 (Painkras
et al., 2013; Sharp and Furber, 2013).

Individual SpiNNaker chips are assembled onto boards in a
two-dimensional mesh, with common board sizes containing 4
and 48 chips. Multiple boards can then be connected to create a
SpiNNaker “machine.” Cores operate in a globally asynchronous
locally synchronous (GALS) manner, and communicate through
small messages or packets sent via the NoC and SpiNNaker
router (Navaridas et al., 2015). The router allows transmission
of packets to any subset of the cores on a chip, and
to a subset of the 6 off-chip links (enabling chip-to-chip
transmission, and hence routing of packets to any core
on the machine). The neural applications presented herein
use multicast packets, designed to be transmitted from a
source to multiple targets simultaneously. A multicast packet
contains an 8-bit control byte used by the system, and a
32-bit key used to route the packet. This key is looked
up within a table of entries, each of which indicates which
of the matching cores and/or links packets should be sent
to. This multicast behavior allows a core to send a single
message targeting multiple destinations, without having to
send an individual message to each of them. It also allows
fire-and-forget sending of packets, removing the need for
network level interlocking between source and destination. The
resulting source-directed routing architecture enables highly
efficient message distribution compared to traditional network
architectures.

SpiNNaker software applications are typically written in C,
and compiled into ARM executable code for maximum execution
speed. When designing applications which solve systems of
equations, consideration must be given to the impact of
precision on results and their numerical stability. The SpiNNaker
ARM968 has no hardware floating-point support, and software-
implemented floating-point operations are costly in terms of both
ITCM and execution time. Fixed point arithmetic is therefore the
preferred data representation when solving systems of equations
governing neural dynamics. While creation of custom fixed
point datatypes is possible, and potentially achieves optimal
performance (Jin et al., 2008), the ISO/IEC TR 18037:20082

standard is recommended and used throughout unless otherwise
stated. This provides types and operators similar to those
defining standard floating point operations, improving ease
of reading and code development for non-specialist ARM968
programmers. This standard has been implemented in the GCC
toolchain for the ARM target, with version 5.4 the recommended
compiler for sPyNNaker 4.0.0. Unless otherwise stated, variables
in this work will be defined according to the ISO standard
accum type: a signed 16-integer and 15-fractional bit fixed-
point number, as discussed by Hopkins and Furber (2015).
Variables typed as accum have an absolute lower limit of
0.000030517578125 (below which underflow occurs and 0 will be
returned), and absolute upper limit of 65535.999969482421875
(above which it will overflow and wrap). Division is expensive
due to a lack of hardware support, and should be replaced with
multiplication by the reciprocal when developing performance-
critical applications. An extension to the fixed-point standard
implements exponential and logarithm functions, however they

2https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:18037:ed-2:v1:en
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are costly to evaluate and hence should be precalculated on host
when used as constants to optimize performance.

2.2. PyNN
PyNN is a Python interface to define SNN simulations for a range
of simulator back-ends (Davison et al., 2008). It allows users to
specify an SNN simulation via a Python script once, and have
it executed on any or all of the supported back-ends including
NEST (Gewaltig and Diesmann, 2007), NEURON (Carnevale
and Hines, 2006), and Brian (Goodman and Brette, 2009).
This encourages standardization of simulators, reproducibility of
results, and increases productivity of neural network modelers
through code sharing and reuse, and by providing a foundation
for simulator-agnostic post-processing, visualization and data-
management tools.

PyNN has continued development as part of the European
Flagship Human Brain Project (Amunts et al., 2016), and has
hence been adopted as a modeling language by a number of
partners including SpiNNaker. It provides a structured interface
for the definition of neurons, synapses, and input sources, giving
users the flexibility to build a range of network topologies.Models
typically consist of single-compartment point neurons, grouped
together in “populations.” These populations are then linked with
“projections,” representing the synaptic connections between the
axons of neurons in a source population, and the dendrites
of neurons in a target population. Once defined, a number of
simulation controls are used to execute the model for a given
time period, with the option to update parameters and initialize
state variables between runs. On simulation completion data can
be extracted for post-processing and future reference. Neuron
variables such as spike trains, total synaptic conductances, and
neuron membrane potential are accessible from population
objects; while synaptic weights and delays are extracted from
projections. This data can be subsequently saved, or visualized
using the built-in plotting functionality.

Example PyNN commands for the generation of populations
and projections are detailed in Code 1. Here the sPyNNaker
version of the simulator is imported as sim, and subsequently
used to construct and execute a simulation. A population of 250
Poisson source neurons is created with label “poisson_source,”
and provides 50Hz input to the network for 5 s. A second
population of 500 integrate and fire neurons is then created and
labeled as “excitatory_pop.” Excitatory connections are made
between “poisson_source” and “excitatory_pop” with a 20%
probability of connection, each with a weight of 0.06 nA and
delays specified via a probability distribution. Data recording is
then enabled for “excitatory_pop,” and the simulation executed
for 5 s. Finally, the “excitatory_pop” spike history data is
extracted from the simulator.

The job of a PyNN simulator is therefore to provide
a backend-specific implementation of the PyNN language,
enabling execution of simulations defined in model scripts
such as Code S1. The PyNN implementation for SpiNNaker
hardware (s-PyNN-aker) is detailed in section 3, and is the major
contribution of this work. It covers the process of converting a
PyNN script into a form suitable for execution on a SpiNNaker
machine, and the low-level execution on the machine itself.

Code 1 | Example PyNN commands (a complete script is detailed in

Supplementary Material Code S1).

1 import pyNN.spiNNaker as sim

7 # Spike input

8 poisson_spike_source = sim.Population(

9 250,

10 sim.SpikeSourcePoisson(rate=50, duration=5000),

11 label=’poisson_source’)

30 pop_exc = sim.Population(

31 500,

32 sim.IF_curr_exp(**cell_params_exc),

33 label=’excitatory_pop’)

58 poisson_projection_exc = sim.Projection(

poisson_spike_source, pop_exc,

59 sim.FixedProbabilityConnector(p_connect=0.2),

60 synapse_type=sim.StaticSynapse(weight=0.06,

delay=delay_distribution),

61 receptor_type=’excitatory’)

62 poisson_projection_inh = sim.Projection(

poisson_spike_source, pop_inh,

93 pop_exc.record(’all’)

94 pop_inh.record(’spikes’)

98 sim.run(simtime=5000)

102 exc_data = pop_exc.get_data(’spikes’)

103 inh_data = pop_inh.get_data(’spikes’)

3. SPYNNAKER: METHODS AND
IMPLEMENTATION

The sPyNNaker API is comprised of two software stacks as
shown in Figure 2: one running on host predominantly written
in Python, the other running on the SpiNNaker machine written
in C. Users create an SNN model via the PyNN interface, which
is then preprocessed via the Python sPyNNaker software into a
form suitable for a SpiNNaker machine. Simulations execute on
the SpiNNaker machine via an event-driven operating system,
and on simulation completion results data are extracted back
to host for post-processing and visualization via the PyNN
API. This section details the software implementation of these
stages, beginning with a summary of the SNN-specific aspects
of preprocessing (for further explanation of the Python-based
preprocessing stages readers are referred to Rowley et al., 2018).
Simulation execution on the SpiNNaker machine is then covered
in detail, including an overview of the event-driven operating
system SpiN1API. The software framework for defining neuron
and synapse models is then introduced, followed by an overview
of existing implementations. Finally, auxiliary applications are
discussed, including generation of input spikes to drive network
behavior.

3.1. Preprocessing
At the top of the left-hand side stack in Figure 2, users create
a PyNN script defining an SNN. The SpiNNaker back-end is
specified, which translates the SNN into a form suitable for
execution on a SpiNNaker machine. This process includes:
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mapping of the SNN into an application graph, partitioning
into a machine graph, generation of the required routing
information, and loading of data and applications to a SpiNNaker
machine. Once loading is complete, all core applications
are instructed to begin execution, and run for a predefined
period. On simulation completion, requested output data are

FIGURE 2 | SpiNNaker software stacks. From top left anti-clockwise to top

right: users create SNN models on host via the PyNN interface; the sPyNNaker

Python software stack then translates the SNN model into a form suitable for a

SpiNNaker machine, and loads the appropriate data to SpiNNaker memory via

Ethernet; sPyNNaker applications, built on the SARK system management

and SpiN1API event-driven processing libraries, use the loaded data to

perform realtime simulation of neurons and synapses.

extracted from the machine and made accessible through
the PyNN API. Documentation of the complete simulation
workflow is beyond the scope of this work, however aspects not
detailed here are covered in Rowley et al. (2018) for generic
graph-based simulations (extending SpiNNaker beyond neural
applications). However, as certain aspects of SNNs have a direct
impact on the simulation workflow, a walkthrough of the key
points in this process in the context of neural simulation is
included below.

A sample SNN is developed as a vehicle by which to
describe the stages of preprocessing. A random balanced
network is defined according to the PyNN script detailed in
Code S1 (Supplementary Material), with the resulting network
topology shown in Figure 3A. The network consists of 500
excitatory and 125 inhibitory neurons, which make excitatory
and inhibitory projections to one another, respectively. Each
population additionally makes recurrent connections to itself
with the same effect. Excitatory Poisson-distributed input is
included to represent background activity, while predefined spike
patterns are injected via a spike source array. The neuronal
populations consist of current-based leaky integrate-and-fire
(LIF) neurons, with the membrane potential of each neuron in
the excitatory population initialized via a uniform distribution
bounded by the threshold and resting potentials. The sPyNNaker
API first interprets the PyNN defined network to construct
an application graph: a vertices and edges view of the neural
network, where each edge corresponds to a projection carrying
synapses, and each vertex to a population of neurons. This
application graph is then partitioned into a machine graph, by
subdividing application vertices and edges based on available
hardware resources and requirement constraints, ultimately
ensuring each resulting machine vertex can be executed on a
single SpiNNaker core. From hereon-in the term vertex will
refer to a machine vertex, and is synonymous with the term
sub-population, representing a group of neurons which can be
simulated on a single core. An example of this partitioning is

FIGURE 3 | Network partitioning to fit machine resources. (A) Application graph generated from interpretation of PyNN script: circles represent PyNN populations,

and arrows PyNN projections. (B) Machine graph partitioned into vertices and edges to suit machine resources: squares represent populations (or partitioned

sub-populations) of neurons which fit on a single SpiNNaker core—hence the model described by the machine graph in (B) requires 5 SpiNNaker cores for execution.
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shown in Figure 3, where due to its size “Excitatory Population”
is split into two sub-partitions (A and B). Figure 3 also shows
how additional machine edges are created to preserve network
topology between partitions A, B, and the other populations,
and how different PyNN connectors are treated differently
during this process. For example, a PyNN OneToOneConnector
connects each neuron in a population to itself. This results in
both partitions A and B having a machine edge representing
their own connections, but with no edge required to map the
connector from one sub-population to the other. Conversely,
the PyNN FixedProbabilityConnector links neurons in the source
and target populations based on connection probability, and
hence requires machine edges to carry all possible synaptic
connections (e.g., both between vertices A and B, and to
themselves).

Once partitioned, the machine graph is placed onto a virtual
representation of a SpiNNaker machine to facilitate allocation of
chip-based resources such as cores and memory. Known failed
cores, chips and board links which compromise the performance
of a SpiNNaker machine are removed from this virtual
representation, and the machine graph placed accordingly. Chip-
specific routing tables are then generated facilitating transmission
of spikes according to the machine edges representing the PyNN-
defined projections. These tables are subsequently compressed
and loaded into router memory (as described in section 2.1). The
Python software stack from Figure 2 then generates the core-
specific neuron and synapse data structures, and loads them onto
the SpiNNaker machine using the SpiNNTools software. Core-
specific neuron data is loaded to the appropriate DTCM, while
the associated synapse data is loaded into core-specific regions of
SDRAM on the same chip, ready for use according to section 3.2.
Finally, programs for execution on application cores are loaded
to ITCM, with each core executing an initialization function to
load appropriate datastructures (from SDRAM) and prepare the
core before switching to a Ready state. Once all simulation cores
are Ready, the signal to begin simulation is given to all cores from
host, and the SNNwill execute according to the processes defined
in section 3.2.

3.2. SpiNNaker Runtime Execution
sPyNNaker applications execute SNNs via a hybrid simulation
approach, using time-driven neuron updates and event-driven
synapse updates, similar to that discussed in Morrison et al.
(2005). This neuron update scheme provides a flexible framework
in which to embed a range of neuron models, and is
of comparable efficiency to event-based approaches when
considering biologically representative spike rates. Synapse
events are handled efficiently, with no intermediate information
required to update synaptic state between presynaptic neuron
spikes, which are relatively infrequent on the order of 1Hz in
biological networks. Cores executing sPyNNaker applications
hold neuron state variables in local DTCM, allowing efficient
access to the required datastructures for the periodic time-
driven neuron update. Spike transmission between cores is via
the Address Event Representation (AER) model (Mead, 1989),
with neuronal action potentials communicated as multicast
packets, with their key containing only the source neuron ID

(in the remainder of this work the terms: action potential,
spike, and packet are synonymous). Each packet can be
delivered to multiple locations simultaneously via the SpiNNaker
routing fabric, replicating the one-to-many connectivity of
an axon. Processing of the packet is performed by the core
simulating the postsynaptic neuron, which contains functions
to evaluate the spike-based synaptic contribution using only
the packet key. Due to the potentially large fan-in to a
neuron, memory constraints prevent storage of synaptic data
in DTCM. Therefore, the source neuron ID is used to locate
the associated synaptic data stored in the relatively large but
slower SDRAM memory, and copy it locally on spike arrival
to facilitate evaluation of the contribution to the synaptic
state.

This section focuses on the deployment of this simulation
approach within a single core modeling a sub-population of
neurons, such as “Excitatory A” in Figure 3B. It includes:
an overview of the underlying event-based operating system
and low-level software libraries; a discussion of the execution
framework and key software functions (also known as callbacks);
and finally a discussion of runtime operation giving readers
insight into the processing hierarchy. A subsequent discussion
of the effect of this simulation approach on neuron and synapse
model dynamics is given in section 3.3.

3.2.1. Operating System and Low-Level Libraries
To abstract away the complexities of low-level programming
and enable focusing on the task of neural modeling, sPyNNaker
applications are compiled against the SpiNNaker Application
Runtime Kernel (SARK) (Temple, 2016), and the event-
driven library SpiN1API (Sharp et al., 2011; SpiNNaker,
2011a). SARK provides low-level hardware management,
simplifying interaction with the DMA, Network Interface and
Communications controllers. SpiN1API provides an event-based
operating system, as shown in Figure 4, with three processing
threads per core: one for task scheduling, one for task dispatch,
and one to service fast interrupt requests (FIQ). SpiN1API also
provides the mechanism to link software callbacks to hardware
events, and enables triggering of actions such as sending a
packet to another core and initiating a DMA. Callbacks are
registered with different priority levels ranging from -1 to
2 depending on their desired function, with lower numbers
scheduled preferentially. Callback tasks of priority 1 & 2 can
be queued (in queues of maximum length 15), with new
events added to the back of the queue. Callbacks of priority
-1 and 0 are not queued, but instead pre-empt tasks assigned
higher priority level numbers. Operation of this system follows
the flow detailed in Figure 4A. The scheduler thread places
callbacks in queues for priority levels 1 and above, and the
dispatcher picks these callbacks and executes them based on
priority. When the dispatcher is executing a callback of priority
1 or higher, and a callback of priority 0 is scheduled, this
task pre-empts that currently being executed causing it to be
suspended until the higher priority callback has completed.
Callbacks of priority −1 use the FIQ thread to interact with
the scheduler and dispatcher, enabling fast response and pre-
emption of priority 0 and above tasks. Pointers are stored
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FIGURE 4 | SpiNNaker realtime OS. (A) SpiN1API multi-threaded event-based operating system: scheduler thread to queue callbacks; dispatcher thread to execute

callbacks; and FIQ thread to service interrupts from high-priority (-1) events. (B) Events and associated callbacks for updating neuron state variables, and processing

incoming packets representing spikes into synaptic input. Figures reproduced with permission from Sharp et al. (2011, 2012).

TABLE 1 | Hardware (and single software) events, along with their registered callback and associated priority level.

Event Callback Priority Pre-empts Priority

Packet Received _multicast_packet_received_callback −1 0, 1, 2

DMA Complete _dma_complete_callback 0 1, 2

Timer timer_callback 2 –

User (Software) user_callback 0 1, 2

allowing fast access to the callback code, and the processor
switches to FIQ banked registers to avoid the need for stacking
(Sloss et al., 2004), optimizing the response time of priority
−1 callbacks. However, this optimized performance limits the
application to registering only a single −1 priority event and
callback.

In sPyNNaker applications modeling systems of neurons
and synapses, callbacks are registered against hardware events:
timer, packet received, and DMA complete; and a software-
triggered user event, as shown in Table 1. The associated
callbacks facilitate the periodic updating of neuron state,
and the event-based processing of synapses when packets
representing spikes arrive at a core. These events (squares)
and their callbacks (circles) are shown schematically in
Figure 4B. The function timer_callback evolves the state
of neurons in time, and is called periodically against timer
events throughout a simulation. A packet received event
triggers a _multicast_packet_received_callback,
which reads the packet to extract and transfer the source
neuron ID to a spike queue. If no spike processing is
currently being performed, the software-triggered user event
is issued, and in turn executes a user_callback which
reads the next ID from the spike queue, locates the associated

synaptic information stored in SDRAM, and initiates a DMA
to copy it into DTCM for subsequent processing. Finally the
_dma_complete_callback is executed on a DMA complete
event, and initiates processing of the synaptic contribution(s) to
the postsynaptic neuron(s). If on completion of this processing
there are items remaining in the input spike queue, this callback
initiates processing of the next spike: meaning this collection of
callbacks can be thought of as a spike processing pipeline.

3.2.2. Time-Driven Neuron Update
A sPyNNaker simulation typically contains multiple cores, each
simulating a different population of neurons (see Figure 3B).
Each core advances the states of its neurons in time via an explicit
update scheme with fixed simulation timestep (1t). When a
neuron is deemed to have fired, packets are delivered to all
cores that neuron projects to, and processed in realtime by the
postsynaptic core to evaluate the resulting synaptic contribution.
Therefore, while all cores operate asynchronously, it is desirable
to advance neurons on all cores approximately in parallel in
order to march forward a simulation coherently. All cores in
a simulation therefore start synchronized, and register timer
events with common frequency, with the period between events
defined by a fixed number of clock cycles, as shown in Figure 5.
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FIGURE 5 | Time-driven updates by neuron cores simulating the network in

Figure 3B: periodic timer events trigger callbacks advancing neuron states by

1t. Cores can be out of phase due to communication of the start signal, and

relative drift can occur due to manufacturing variability between boards. Note

that state update times vary with the level of additional spike processing within

a simulation timestep, however cores which experience high levels of spike

activity delaying the subsequent timer_callback can catch up during

subsequent periods of lower spike activity (as shown by Core 2).

All cores will therefore initiate a timer event and execute
a timer_callback to advance the state of their neurons
approximately in parallel, although the system is asynchronous
as there is no hardware or software mechanism to synchronize
cores. Individual update times may vary due to any additional
spike processing (see section 3.2.6), however cores which have
additional spikes to process between one pair of timer events can
catch up during subsequent periods of lower activity. Relative
drift between boards is possible due to slight variations in clock
speed (from clock crystal manufacturing variability), however
this effect is small relative to simulation times (SpiNNaker,
2011b). Small variations placing core updates slightly out of
phase can also occur due to the way the “start” signal is
communicated, particularly on larger machines, however again
this effect is negligible. A consequence of this update scheme is
that generated spikes are constrained to the time grid (multiples
of the simulation timestep 1t). It also enforces a finite minimum
simulation spike transit time between neurons of 1t, as input
cannot be guaranteed to arrive in the current timestep before a
neuron has been updated. From the hardware perspective, the
maximum packet transit time for the million core machine is
≤ 25µs (assuming 200 ns per router (SpiNNaker, 2011b), and
a maximum path length of 128).

A design goal of the SpiNNaker platform is to achieve realtime
simulation of SNNs, where “realtime” is defined as when the
time taken to simulate a network matches the amount of time
the network has modeled. Therefore, an SNN with a simulation
timestep of 1t = 1ms, requires the period of timer events
to be set at 200, 000 clock cycles (where at 200MHz each clock
cycle has a period of 5 ns—see section 2.1). This causes 1ms of
simulation to be executed in 1ms, meaning the solution will keep
up with wall-clock time, enabling advantageous performance,

and interaction with systems operating on the same clock (such
as robots, humans and animals). In practice, realtime execution
is not always possible, and therefore users are free to reduce the
value of 1t in special cases, and also adjust the number of clock
cycles between timer events. For example, if a neuron model
requires 1t = 0.1ms for accuracy, it is common practice to let
the period between timer events remain at 200, 000 clock cycles,
to ensure there is sufficient processing time to update the neurons
and process incoming spikes (Sen-Bhattacharya et al., 2018). This
enforces a slowdown factor of 10 relative to realtime.

From the perspective of an individual core, each neuron
is initialized with user-defined parameters at time t0 (supplied
via a PyNN script). All state variables are then updated one
timestep at a time up to the simulation end time tend. The
number of required updates and hence timer events is calculated
based on tend and the user-defined simulation timestep 1t
(which is fixed for the duration of simulation). Each call to
timer_callback advances all the neurons on a core by 1t
according to Algorithm S1, which is shown schematically on the
left-hand side of Figure 6. First the synapse state for all neurons
on the core is updated according to the model shaping rule,
and any new input this timestep is added from the synaptic
input buffers (discussed below). Interrupts are disabled during
this update to prevent concurrent access to the buffers from
spike processing operations. The states of all neurons on the
core are then updated sequentially. An individual neuron state
at the current time Ni,t is accessed in memory, and if the
neuron is not refractory, its state is updated according to the
model characterizing its sub-threshold dynamics (see examples
in section 3.3). If it is judged to have emitted a spike, the
refractory dynamics are initiated and the router instructed to
send a multicast packet to the network. Finally, all requested
neuron variables are recorded as belonging to this new timestep
(t + 1t), and stored in core memory for subsequent extraction
by the SpiNNTools software—interrupts are disabled during this
process to prevent concurrent access to recording datastructures.

Synaptic input buffers (Figure 6, center) are used to
accumulate all synaptic input on a given receptor type, removing
the computational cost of managing state variables for individual
synapses (as developed in Morrison et al., 2005). Each buffer is
constructed from a number of “slots,” where each slot represents
input at a future simulation timestep. All input designated to
arrive at a particular time is accumulated in the appropriate
slot, constraining synapse models to those whose contributions
can be summed linearly. A pointer is maintained to the input
associated with the proceeding timestep (t + 1t). Each neuron
update consumes the input addressed by this pointer and then
advances it forward one slot (effectively rotating the buffer).
When the pointer reaches the last slot it cycles back to the
first, meaning these slots continuously represent input over the
next d timesteps, where d is the number of slots. By default
the value of d is set via a 4-bit unsigned integer, enabling
representation of delays up to 16 timesteps (however section 3.4.2
contains information on extending this delay). In the default
sPyNNaker implementation a synaptic input buffer is created
per neuron, per receptor type, and is a collection of 16 slots
each constructed from unsigned 16-bit integers. The use of an
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FIGURE 6 | (Left) Update flow advancing state of neuron Ni by 1t. (Center) Circular synaptic input buffers accumulate scaled input at different locations based on

synaptic delay (buffers are rotated one slot at the end of every timestep). (Right top) Synaptic input buffer values are converted to fixed-point format and scaled

before adding to Ni . (Right bottom) Decoding of synaptic word into circular synaptic buffer input.

integer representation reduces buffer size in DTCM, and also the
size of synaptic weights in SDRAM, relative to using standard
32-bit fixed point accum type. However, it requires conversion
to accum type for use in the neuron model calculations—as
shown in Figure 6. This conversion is performed via a union
and left-shift, the size of which represents a trade-off between
headroom and precision. An example shift of 6 is shown, causing
the smallest bit of the synaptic input buffer to represent 2−9 =
1.953125 × 10−3, and the largest 27 = 128, in the accum type
of the synapse state. Under extreme conditions a buffer slot will
saturate from concurrent spike activity, meaning the shift size
should be increased. However, the shift is also intrinsic to the
weight representation and affects precision, as all weights must be
scaled by 2(15−shift) before being written as integers to the synaptic
matrices discussed in section 3.2.5. For example, in Figure 6 a
weight of 1.15 nAwas converted to 589 on host during generation
of synaptic data, but is returned as 1.150390625 nA when used
during simulation (with a shift of 6). The shift value is currently
calculated by the sPyNNaker toolchain to provide a balance
between handling large weights, high fan-in and/or presynaptic
firing rates, and maintaining precision—see van Albada et al.
(2018) for further details.

3.2.3. Receiving a Spike
A _multicast_packet_received_callback is
triggered by a packet received event, raised when a multicast
packet arrives at the core. This callback is assigned highest
priority (−1), and hence makes use of the FIQ thread and pre-
empts all other core processing (see Figure 4A). This callback
cannot be queued, therefore to prevent traffic backing up on
the network this callback is designed to execute quickly, and

simply extracts the source neuron ID (from the 32-bit key) and
stores it in an input spike buffer for subsequent processing.
Note that by default this buffer is 256 entries long, enabling
queuing of 256 spikes simultaneously. The callback then checks
for activity in the spike processing pipeline, and registers a user
event if inactive. Pseudo code for this callback is available in
Algorithm S2.

3.2.4. Activation of the Spike Processing Pipeline
A user_callback callback is triggered by the user event
registered in a section 3.2.3, and kick-starts the spike processing
pipeline. The callback locates in SDRAM the synaptic data
associated with the spike ID, and initiates its DMA transfer
to DTCM for subsequent processing. Three core-specific data
structures are used in this process, the: master population table,
address list, and synaptic matrix. Use of these datastructures is
shown schematically in Figure 7, from the perspective of the
core simulating the Excitatory A population in Figure 3B, when
receiving a spike from the Excitatory A population. The master
population table is a lightweight list taking a masked source
neuron ID as the key by which a source vertex can be identified.
Each row pertains to a single source vertex, and consists of:
32-bit key; 32-bit mask; 16-bit start location of the first row
in the address list pertaining to this source vertex; and a 16-
bit value defining the number of rows, where each row in the
address list represents a PyNN projection. When searching this
table the key from the incoming packet is masked using each
entry-specific mask before comparing to the entry key. This
masks off the individual neuron ID bits, and enables source
vertices to simulate different numbers of neurons. The entry
keys are masked on host before loading for efficiency, and are
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FIGURE 7 | Data structures for processing incoming spikes: Master Population Table, Address List, and Synaptic Matrix; shown from the perspective of the core

simulating the Excitatory A population in Figure 3B. The path in bold represents that taken when a packet is received by Excitatory A, originating from itself, and

hence two projections must be processed.

structured to prevent overlap after masking and facilitate binary
searching. The structure of an address list row consists of: a single
header bit detailing whether the synaptic matrix associated with
this projection is located in DTCM or SDRAM; 32-bit memory
address indicating the first row of the synaptic matrix; and an
8-bit value detailing the synaptic matrix row length (i.e., the
maximum number of postsynaptic neurons connected to by a
presynaptic neuron in a particular projection). Note that synaptic
matrix rows are indexed by source neuron ID, and that all rows
are padded to the maximum row length to facilitate retrieval,
including empty rows for presynaptic neurons not connected to
neurons on this core. The row data structure is covered in detail
in section 3.2.5.

This callback therefore takes from the input spike buffer the
next spike ID to process, and uses it in a binary search of
the master population table to locate the address list regions
capturing the projections carrying the spike to this vertex. The

SDRAM location and size specified by each row are then used
in sequential processing of the projections. For the case shown
in Figure 7, searching the master population table yields two
rows in the address list, which in turn define the location of
the corresponding synaptic matrices in SDRAM. Each synaptic
matrix is indexed according to presynaptic neuron ID, enabling
location of the appropriate row to copy to core DTCM for
processing of each spike. Details of this row are then passed to
the DMA controller to begin the data transfer, marking the end
of the callback. This allows the core to return to processing other
callbacks, hiding the DMA transfer as shown for “Spike 1” in
Figure 9.

3.2.5. Synapse Processing
On completion of the DMA in section 3.2.4, a DMA complete
event triggers a _dma_complete_callback, initiating
processing of the synaptic row. As described previously, each
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row pertains to synapses made, within a single PyNN projection,
between a single presynaptic neuron and multiple postsynaptic
neurons. At the highest level, a synaptic row is an array of
synaptic words, where each word is defined as a 32-bit unsigned
integer. The row is split into three designated regions to enable
identification of static and plastic synapses (connections capable
of changing their weight at runtime). The row regions contain:
dynamic plastic data; constant fixed plastic data; and static
data. Three header fields are also included, detailing the size
of each region and enabling easy navigation of the row. A
schematic breakdown of the synaptic row structure is detailed
in Figure 8. Note that because a PyNN projection cannot be
both static and plastic simultaneously, a single row contains
only either static or plastic data. Plastic data is intentionally
segregated into dynamic and fixed regions to facilitate processing.
While all plastic data must be copied locally to evaluate synaptic
contributions to a neuron, only the dynamic region—i.e., that
changing at runtime—requires updating for use when processing
subsequent spikes. Keeping this dynamic data in a separate block
facilitates writing back to the synaptic matrix with a single DMA,
and writing back less data helps compensate for reduced DMA
write bandwidth (relative to read—see section 2.1).

The static region occupies the lower portion of the synaptic
row, and is itself an array of synaptic words, where each
word corresponds to a synaptic connection between the row’s
presynaptic neuron and a single postsynaptic neuron. As shown

in Figure 8, each 32-bit data structure is split such that the top
16 bits represent the weight, while the lower 16 bits typically
split: bottom 8 bits specifying the postsynaptic neuron ID; 1
bit to specify the synapse type (excitatory 0, or inhibitory 1); 4
bits to specify synaptic delay; leaving 3 bits of padding (useful
for model customization, e.g., adding additional receptor types).
Data defining plastic synapses is divided across the dynamic
and fixed regions. Fixed plastic data is defined by a 16-bit
unsigned integer, and matches the structure of the lower half of a
static synapse (see lower half of Figure 8). These 16-bit synaptic
half-words enable double-packing inside the 32-bit array of the
synaptic row, meaning an empty half-slot will be apparent if
the row targets an odd number of postsynaptic neurons. The
dynamic plastic region contains a header defining the Presynaptic
Event History, followed by a series of Synapse Structures capturing
the weight of each synapse. Note that for typical plasticity models
this defaults to the same 16-bit weight describing static synapses,
however Synapse Structure can be extended to include additional
parameters (in multiples of 16 bits) if required by a given
plasticity rule.

A task of the _dma_complete_callback is therefore to
convert the synaptic row into individual postsynaptic neuron
input. The callback processes the row headers to ascertain
whether it contains static or plastic data, adjusts synapses
according to a given plasticity rule, and then loops over each
synaptic word and extracts its neuronal contribution—pseudo

FIGURE 8 | Synaptic row structure with breakdown of substructures for both static and plastic synapses.
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code for this callback is detailed in Algorithm S4. An example
of this process for a single static synaptic word is shown
in the lower-right of Figure 6, where a synaptic word of
[0000001001001101 0001010100001100] leads to a contribution
of 589 to slot 10 of the inhibitory synaptic input buffer for neuron
N12.

3.2.6. Callback Interaction
The callbacks described above define how a sPyNNaker
application responds to hardware events and updates an
SNN simulation. The interaction of these events is a complex
process, with the potential to impact the ability of a SpiNNaker
machine to perform realtime execution. Figure 9 covers the
time between two timer events, and shows interaction of spike
processing and neuron update callbacks for four scenarios
detailed by the arrival of spikes 1–4. The first timer event initiates
processing of the neuron update, however after completion of
approximately one third of the update, the core receives Spike 1,
interrupting the timer_callback and triggering execution
of a _multicast_packet_received_callback,
which in turn raises a user event, initiating DMA transfer of
the appropriate synaptic information. On completion of the
callback, the core returns to the timer_callback, with
the DMA transfer occurring in parallel. On completion of the
DMA, a _dma_complete_callback is initiated, which
processes the transferred synaptic information into neuronal
input. The core then returns to the timer_callback, which
continues to completion. The core is idle when it receives Spike

2, therefore processing of the spike begins immediately, and
the subsequent user event and hence DMA request is initiated.
While waiting for the data to transfer, Spike 3 is received, and the
associated _multicast_packet_received_callback

processed. This time, due to the active spike processing
pipeline, no user event is raised, and instead the
DMA for Spike 3 is initiated at the beginning of the
_dma_complete_callback triggered by Spike 2. Whilst
processing this callback, Spike 4 is received, and the associated
_multicast_packet_received_callback interrupts
the core to place the packet key in the input spike buffer. This
buffer entry is eventually processed at the beginning of the
_dma_complete_callback for Spike 3, demonstrating the
spike processing pipeline in action. This also shows the benefit
of having two hardware “threads” working in parallel, as the core
is utilized completely, and the DMA transfer hidden behind the
_dma_complete_callback, when the pipeline is active.
Finally, after an idle period (where the processor is put to sleep
in a low energy state) the next timer event is issued at time
t +1t.

From Figure 9 it is seen that core processing is dependent on
SNN activity. When targeting realtime execution (section 3.2.2),
it is important to consider extreme circumstances and how they
will affect both the core and global simulation. For example,
it is clear from Figure 9 that when a core receives spikes, it
can delay completion of the timer_callback due to the
assigned callback priorities (as shown in Figure 5). This is a
design choice, as it helps maximize core utilization by hiding

FIGURE 9 | Interaction of callbacks shown over the time period between two timer events. Four spike events are processed representing the scenarios: receiving a

packet while processing a timer event; receiving a packet while the core is idling; and receiving a packet while the spike processing pipeline is active. Note that a

lighter color shade indicates suspension of a callback, which is resumed on completion of higher priority tasks.
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DMA transfers behind the timer_callback when the spike
processing pipeline is inactive. However, in the extreme case
spike processing will delay completion of the callback beyond the
issuing of the next timer event. While the core can potentially
catch up this lost time, this scenario has the potential to delay
the neuron update beyond a single timer event, and ultimately
cause any spike packets emitted from this core to be received and
processed at the wrong time by the rest of the network. To guard
against this, sPyNNaker applications report any occurrences of
an overrun, where a timer_callback is not complete before
the next timer event is raised; and also the maximum number
of timer events that a single timer_callback overruns.
Similar metrics are also reported when the input spike buffer
overflows (exceeds 256 entries), and when the synaptic input
buffers saturate. Together these metrics provide a window into
the ability of a core to handle the required processing within a
simulation.

Another important performance consideration when
responding to spike packets using prioritized events is the
time taken to switch between the associated callbacks. Events
are displayed in Figure 9 by solid black lines, the width of
which represents the time taken to switch context and begin
execution of the callback. The timer_callback takes longest
to respond due to queuing of events with priority > 0; while the
_multicast_packet_received_callback is quickest
due to its priority of −1 and use of the FIQ thread. Other
chip-level factors can also influence execution, such as SDRAM
contention with applications running on adjacent cores. As
DMAs are processed in serial bursts, if multiple simultaneous
requests are received by the SDRAM controller, there may be
latency in beginning the DMA for some cores, and a reduced
rate of transfer (see section S1.2 in Supplementary Material for
further information).

3.3. Neural Modeling
At the heart of a sPyNNaker application is the solution of a series
of mathematical models governing neural dynamics. It is these
models which determine how incoming spikes affect a neuron
and when a neuron itself reaches threshold. While the preceding
section described the underlying event-based operating system
facilitating simulation and interaction of neurons, this section
focuses on the solution of equations governing neural state, and
how they are structured in software.

3.3.1. Software Structure
PyNN defines a number of standard cell models, such as
the leaky integrate and fire (LIF) neuron, and the Izhikevich
neuron. Implementations of these standard models are included
in sPyNNaker, however the API is also designed to support
users wishing to extend this core functionality and implement
neuron models of their own. To facilitate this extension the
model framework is defined in an object-oriented fashion,
through the use of C code on the SpiNNaker machine. This
modular approach provides structure and aids code re-use
between differentmodels (e.g., sharing of a synaptic plasticity rule
between different neuron models). A neuron model is built from
components:

– synapse_type, defining how synapse state evolves between
presynaptic spikes, and how contributions from new spikes
are added to the model. A fundamental requirement is that
multiple synaptic inputs can be summed and shaped linearly,
such as the α-kernel (Destexhe et al., 2014).

– neuron_model, implementing the sub-threshold update
scheme and refractory dynamics.

– input_type, governing the process of converting synaptic input
into neuron input current. Examples include current-based
and conductance-based formulations (Dayan and Abbott,
2005).

– threshold_type, defining a system against which a neuron
membrane potential is compared to adjudge whether the
neuron has emitted a spike.

– additional_input_type, offering a flexible framework to model
intrinsic currents dependent on the instantaneous membrane
potential, and potentially responding discontinuously on
neuron firing (such as the Ca2+-activated K+ current
described in Liu and Wang, 2001).

The individual model components each produce a subset of the
neuron and synapse dynamics, and are therefore the entry point
for a user looking to deploy a custom neuron model3. In-keeping
with the aforementioned software stacks in Figure 2, interfaces
to each component are written in both Python and C. A single
instance of each component is collected via a C header file, and
compiled against the underlying operating system described in
section 3.2 to generate a runtime application. Python classes for
each component facilitate user-interaction with each part of the
model, enabling setting of parameter values and initial conditions
from a PyNN SNN script.

The runtime execution framework calls each component as
part of the timer_callback, as detailed in Algorithm S1

(Supplementary Material) and shown schematically in Figure 6.
First the synaptic state is advanced forward in time by a
single simulation timestep, using the functions defined by the
synapse_type component. Core interrupts are disabled during
this process to prevent concurrent access of the synaptic input
buffers from a _dma_complete_callback. Interrupts are
re-enabled when all synaptic states for all receptor types for all
neurons on a core have been updated. Each neuron then has its
state advanced by 1t. The input_type component is called first,
converting the updated synaptic state into neuron input current.
This includes separate excitatory and inhibitory components,
with core implementations capable of handling both current-
and conductance-based formulations. The additional_input
component is then evaluated to calculate the level of any intrinsic
currents. The synaptic and intrinsic currents, together with any
background current, are then supplied to the neuron_model
component which subsequently marches forward the neuron
state by 1t. The neuron membrane potential is now passed to
the threshold_type component which tests whether the neuron
has fired. If the neuron is above threshold a number of actions are
performed: a refractory counter begins to instigate any refractory

3A detailed guide to this process can be found at: http://spinnakermanchester.

github.io/workshops/seventh.html
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period; the additional_input is notified of the spike to allow
updating of appropriate state variables; and finally the core is
instructed to send a multicast packet to the router with the
neuron ID as key.

3.3.2. Leaky Integrate and Fire Neuron
The sPyNNaker implementation of a current-based leaky
integrate and fire neuron (LIF) is described by the hybrid
system in Equations (1) and (2). The sub-threshold dynamics are
governed according to Equation (1), where V is the membrane
potential, I the input current (combining synaptic, intrinsic
and background input), Rm the membrane resistance, τm the
membrane leak time constant, and El the membrane leak
(resting) potential.

dV

dt
= −

V − (El + RmI(t))

τm
if V > Vθ , V = Vreset (1)

dIsyn

dt
= −

Isyn

τsyn
+ δ(t − tj) (2)

If V exceeds the threshold level Vθ , the neuron is reported
to have spiked and V is set to the reset potential Vreset for
the refractory period duration tr . Synaptic currents Isyn are
modeled according to Equation (2), where τsyn is the synaptic
time constant (independent value for each receptor type), and the
delta function represents addition of a step change in input from
the weight of an incoming spike.

The sPyNNaker implementation embeds Equation (2) in
a synapse type component, providing mechanisms to update
the input current both between spikes (i.e., when the synaptic
input buffer contribution is zero), and on spike arrival. Exact
integration is used to update the synapse state during the periodic
neuron update, with step changes made from synaptic input
buffer contributions according to Equation (3).

It+1 = Ite
−

1t
τsyn +6jwijδ(t − tj) (3)

The constant factor e
−

1t
τsyn is pre-calculated before loading to

the SpiNNaker machine to avoid evaluation at runtime, as both
the divide and exponential operations are relatively expensive
on the ARM968 (≈ 100 clock cycles each). A neuron model
component captures the neuron state update mechanism, which
solves Equation (1) via exponential integration (Rotter and
Diesmann, 1999) and assuming the change in current over the
timestep is small (Dayan and Abbott, 2005), yielding the update
function in Equation (4).

Vt+1 = El + RmIt+1t − e−
1t
τm (El + RmIt+1t − Vt) (4)

To compensate for this assumption, wij is decayed before
adding to the synapse to ensure the total charge input to a
neuron matches the exact solution (van Albada et al., 2018).
Static thresholding defined via the threshold type, compares the
instantaneous membrane potential to the threshold level Vθ .

3.3.3. Izhikevich Neuron
The Izhikevich neuron model (Izhikevich, 2003), allows
reproduction of biologically observed neuronal characteristics
such as spiking and bursting. Its dynamics follow a type of
“quadratic integrate and fire” model, as detailed in Equation (5)

dv

dt
= 0.04v2 + 5v+ 140− u+ I(t) (5)

du

dt
= a(bv− u)

if v ≥ Vθ , then

{

v← c

u← u+ d
(6)

where v and u are dimensionless variables representing the
membrane potential and a recovery variable, respectively.
Dimensionless parameters a, b, c, and d are used to tune
the model dynamics, and I represents combined background,
intrinsic and synaptic currents. If v exceeds a threshold Vθ , v and
u are reset according to Equation (6).

The sPyNNaker implementation of this model uses the same
synapse type, current-based input type, and static threshold
type components as the aforementioned LIF implementation.
However, updating the neuron state and hence solving the system
defined by Equation (5) requires numerical integration. A range
of solvers were explored with fixed-point datatypes in Hopkins
and Furber (2015), with the RK-2 midpoint preferred as a trade-
off between speed and accuracy. The resulting explicit update
scheme is detailed in Equation (7).

θ = 140+ It+1t − ut α = θ + (5+ 0.04vt)vt

η =
h

2
+ vt β = −

h

2
a(ut + b(vt)

vt+1t = vt + h(β + (0.04η + 5)η + θ

ut+1t = ut + ah(bη + β − ut) (7)

While it is hard to recognize the original equations in this form,
refactoring of the update scheme and algebraic manipulation
leads to several improvements in the implementation. The use of
intermediate variables not only enables compiler optimizations
improving speed and code size, but also helps prevent
over/underflow of the accum datatype during intermediate
calculations (Hopkins and Furber, 2015).

3.4. Auxiliary Application Code
While neuron-simulating applications capture the core
operations of an SNN, several additional sPyNNaker applications
are required to generate network input and facilitate network
operation. These single-core applications are built following
similar principals to those defined in section 3.2, responding
via the same event-based operating system to send and receive
packets, and interact with neuron cores. They are embedded in
the machine graph during network preprocessing, and loaded
onto a SpiNNaker machine together with configuration data.

3.4.1. Spike Input Generation
Generating spikes is an integral part of SNN simulation. It
enables modeling of network response to specific patterns
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of spikes, and input representing adjacent brain regions or
background noise. The sPyNNaker API includes two applications
for spike generation: Spike Source Array, and Poisson Spike
Source. These applications are built from compiled C and
require a single SpiNNaker core per instance. They follow
timer events in parallel (but asynchronously) with neuron-
simulating cores, and send multicast packets representing spikes
as discussed previously. These applications do not receive
spikes, and hence have their functionality encoded entirely in
callbacks registered against timer events. As with all sPyNNaker
applications, a corresponding Python class enables construction
of a spike generator in a PyNN script, and allows configuration
data to be specified and subsequently loaded to a SpiNNaker
machine.

The Spike Source Array application contains a population
of neuron-like units which emit spikes at specific times (see
Code S1). The times and keys to emit are stored in SDRAM and
only copied into local DTCM when required during execution.
The buffer of times/keys is pre-loaded up to memory limits and
can be replenished during execution by sending requests to the
host, although this is limited by the bandwidth of the on-board
Ethernet. Callbacks issued on timer events (corresponding to
timestep updates on neuron cores) then send packets to the
router at the prescribed times.

The Poisson Spike Source application emits packets according
to a Poisson distribution about a given frequency. A population
of neuron-like units is specified, each of which can be assigned an
individual mean firing rate (see Code S1). At runtime, periodic
timer events trigger a callback every simulation timestep 1t,
which assesses whether the core should send a packet to the
router representing a spike. A distinction is made between slow
and fast Poisson spike sources based on whether they emit fewer
or greater than 1 spike per 1t. For fast spike sources, the number
of spikes to send between timer events is calculated, and the
corresponding packets sent interspersed with random delays.
This random spacing reduces the chance of synchronized spike
arrival at postsynaptic cores, easing pressure on both the source
and target routers. For slow sources, after each spike, an inter-
spike interval is evaluated in multiples of 1t, which is then
counted down between sending packets. For fast spike sources,
the postsynaptic core is likely to retrieve from SDRAM the
same pieces of synaptic matrix many times during a simulation.
Therefore, to remove the overhead of the DMA, a mechanism is
included to store the synaptic matrices from fast spike sources in
DTCM.

3.4.2. Simulating Extended Synaptic Delays
While there is a mechanism in the synaptic row to account for
delays of up to 161t, it can be necessary to prescribe longer
delays (particularly when 1t is small). To account for this case,
an application called a delay extension is created (van Albada
et al., 2018), running on an adjacent core. Packets representing
spikes exhibiting a delay ≥ 161t are routed to the core running
this application, which subsequently sends new spikes targeting
the postsynaptic core after a sufficient portion of the delay has
elapsed such that any remaining delay can be handled within the
synaptic row.

Two datastructures are used to manage delay handling: a
“delay stage configuration” is generated during preprocessing,
and captures the size of delay associated with each presynaptic
neuron; and a “spike counter” registers the time and presynaptic
neuron of incoming spikes. Two callbacks are used in
the delay extension, registered against packet received and
timer hardware events. On packet arrival the first callback
extracts the presynaptic neuron ID to an input spike buffer,
similar to the process described in section 3.2.3. The second
callback is executed on timer events occurring in parallel (but
asynchronously) with those on neuron processing cores. The
callback processes any spikes received since the previous timer
event, taking entries from the input spike buffer and using
them to update the spike counting datastructure to register the
incoming spikes against multiples of the number of synaptic
input buffer slots on the corresponding postsynaptic core. There
are typically 16 such slots, where in this context a collection of
16 slots is referred to as a “delay stage.” A second data structure
captures how many delay stages each spike should be held for
before being released to the postsynaptic core. Therefore, using
these two data structures it is possible to assess the incoming
spikes to calculate the corresponding outgoing spike times, and
hence schedule the necessary spikes for distribution to the
network.

While this application solves the problem of simulating
extended delays, it cannot do so indefinitely and an effective new
upper limit of 1441t is enforced due to DTCM constraints. It
should also be noted that this mechanism introduces additional
overhead to the system: an extra core is required to run the
application; and two packets are now required to transmit a
spike. The postsynaptic core also performs additional processing
during look-up of the source vertex in the master population
table. An additional row must be included to identify spikes
traveling directly from the presynaptic core, and also those sent
from each individual delay stage of the delay extension. This
increasedmaster population table size can be costly to search, and
detrimental for realtime performance (see section 4.2).

4. RESULTS

This section demonstrates results from simulations executed
through the sPyNNaker API. The random balanced network
used as a demonstration vehicle throughout this work is
presented first, demonstrating realtime operation of small scale
networks. The section then concludes with results from profiling
operations detailed in section 3.2, in order to characterize system
performance.

4.1. Simulation of a Random Balanced
Network
The network shown in Figure 3 and described in Code S1

(Supplementary Material) is executed on a SpiNNaker machine,
utilizing 5 cores. Execution is realtime, with 5 s of simulation
performed over 5 s of wall-clock time, and all spikes delivered
and processed successfully. Output spike trains are accessed via
the PyNN interface, and plotted in Figure 10 (excitatory neuron
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FIGURE 10 | Output spike trains from realtime execution of the random balanced network of Figure 3A, from the PyNN script of Code S1. Spikes from inhibitory

neurons are shown in red, and excitatory neurons in blue. The excitatory population receives an additional stimulus at t = 1 s.

spikes in blue, inhibitory in red). Network oscillations of≈ 15Hz
are observed throughout, with additional stimulation from the
prescribed spike source input at t = 1 s.

4.2. Performance Profiling
Realtime performance of a sPyNNaker application is principally
governed by: the number of neurons simulated on a core;
the complexity of the underlying neuron and synapse models;
the peak incoming spike rate to a core during simulation; and
the number of neurons each spike targets. To understand how
these factors interact, a comprehensive profiling analysis is
performed in section S1 (Supplementary Material). This led to
development of the cost model in Equation (8), predicting the
total number of synaptic events a core can process between
timer events while maintaining realtime execution. This model
assumes a continuously-active pipeline (which is shown to be
valid by the results in Figure 11), and that all spikes targetting
the core will project to the same number of neurons. Subscript n
refers to neuron processing contributions; while s refers to spike
contributions, with f , s, and l referring respectively to the first,
subsequent and last spikes in an active pipeline.

Es = nP

(

tp − (mnn+ cn)− (ms,f nP + cs,f )− (ms,lnP + cs,l)

ms,snP + cs,s
+ 2

)

(8)
The time taken to update the state of neurons (mnn + cn) is
subtracted from the period between timer events (tp) to give the
time available for processing spikes. The costs of processing the
first and last spikes in the pipeline are then subtracted from this
time (compensated for by the 2), and the remainder is divided
by the cost of processing an intermediate spike (ms,snP + cs,s), to
give the total number of spikes which can be processed. This total

TABLE 2 | Cost model parameters for LIF and Izhikevich neuron models and

static synapse processing.

Paramter Value

mn (LIF) 1.015µs / neuron

cn (LIF) 3.235µs

mn (IZK) 1.450µs / neuron

cn (IZK) 3.231µs

ms,f 0.126µs / synaptic word

cs,f 6.567µs

ms,s 0.115µs / synaptic word

cs,s 3.96µs

ms,l 0.115µs / synaptic word

ms,l 2.48µs

number of spikes is then multiplied by the number of neurons n
and connection probability P, to give the total synaptic events Es
(as discussed in section 2.1).

Model coefficients for current-based LIF and Izhikevich
neurons are developed in section S1, and given in Table 2.
The difference of mn for the two neurons models highlights
the additional operations introduced by Equation (5), relative
to Equation (1). However, this demonstrates that with careful
consideration, SpiNNaker is able to update neurons with
dynamics beyond those of a LIF neuron, despite the constraint
of fixed-point arithmetic, and with only limited software libraries
and processor speed.

Using the parameters of Table 2, it is possible to estimate
the interaction of neuron and spike processing for a range of
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SNN conditions. Constructing an SNNwith single source neuron
population, targetting a neuron population of variable size
(16 – 512), with a connecting projection of variable probability
(0.05 – 1.0), it is possible to evaluate the total number of synaptic
events which can be processed while maintaining realtime
execution. Predictions are generated for LIF neurons, assuming
a single activation of the spike processing pipeline, and that all
spikes target the same number of neurons. Model predictions
are verified against sPyNNaker simulations containing SNNs
replicating the network and assumptions above. Simulations
are executed where the spike source emits increasing numbers
of spikes to the postsynaptic neuron population within each
timestep, in order to find the limiting case beyond which
realtime execution can no longer be honored. Test data is
plotted as circular markers in Figure 11, together with model
predictions shown by continuous lines. Figure 11A shows the
total number of synaptic events against connection probability
for a range of numbers of neurons simulated on a single core.
For all cases, increasing connection probability increases the
total synaptic events, as each spike will now target greater
numbers of neurons. As the number of neurons on a core
increases, this behavior is reinforced up to maximum of 5,922
synaptic events when each spike targets 128 neurons with a
connection probability of 1. However Figure 11B, which displays
the same data plotted against numbers of neuron per core for a
range of connection probabilities, shows this is a limiting case.
Increasing beyond 128 neurons per core for full connectivity
shows a reduction in the total synaptic events, as the additional
time required to process neuron state updates leaves less time
available to process incoming spikes. At lower connectivity, this
performance peak occurs at higher numbers of neurons: e.g., at
20% connectivity the maximum number of synaptic events is
achieved for≈ 255 neurons per core. Also included in Figure 11

are performance predictions for a core simulating 512 neurons.
Although sPyNNaker does not currently support simulating this
many neurons on a single core, it is useful to use Equation (8) to

predict the effect of further increasing the number of neurons. It
is seen that for the model coefficients in Table 2, performance is
comparable to simulating 255 neurons per core at low connection
probabilities, however total synaptic events plateaus around 30%
connectivity (Figure 11A), processing only 68% of the synaptic
events achievable when running 255 neurons per core with a
fully-connected network.

Inspection of Equation (8) shows several coefficients govern
overall performance. For example, in all cases the variable
component of updating a single neuron dominates the associated
fixed processing cost, meaning mn plays the governing role
in determining the remaining time available for processing
incoming spikes. In terms of howmany spikes can be processed, it
is the subsequent spikes within an active pipeline which dominate
throughput (as the first and last spikes are assumed to occur only
once). At high connection probabilities and neurons per core
ms,snP > cs,s, meaning the variable per-target-neuron cost (ms,s)
dominates the total number of spikes which can be processed.
Conversely, when connection probabilities and neurons per core
are low, the fixed cost of processing a spike within the pipeline
(cs,s) dominates.

The components of these coefficients have been profiled in
detail for a range of neuron models and network topologies
in section S1 (Supplementary Material). The coefficient mn

is a function of neuron model and output spike rates,
while ms,s is dependent on processing a synaptic row into
synaptic input buffer contributions. The coefficient cs,s is
predominantly dependent on the spike processing pipeline, with
major contributions coming from: locating the memory address
of synaptic information associated with an incoming spike;
initializing a DMA of this data; and responding to interrupts
and context switching within the pipeline. From Equation (8)
it is seen that reducing mn has the effect of enabling higher
numbers of neurons per core, unlocking additional performance
from low connectivities through targetting more neurons for
the same probability of connection. Reducing ms,s has the effect

FIGURE 11 | Total number of synaptic events which can be processed between timer events: solid lines represent cost model predictions, while markers show

measurements taken from sPyNNaker simulations. (A) Variation of total synaptic events with connection probability for a range of simulated neurons per core. (B)

Variation of total synaptic events with neurons per core for a range of connection probabilities.
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of increasing the number of spikes which can be processed,
shifting the peak in maximum synaptic events of Figure 11B
to higher values of neurons per core for the same probability
of connection. Reducing cs,s improves performance across all
connection probabilities, but shifts the peak of maximum
synaptic events in Figure 11B to lower numbers of neurons
per core—i.e., improving performance for sparsely-connected
networks. The model of Equation (8) therefore provides a
useful tool for focusing development effort in order to optimize
sPyNNaker for different SNN topologies.

In addition to core processing, memory allocation is also
an important consideration for a SpiNNaker application. To
demonstrate typical memory consumption, the use of DTCM
by the application simulating the Excitatory A population in
Figure 3B is shown in Figure 12 [explanations of memory use
are detailed in section S1.4 (Supplementary Material)]. When
simulating 255 neurons per core, the synaptic input buffers
require 16.32 kB (section 3.2.2), while the current-based LIF
neuron and synapse model parameters require 14.28 kB. The
data structures for locating synaptic information associated with
an incoming spike (section 3.2.4), require 0.084 kB to define
entries covering 5 source vertices, one with two address list rows.
Additional space is required for the DMA and input spike buffers,
and for recording of output state variables. The remaining
space is occupied by the operating system libraries SARK and
SpiN1API (≈ 6 kB), stack (2 kB), with the rest allocated as
heap.

The large heap appears wasteful for this example network,
however when an SNN contains more populations and
projections, a vertex is likely to receive spikes frommany different
locations, and hence the master population table length and
number of address list rows will increase significantly requiring
additional memory. It is also worth noting that additional
memory can be allocated to improve runtime performance.
For example, synaptic matrices associated with high frequency
sources can be stored in DTCM, negating their transfer from
SDRAM on spike arrival.

FIGURE 12 | DTCM footprint for neuron application simulating the Excitatory

A population in Figure 3B.

5. DISCUSSION

This work presents the latest version of sPyNNaker: a software
package for running PyNN SNN simulations on the SpiNNaker
neuromorphic platform. It provides a detailed overview of
software executed on the SpiNNaker machine, and shows how
this interacts with the underlying hardware to achieve realtime
execution. An event-driven operating system is described,
together with details of the individual callbacks facilitating
realtime neural simulation. Neuron updates are time driven,
while spike processing is event driven, and handled by a series
of pipelined callbacks to optimize performance. Implementation
of standard neuron models from the literature is then discussed,
both from the perspective of software engineering, and the
performance impact of different numerical modeling techniques.
Results are then presented for an example network used as
a vehicle for explanation throughout the methods section,
demonstrating realtime execution of a balanced oscillating SNN.
Finally, performance analysis of key operations is presented,
demonstrating how neuron and spike processing interact at
runtime to govern the limits of realtime simulation.

This software aims to address the original design goal of the
SpiNNaker hardware: to simulate large-scale SNNs in realtime.
Neurons were intended to be simulated 1,000 per core, and to
have 1,000 incoming connections, switching at 10Hz: giving a
potential 10,000 synaptic events per neuron per second (10 per
neuron per ms, and 10,000 per core per ms). Neuron updates
were to be time driven with a default simulation step size of
1t = 1ms, giving 200,000 clock cycles between neuron updates
to achieve realtime execution. A number of features have deviated
from the original design, including: the use of C code and an
event-based operating system to program cores, where it was
originally intended to use assembly code and interrupt service
routines to define neuron behavior; and the reduction of the
default number of neurons simulated by a core to 255. To
quantify the impact of these design changes, performance of the
presented software is assessed in terms of the maximum number
of synaptic events which can be processed while maintaining
realtime simulation. Performance is dependent on SNN topology
and how the simulation is partitioned onto machine resources
(see Figure 11), however over 5,000 synaptic events were handled
by cores simulating postsynaptic populations of 255 neurons
in fully-connected SNNs—demonstrating performance within a
factor of two of the original design target.

However, SNN topology plays an important role in the total
number of synaptic events which can be processed within a
timestep, as spikes which target greater numbers of postsynaptic
neurons enable the fixed costs associated with spike processing to
be amortized over more synaptic events. To this end, increasing
the number of neurons simulated by a core improves the total
number of synaptic events which can be processed, however this
effect peaks around 255 neurons per core for the majority of
connection probabilities, as the increased time the core must
spend updating neurons leaves less for spike processing. This
variation in performance with the number of neurons simulated
on a core is counter intuitive, as one would expect reducing
the number to help parallelize computation and reduce the
load on a single core. However it is seen for all cases except
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a fully-connected network, that the total number of synaptic
events which can be processed reduces with neurons per core for
connection probabilities of< 50% (see Figure 11B). The reduced
default of 255 neurons per core is therefore a sensible design
choice, as it is close to maximizing the peak number of synaptic
events which can be processed for all connection probabilities.

To characterize system performance a detailed profiling
analysis was performed (see section S1 in Supplementary
Material), resulting in the cost model in Equation (8). This
model revealed three SNN-independent parameters governing
performance: mn the time taken to update a single neuron;
ms,s the time taken to evaluate the synaptic contribution of
a single spike to a single postsynaptic neuron; and cs,s the
fixed cost associated with an incoming spike in the active
spike processing pipeline. To reduce mn would require more
efficient handling of the neuron state update, but also the
infrastructure code managing the circular synaptic input buffers,
and the shaping of synaptic currents. The value of ms,s is
already close to the original design target of 20 instructions per
spike event, and at 23 clock cycles is near the optimum which
can be produced by standard compilers. However, given the
repeated operations performed while processing the synaptic
row, there is potential to use hand-crafted assembly code to
interleave operations and reduce total row processing times.
There is greater scope for minimizing the fixed cost of processing
a spike in the pipeline cs,s. For example, while the master
population table search is relatively efficient, the surrounding
infrastructure software could be improved significantly. There
is also potential to remove the use of interrupts and events to
cycle between the functionality accessed through repeated calls
to _dma_complete_callback, and hence avoid the cost of
context switching. This means a reduction of 50% is viable for
cs,s, and if this could also be achieved for mn and ms,s, then
Equation (8) predicts the original design target of 10,000 synaptic
events per ms would be achievable. Simulating 255 neurons per
core, these reductions would enable ≈12,700 synaptic events for
a fully-connected projection, ≈ 10, 250 at 30% connectivity, and
≈ 4, 050 at 5% connectivity.

This work presents a comprehensive overview of the
sPyNNaker software package and assesses its performance. It
is noted that alternative prototype software models have also
been investigated by the SpiNNaker group: such as distributing
computation for a group of neurons across multiple cores, each
with bespoke roles (Galluppi et al., 2015; Knight and Furber,
2016). This research, together with this work, demonstrates
the continued potential of the SpiNNaker chip, and provides
important information to inform the design of the next-
generation SpiNNaker 2 system.
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