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A lot of efforts have been made to understand the structure and function of neocortical

circuits. In fact, a promising way to understand the functions of cortical circuits is the

classification of the neural types, based on their different properties. Recent studies

focused on applying modern computational methods to classify neurons based on

molecular, morphological, physiological, or mixed of these criteria. Although there are

studies in the literature on in vitro/vivo extracellular or in vitro intracellular recordings,

a study on the classification of neuronal types using in vivo whole-cell patch-clamp

recordings is still lacking. We thus proposed a novel semi-supervised classification

method based on waveform shape of neurons’ spikes using in vivo whole-cell patch-

clamp recordings. We, first, detected spike candidates. Then discriminative features were

extracted from the time samples of the spikes using discrete cosine transform. We then

extracted the center of clusters using fuzzy c-mean clustering and finally, the neurons

were classified using the minimum distance classifier. We distinguished three types of

neurons: excitatory pyramidal cells (Pyr) and two types of inhibitory neurons: GABAergic-

parvalbumin positive (PV), and somatostatin positive (SST) non-pyramidal cells in layer

II/III of the mice primary visual cortex. We used 10-fold cross validation in our study. The

classification accuracy for PV, Pyr, and SST was 91.59 ± 1.69, 97.47 ± 0.67, and 89.06

± 1.99, respectively. Overall, the algorithm correctly classified 92.67 ± 0.54% of the

cells, confirming the relative robustness of the discriminant functions. The performance

of the method was further assessed on in vitro recordings by using a pool of 50 neurons

from Allen institute Cell Types Database (5 major subtypes of neurons: Pyr, PV, SST,

5HT3a, and vasoactive intestinal peptide (VIP) cells). Its overall accuracy was 84.13 ±

0.81% on this data set using cross validation framework. The proposed algorithm is thus

a promising new tool in recognizing cell’s type with high accuracy in laboratories using

in vivo/vitro whole-cell patch-clamp recording technique. The developed programs and

the entire dataset are available online to interested readers.
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INTRODUCTION

Neocortex is one of the most complex structures of the brain,
mainly involved in higher brain functions. It is composed
of many functionally differentiated components. A lot of
efforts have been made to understand the structure and
function of neocortical circuits, in the literature (Markram
et al., 2004; Tremblay et al., 2016). Classifying neocortical
neural types is a critical stage in creating a neocortical circuit
model (Santana et al., 2013). Neuronal type classification
is a hot topic in neuroscience with many open questions.
Some of which were considered in the European Human
Brain Project and the American BRAIN initiatives as the
first step of the project (Markram, 2012; Insel et al., 2013).
Several types of neurons were classified based on three
independent features: physiological__ the firing patterns of the
cells, morphological__ the anatomical structure of dendrites
and axons, or molecular__ the profile of gene expression
(Armañanzas and Ascoli, 2015). Recent studies focused on
applying modern computational methods to classify neurons
based on molecular (Sugino et al., 2006; Schulz et al., 2007;
Cahoy et al., 2008), morphological (Guerra et al., 2011; Sümbül
et al., 2014), physiological (Li et al., 2012; Battaglia et al., 2013;
Druckmann et al., 2013), or their combinations (Karagiannis
et al., 2009; McGarry et al., 2010). The cerebral cortex is mainly
composed of two types of neurons: (1) excitatory pyramidal
neurons (∼80% of neocortical neurons) and inhibitory non-
pyramidal interneurons (∼20% of neocortical neurons, Ghani
and Yuste, 2014). The pyramidal neurons releasing glutamate as
a neurotransmitter, form the main class of excitatory projecting
neurons (Baughman and Gilbert, 1981). On the other side,
non-pyramidal interneurons, are inhibitory releasing gamma-
aminobutyric acid (GABA) as a neurotransmitter. They have a
large diversity of somatic, dendritic and axonal morphologies
(Tremblay et al., 2016). GABAergic inhibitory interneurons
are classified based on the expression of biochemical markers
including three calcium-binding proteins, parvalbumin (PV),
calbindin (CB), and calretinin (CR). They are also classified
based on four neuropeptides, neuropeptide cholecystokinin
(CCK), somatostatin (SST), vasoactive intestinal peptide (VIP)
and neuropeptide Y (NPY, Cauli et al., 2000). GABAergic
inhibitory interneurons (IN) play a crucial role in processing
information flow in the cortex. GABAergic INs have critical roles
in many cortical functions, such as controlling the excitatory
and inhibitory balance in the network and gain control (Rudy
et al., 2011; Tremblay et al., 2016). Among all subtypes of
GABAergic INs, PV, SST, and 5HT3a (5HT3aR) constitute nearly
the entire neocortical interneurons. The PV group, constituting
40% of GABAergic interneurons, includes fast spiking basket
and chandelier cells. The SST group, including the Martinotti
cells, represents 30% of this population, while the 5HT3aR group,
accounts for 30% of this population (Rudy et al., 2011).

The identification accuracy of specific neuronal types based
on the spiking features decreases in extracellular recordings.
Noise from different sources such as instrumentation noise, and
interferences, hinder its accuracy (Becchetti et al., 2012). The
patch-clamp technique used for electrophysiological recordings

was first developed to record single-channel electrical signals
of neurons membrane (Neher and Sakmann, 1976) and was
later used to record the macroscopic electrical activity of a
single neuron in the so called whole-cell configuration (Hamill
et al., 1981). In vivo whole-cell patch-clamp recording requires a
sequence of delicate expertise by the experimentalist. The main
challenges of this technique are stability (i.e., reducing brain
movements as well as environmental oscillations), recording
duration, and also maintaining the high quality of recordings
(Schramm et al., 2014). Thus, proposing a computational method
for the classification of different neuronal subtypes using in vivo
recording is invaluable.

Although a number of studies were proposed in the literature
on neuronal classification using electrophysiological recording
techniques such as multi-array extracellular recording (Yang
et al., 2013), in vitro whole-cell patch-clamp (Druckmann et al.,
2013; Sümbül et al., 2014) or in vivo tetrode recordings (Li
et al., 2012), no study was performed to classify neuronal types
using in vivo whole-cell patch-clamp recordings to the best of
our knowledge. In fact, there are some studies focusing on
electrophysiological parameters of specific neurons using in vivo
whole-cell recordings (Descalzo et al., 2005; Azouz and Gray,
2008), but no classifying was performed in such studies.

Therefore, the aim of our study is to design a novel method
for identifying neuronal types based on the waveform shape of
neurons spike using in vivo whole-cell patch-clamp recordings.
This approach would be particularly useful for laboratories with
intracellular recordings in vivo in which 2-photon imaging is not
possible. This method might also be beneficial for identifying
neuron’s subtype from deeper structures, where visualization is
challenging and alternative approaches such as blind intracellular
recording is an appropriate option. We proposed a method to
extract most informative features from spikes. In this method,
we calculated Discrete Cosine Transform (DCT) from each spike
as representative features. In our study, we distinguish three
types of neurons: excitatory pyramidal cells and two types of
inhibitory neurons: GABAergic- parvalbumin positive (PV+)
and somatostatin positive (SST+) non-pyramidal cells in layers I
and II/III of the mice primary visual cortex. The rest of the paper
is organized as the following. In the next section, information
about the study population, experimental protocol, and our data
miningmethods is presented. The results of the proposedmethod
are provided in section Results. The discussion is provided in
section Discussion, and finally, the conclusions are summarized
in section Conclusion.

MATERIALS AND METHODS

Dataset
Mice Preparation
The Animal Experiment Committee of RIKEN BSI (Brain
Science Institute; http://www.brain.riken.jp/en/) approved the
entire experimental procedures and the experiments were
accomplished according to the guidelines of the Committee. The
experiments were performed on urethane anesthetized mice. The
data and experimental protocol presented in this paper are the
same as our recent publication (Safari et al., 2017). It is briefly
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summarized here. The entire data was recorded from three types
of transgenic mouse lines in which PV, SST or whole GABAergic
interneurons express Channelrhodopsin-2(ChR2). The following
three lines of transgenic mice used in this study:

(1) VGAT-ChR2-YFP mice, B6. Cg-Tg(Slc32a1-
COP4∗H134R/EYFP)8Gfng/J).

(2) SST-ChR2-YFPmice, STOCK SST< Tm2.1(cre)Zjh > J ×
B6;129S-Gt(ROSA)26Sortm32 (CAG-COP4∗H134R/EYFP)
Hze/J.

(3) PV-ChR2-YFP mice, B6;129P-Pvalbtml (cre)Arbr/J ×

B6;129S-Gt(ROSA)26Sortm32(CAG COP4∗H134R/EYFP)
Hze/J.

Urethane (1.5–1.9 mg/g body weight), with additional doses if
necessary was used to anesthetize the animals. A small custom-
made head chamber attached over the occipital region of the
left hemisphere, was used to immobilize the animal’s head
under a two-photon microscope. After removing a small part
of the skull and dura mater over the primary visual cortex,
the exposed cortex was covered with agarose (1.5–2.0% in
Ringer’s solution).

Electrophysiological Recording
The membrane potentials were recorded using double whole-cell
current-clamp simultaneously from YFP-positive interneurons
(PV or SST-positive interneurons) and nearby pyramidal (YFP-
negative neurons with large soma of pyramidal shape and
large apical dendrites) neurons. They were recorded at a depth
of 110–230µm of the cortical surface. The average distances
between the PV–SST was 28 ± 5.0µm while it was 36 ±

6.0µm for PV- Pyr cell pairs. The multi-clamp amplifier

(Multiclamp 700B) was used for recording, and the data was
sampled at 20 kHz. Recordings were digitized using NI-DAQ
board (PCI-MIO-16E-4, National Instruments) and acquired
using custom-made LabVIEW software. The block diagram of
our proposed method is shown in Figure 1. It consists of two
procedures namely as the cluster analysis and the classification
of cell types. The details of the algorithms are discussed as the
following.

Pre-processing and Denoising
The third-order digital Butterworth Notch filter with the cut-off
frequency of 50Hz with 5Hz of bandwidth in the forward and
reverse directions was used to remove power line interference
from the signals. The quality of the recorded signals was further
improved using a moving average filter (the window length of
0.4ms).

Extracting Features and Classification
The proposed features were extracted from the time samples
of the spikes. This procedure was performed in several steps
illustrated as below:

Single-Spike Extraction
First, single spikes were extracted from the signal using
segmentation. This was performed by thresholding the trace of
neurons activity. Times of the peak of each action potential were
determined using a simple threshold procedure. The time of
the peak occurrence of each spike was used as a marker. The
spikes were extracted using temporal windows with the length
of 3ms around the markers (−1 to+2ms around peaks location;
Perrenoud et al., 2016). Figure 2 shows sample traces of different

FIGURE 1 | The block diagram of our proposed method for different cell-type identification.
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FIGURE 2 | The recorded data from three different neuron types (PV, Pyr, and

SST). Recorded raw data (A,D,G) and the ensemble of spikes extracted from

the raw data by windowing over the spikes’ peaks at second column (B,E,H,

1ms before peak to 2ms after each spike peak). (C,F,I) shows DCT

coefficients extracted from their spikes waveform.

types of neurons with the pool of extracted spikes. With a visual
judgment, variability of spike waveforms of different types of
neurons is apparent.

Discrete Cosine Transform
Each epoch in our study had 60 samples (i.e., 3ms epoch
width multiplied by the sampling rate of 20 kHz). Such epochs
were zero-padded to 100 samples. The DCT coefficients of each
detected spike were used as the feature vector. The DCT, first
introduced by Ahmed et al. (1974), has been used in the literature
for feature extraction (Rao and Yip, 1990; Dabbaghchian et al.,
2010). For an input time series u(n) (i.e., the time samples of each
detected spike) with the length N (i.e, 100 in our study), its DCT,
v(k), is calculated as below (Hafed and Levine, 2001):

v(k) = α(k)

N−1
∑

n=0

u(n) cos

(

(2n+ 1)πk

2N

)

0 ≤ k ≤ N − 1 (1)

where

α(k) =

√

k+ 1

N
; 0 ≤ k ≤ N − 1 (2)

Thus, 100 DCT coefficients i.e., v(0) . . . ,v(99) were extracted for
each segment (i.e., spike) and used as features for the rest of the
analysis. Such a number of DCT coefficients were used based on
the preliminary analysis as to have the best class separation in our
study.

Action Potential Shape Features
In order to test the performance of our proposed method to
classify neural subtypes with previously proposed method in
literature (McGarry et al., 2010; Zaitsev et al., 2012; Helm
et al., 2013), we calculated some features related to the shape
of action potentials. We thus extracted 7 electrophysiological
variables from the waveform of the action potential. Such
extracted features were: action potential threshold (APT), action
potential duration (APD), after hyperpolarization (AHP), rise
time (RT), fall time (FT), rise rate (RT), and fall rate (FR).
Extracted parameters from a sample action potential are depicted
in Figure 3.

Principal Component Analysis
Working on high dimensional data is challenging in machine
learning. In fact, different problems happen when the features
have high dimensions (Theodoridis and Koutroumbas, 2009).
One of the well-known methods for dimensionality reduction
is the Principal Component Analysis (PCA). The PCA is well-
described and reviewed in the literature (Bishop, 2006). The
PCs are formed by decomposing the correlation matrix of
data to eigenvalue. The eigenvectors (i.e., uncorrelated vectors)
corresponding to each eigenvalue is called principal components
(PCs). The dimension of the dataset is usually reduced using PCA
since the number of uncorrelated components is always less than
that of the original variables. The extracted spike features were
represented as a matrix of feature, in which each row and column
is related to a spike and DCT coefficients, respectively. We
performed PCA on 100 DCT coefficients and kept two PCs for
further analysis corresponding with the cumulative percentage
variance (CPV) of 90%.
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Cluster Analysis
In this step, we used 90 percent of the date (feature’s matrix) for
clustering and saved the center of each cluster in the repository as
depicted in Figure 1. We used the fuzzy c-mean (FCM) clustering
method to determine clusters and their centers (i.e., cluster
representatives). The FCM algorithm is one of the most popular
clustering algorithms developed by Dunn in 1973 (Dunn, 1973).
In this clustering method, each sample of data belongs to many
clusters with different membership value. In fact, in this step,
we extracted all centers of clusters using 90% of data and the
remaining 10% was used to validate our model.

Cell Type Identification
In the cell type identification phase, we used the remaining
percentage (10 %) of the data to classify each sample (spike) to
different types using theminimum distance classifier (Duda et al.,
2000). A given pattern X = (x1, x2, ..., xN) of unknown classes
is classified into the class no. i if its Euclidean distance (Di in
equation 3) to the center i [Ci = (ci,1, ci,2, ..., ci,N)] is smaller than
those to all other centers.

Di = ‖X − Ci‖ =

√

√

√

√

N
∑

j=1

(xj − ci,j)
2 (3)

where Di is the Euclidean distance between X and the ith cluster’s
Center, xj is the value of X in the jth dimension, and ci,j is value
of Ci in the jth dimension.

Class Separability Based on Scatter
Matrices
To identify whether DCT transformation improved the class
separability, J3 index was used in our study (Theodoridis and
Koutroumbas, 2009). Class scatter matrices for class separability
is defined as:

Sb =
∑c

i=1 (mi −mj)
t(mi −m)

Sw =
∑c

i=1

∑ni
j=1 (xij −mj)

t(xij −mi)
(4)

where, C is the number of classes, ni is the number of samples
in the class i, mi is the mean of instances in the class i and m is
the average of all samples. Xij is the sample j in the class i, Sb is
the between class scatter matrix and Sw is the within class scatter
matrix (where Sb>>Sw). The J3 index is then defined as below:

J3 = trace(Sb + Sw)/trace(Sw) (5)

where, the trace is the sum of the eigenvalues. The criterion J3 is
an unbounded measure. The larger the value of J3, the smaller the
within class scatter as compared to the between class scatter and
thus shows better class separability.

Classification Performance Evaluation
The 10-fold cross-validation framework was used to assess the
performance of the proposed classification method. The feature

matrix was divided into 10 equal size parts. In each fold, the
cluster centers were determined by 90% of the data in the training
phase (determining clusters center), while the remaining 10%was
used to classify using the minimum distance classification (Duda
et al., 2000). This process was repeated for the entire folds. The
spike identification performance was assessed for each class in
terms of precision, recall and accuracy as the following:

precisioni(PRi) =
TPi

TPi + FPi
(6)

Recall(RLi) =
TPi

TPi + FNi
(7)

Accuracyi(Acci) =
TPi + TNi

TPi + FPi + TNi + FNi
(8)

where,
True Positive (TPi): the number of samples correctly identified as
class Ci;
True Negative (TNi): the number of samples correctly identified
as any class except the class Ci;
False Positive(FPi); the number of samples incorrectly identified
as class Ci;
False Negative(FNi); the number of samples belonging to class Ci

but incorrectly assigned to other classes;
The overall accuracy, precision and recall was then calculated

as their average over three classes.

Statistical Analysis
The mean and standard error of the mean (mean ± SEM)
was reported for each variable in each analyzed class. We used
a semi-parametric method entitled as generalized estimating
equation (GEE) and the multiple comparison post-hoc test to
identify whether neuron types are associated with repeated
responses of action potential shape parameters or their principal
components (i.e., extracted parameters of different spikes of each
neuron, Hardin and Hilbe, 2003). The Q-Cochran’s test and
the McNemar’s post-hoc test were used to identify whether one
classifier statistically significantly outperforms the others (Webb
and Copsey, 2011). The Bonferroni correction was used for
multiple comparisons and the adjusted P-values were then used
for interpretation. The level of significance was set to 0.05.

The feature extraction, clustering and classification were
performed using MATLAB R2017b (Mathworks, Natick, MA).
The statistical analysis was performed using the IBM SPSS
Statistics for Windows, version 22.0 (Armonk, NY: IBM Corp.).
The developed programs, and the recorded datasets are entirely
available online at https://doi.org/10.6084/m9.figshare.6739514.

RESULTS

A number of 14 (5 SST, 4 PV, and 8 Pyr) neurons were used in
our experiment. We extracted 788, 849, and 2,989 spikes from
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FIGURE 3 | Extracted parameters from an action potential waveform which have been used to classify neurons. [APT, action potential threshold (A); APD, action

potential duration (B); AHP, After hyperpolarization (C); RT, rise time (D); FT, fall time (D); RR, rise rate (E); FR, fall rate (E)].

pyramidal, somatostatin and parvalbumin neurons, respectively.
Figures 2C,F,I shows the DCT coefficients for three types of
neurons. In this Figure, The DCT coefficients of various type of
neuron are rather different. The value of the J3 index as a measure
of class separability for DCT features and raw signals were 191.5
and 72.09, respectively showing better separability of the DCT
features.

In order to explore the variability of DCT coefficients
extracted from the neuron spikes, we provided the scatter plot
of their first two principal components (Figure 4A). Moreover,
Figure 4B shows the distribution of the first PC space of different
classes. The dashed black line displays the total distribution of
samples while the distribution for each type of neuron is plotted
by a corresponding color. It is apparent that the total distribution
(dash line) is clearly Tri-modal. The first peak corresponds well to
the Pyr neuron type, while the second and third ones correspond
SST and PV neurons, respectively.

From Figure 4A, it is apparent that two visible clusters can
be accounted for the SST interneuron while no clear sub clusters
were observed in PCA space for the other two clusters. In fact,
the second peak in the distribution of SST neurons (Figure 4B;
color blue) has a significant overlap with the PV distribution
function. This may occur for two reasons: first, the projection
chosen to plot by the first two PCs causes these types to appear
mixed while, being separated in the entire high-dimensional
feature space. Second, maybe they belong to different subtypes of
SST interneurons as investigated in the previous study (McGarry
et al., 2010). The PV group encompassed approximately half of
the neurons and was highly separated from the Pyr neurons

cluster (red and green; Figure 4A). Nearly all spikes of Pyr
neurons (red distribution) had negative values in the first PC,
whereas SST had slightly positive and near-zero values and PV
cells (green) had more positive values. The percentage of the
variability represented by each PC is shown in Figure 4C. In
our study, the first two PCs were selected (73.78% for PC1
and 15.52% with PC2: total 89.3%). We further statistically
explored the variability of the retained PCs. The PCs of the
three groups were significantly different (Figure 5). In fact, all
groups had significant differences with each other using either
PC1 whereas in PC2 just PV and SST has significant difference
(p < 0.05).

The overall performance of the proposed classification
method was reported in mean ± SEM over 10-folds (Figure 6).
The overall accuracy, precision, and recall were 92.67 ± 0.54,
87.13 ± 2.59, 87.05 ± 0.74%, respectively (rightest bars in each
group in Figure 6) confirming the relative discriminant power
of the extracted features. We also calculated the performance of
the classification in each class. The accuracy, precision and recall
values were 91.59± 1.18, 95.45± 0.54, 91.33± 1.91, for PV; 97.42
± 0.69, 100 ± 0.00, 84.89 ± 4.11% for Pyr and 89.01 ± 1.12,
65.68 ± 3.15, 84.69 ± 1.98% for SST classes. The classification
accuracy of Pyr group is higher than that of the other two
groups. This is in fact in agreement with the visual interpretation
of the distribution and the scatter plot of the PCs in
Figure 4.

The average and dispersion of the extracted parameters
from action potential shape were shown in each neuron group
(Supplementary Table S1 and Figure 7). The performance of
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FIGURE 4 | Neurons discrimination based on PCA. (A) The scatter plot of the two PCs of the DCT of the spikes. Different groups are marked with different colors and

marker. (B) The histogram of the first PC of the DCT coefficients. Overall the dashed black line shows sample distribution and different groups are marked with

different colors; (C) The Percentage of variance captured by each PC, PCs 1–20.

FIGURE 5 | Values of feature in the first 2 PCs in three electrophysiological classes of neurons in mice V1. Bar graph shows the mean values of PC for different groups

and error bar shows the SEM value. (*adjusted pvalue < 0.05, GEE).

that method was assessed using the 10-fold cross-validation with
the same folds as our analysis. Extracting all 7 parameters, we
performed PCA and retained the first two PCs (CPV of 90%). The
overall accuracy was 82.29 ± 1.31%. The accuracy for PV, Pyr,
and SST identification was 75.20 ± 4.24, 91.40 ± 1.92, and 80.27
± 4.16%, respectively. Our proposed neuron classification system
significantly outperformed this classification system (McNemar’s
test; p < 0.05).

Moreover, in order to assess the performance of our method
on other experiments such as in vitro whole cell recording, the
programwas further tested on the pool of 50 neurons in the Allen
Cell Types Database (Allen Cell Types Database, 2015). We used
the data from 5 major subtypes of neurons namely as excitatory
pyramidal neuron, and four major inhibitory neurons namely as
parvalbumin, somatostatin, 5HT3a and the vasoactive intestinal

polypeptide (VIP) expressing neurons. Transgenic mice lines
Nr5a1-Cre, Pvalb-IRES-Cre, Sst-IRES-Cre, Htr3a-Cre_NO154,
and Vip-IRES-Cre were selected to target pyramidal, PV, SST,
5HT3a, and VIP neurons, respectively. We used 10 neurons per
each group from layers 2/3,4,5,6a of the cortex. The number of
extracted spikes for Pyramidal, PV, SST, 5HT3a, and VIP groups
were 334, 721, 447, 378, and 459, respectively. Using five-fold
cross validation, with one principal component after dimension
reduction, the neuronal classes were predicted with the overall
accuracy of 84.13 ± 0.81%. The PV class was the best predicted
class (93.57 ± 0.59%), followed by the SST (89.15 ± 0.63%),
VIP (81.69 ± 0.56%), 5HT3a (79.23 ± 1.38%), and Pyr (77.02 ±
0.91%). The exported in vitro dataset and the developed program
could be assessed in the file “in_vitro.zip” located at https://doi.
org/10.6084/m9.figshare.6739514.
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FIGURE 6 | Performance evaluation in terms of accuracy, precision, and

recall. The performance of classification was shown for single classes of PV

(green bar), Pyr (red bar), and SST (blue bar) and also their overall mean

(black dashed bar).

DISCUSSION

Our main finding in this study is the efficacy of in vivo
whole-cell intracellular recording in the electrophysiological
classification of neural subtypes. This approach would be useful
for laboratories with intracellular recordings in vivo, especially
for recording from deep structures, where visualization is
challenging and alternative approaches such as blind intracellular
recording is an appropriate option. There are some alternative
options to understand cell-type such as optogenetics tagging
by Optopatcher or Optrode by using optical fibers (Kravitz
et al., 2013; Muñoz et al., 2017). In the literature, most of
the classification methods have been performed on the base
of neural spiking data and extracellular recording technique
but because of limitations in identifying neural action potential
characteristics, the efficacy of these methods is limited (Lima
et al., 2009; Moore and Wehr, 2014). In single unit recordings,
a limited number of features such as spike half-width, energy
of signal and so on are widely used for neuron classification
(Quirk et al., 2009; Li et al., 2015). To the best of our knowledge,
there were not any systematic approaches similar to our study
in the literature. Although most of the researchers believe that
it is not enough to rely on electrophysiological features of the
neurons for their classification, we showed that it is possible
to use intracellular recordings for such a purpose. However,
the identification accuracy of the proposed method requires
improvement.

This approach would be particularly beneficial in blind
intracellular recordings in animal models and in operation rooms
for a better understanding of neural functions in the brain, e.g.,
in epileptic patients that surgical operations and corticectomy
are treatment choices (Jobst, 2012; Rey et al., 2015). Moreover,
classifying cell types was subjective leading to inconsistent

identification of neurons before. Lately, clustering methods were
used for this identification (Cauli et al., 1997; Karube et al., 2004;
Ma et al., 2006; Dumitriu et al., 2007; Helmstaedter et al., 2009;
Karagiannis et al., 2009; DeFelipe et al., 2013).

We not only used in vivo data to test the proposed algorithm,
but we also analyzed in vitro data to identify whether it works
under other experimental conditions. In fact, different cortical
layers and number of classes were distinctive factors in our
analysis. The overall accuracy of our program was 92.67 ± 0.54
and 84.13 ± 0.81% using cross validation framework for in vivo
and in vitro datasets, respectively. While in the former case, we
had three classes, five classes were analyzed in the latter case. The
Pyr was the best predicted class (97.42 ± 0.69%) in the in vivo
study while the PV had the highest identification accuracy (93.58
± 0.91%) in in vitro dataset. We recorded the in vivo data while
the Allen Cell Types Database was used for in vitro analysis. The
proposed program is robust, since it works well on both in vivo
and in vitro datasets without any systematic modifications.

Several studies have been performed on the classification of
different neuronal subtypes using Allen Cell Types Database.
For example, Gouwens and colleagues used a supervised
method to classify neurons into putative types corresponding
to four neuronal types (Pyr, PV, SST, and 5HT3a; Gouwens
et al., 2018). The overall accuracy of the classification using
12 electrophysiological features and support vector machine
classifier was 79%. The Pyr class was predicted with the accuracy
of 91% followed by the PV (80%), SST (59%), and 5HT3a (50%)
classes. In comparison, we identified PV, SST, VIP, 5HTa, and Pyr
with the accuracy of 93.57± 0.59, 89.15± 0.63, 81.69± 56, 79.23
± 1.38, and 77.02 ± 0.91%, respectively. We outperformed the
classification method proposed by Gouwens and colleagues in
identifying PV, SST, and 5HT3a classes but not Pyr.

Various supervised and unsupervised methods can be used
to examine neuronal feature subtypes (Li et al., 2015). In fact,
a promising way to understand cortical circuit functions is the
classification of neural types based on different properties. In the
past, criteria were often qualitative and were not standardized.
Therefore, more challenges remain in the classification of
interneurons and finding a set of relevant descriptors. Several
groups have used clustering algorithms for identifying various
interneurons subtypes (Cauli et al., 2000; Karube et al.,
2004; Ma et al., 2006; Dumitriu et al., 2007; Helmstaedter
et al., 2009). Frey and Dueck (2007) devised the affinity
propagation, that significantly improved results over standard
methods. It was also shown in another study that the k-
means algorithm had better performance than Ward’s method
to classify four subtypes of PV interneuron (Helm et al., 2013).
They used the average within-cluster distance, the average
between-cluster distance, and the Calinski-Harabesz index to
compare Ward’s and k-means cluster results. Such unsupervised
methods, already resulting in high identification accuracies,
could be improved if combined with dimensionality reduction
(Guerra et al., 2011). Gentet et al. (2010) investigated the
membrane potential dynamics of excitatory and inhibitory
neurons in the barrel cortex of behaving mice. They used 2-
photon targeted whole-cell patch-clamp recordings to measure
parameters from spike waveform of neuron such as action

Frontiers in Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 823

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ghaderi et al. Electrophysiological Profiling of Neocortical Neural Subtypes

FIGURE 7 | The Comparison of physiological parameters extracted from action potential shape for three different types of neurons. All data shown mean ± standard

error (APT, action potential threshold; APD, action potential duration; AHP, After hyperpolarization; RT, rise time; FT, fall time; RR, rise rate; FR, fall rate. *adjusted

pvalue ≤ 0.05, GEE).

potential duration, input resistance, mean membrane potential,
and action potential frequency. The neurons were divided into
three main groups, namely as excitatory, fast spiking, and
non-fast spiking inhibitory neurons. Based on their results,
excitatory neurons (i.e., pyramidal neuron), fast spiking (e.g.,
PV), and non-fast spiking (e.g., SST) inhibitory neurons have
longest to shortest action potential duration. This result is
in agreement with our measurement from action potential
duration of neurons. Jouhanneau et al. (Jouhanneau et al., 2018)
represented similar results for Pyr, SST, and PV neurons. Also,
they measured the action potential threshold as a distinctive
parameter in different cell types. Being in good agreement with
our measurement, their results showed that the PV neuron has

the highest and the SST group has lowest value of action potential
threshold.

Our study showed that the mean rise time was significantly
shorter in PV neurons compared with both Pyr and SST neurons.
However, there is not a significant difference between Pyr and
SST neurons rise time. The rising rate for PV neurons was
significantly larger (near 50%) compared with SST, and Pyr
neurons, suggesting a higher sodium channel density for PV
cells. On the other hand, the falling rate of PV neurons is also
larger (at least by 50%) compared with that of the other two
groups. It may suggest a higher potassium channel density for PV
neurons. However it has been shown in literature that difference
in spike duration is dependent on passive properties of neurons

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 823

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ghaderi et al. Electrophysiological Profiling of Neocortical Neural Subtypes

such as time constant (in PV+ neurons are less than SOM+

neurons; Stuart et al., 1997; Kowalski et al., 2016; Safari et al.,
2017) as well as active properties of neurons such as amount of
Kv3 potassium channels (Bean, 2007). PV neurons have a larger
after hyperpolarization amplitude compared with Pyr and SST
groups (12.45 ± 0.07mV vs. 3.06 ± 0.11 and 7.23 ± 0.1mV).
Comparing the action potential duration (APD) of the three
groups of neurons revealed three distinct groups. Both Pyr and
SST cells have longer-duration action potentials with 1.41 ±

0.012ms and 1.18 ± 0.01ms, respectively, in comparison with
PV neurons which has shorter action potential duration (0.70 ±
0.005ms).

In the current study, we used a limited number of neurons.
Increasing the sample size will improve the statistical power
of our classification. We did not add some in vivo functional
features such as inter-spike interval (ISI) or firing pattern of
neurons in our method. Adding such features would be beneficial
as to increase the performance of the classification. Moreover,
further morphological features could be extracted to improve the
neuron classification. They will be the focus of our future works.
Our method still is not able to predict all of the correct samples
(with the overall accuracy of 92.67 ± 0.54 and 84.13 ± 0.81% on
in vivo and in vitro data, respectively) but the identification rate
is higher than that of the-state-of-the-art.

CONCLUSION

We proposed a semi-supervised method to identify three
subtypes of neurons in layers 1 and 2/3 of the visual cortex of
transgenic mice using in vivo whole-cell patch-clamp data. The
DCT transform and previously proposed electrophysiological
parameters were used to classify three subtypes of cortical
neurons. We showed that the DCT features are more informative
than extracted electrophysiological parameters. In addition to the
application of our method to identify in vivo neuronal subtypes,
its application to classify 5 major neuronal subtypes for in vitro
data was presented. We used a considerable pool of in vitro data

available online from Allen Database. Although the performance
of the proposed method was lower in in vitro data compared
with in vivo, it outperformed the stat-of-the-art in this field. The
proposedmethod is thus promising in identifying cell types based
on the electrophysiological characteristic of the neurons.
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