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The epidemiological connection between diabetes, obesity, and dementia represents

an important public health challenge but also an opportunity to further understand

these conditions. The key intersection among the three diseases is insulin resistance,

which has been classically described to occur in peripheral tissues in diabetes and

obesity and has recently been shown to develop in Alzheimer’s disease (AD) brains. Here

we review encouraging preclinical and clinical data indicating the potential of targeting

impaired insulin signaling with antidiabetic drugs to treat dementia. We further discuss

biological mechanisms through which peripheral metabolic dysregulation may lead to

brain malfunction, providing possible explanations for the connection between diabetes,

obesity, and AD. Finally, we briefly discuss how lifelong allostatic load may interact with

aging to increase the risk of dementia in late life.
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INTRODUCTION

Alzheimer’s disease (AD), type 2 diabetes (T2D), and obesity are among the most expensive and
disabling disorders worldwide. For a long time, the correlation between cognitive impairment
and metabolic diseases was undetected. Now, increasingly epidemiological evidence supports an
important association among these conditions (Razay et al., 2006; Baker et al., 2011; Crane et al.,
2013; Ikram et al., 2017). Accordingly, experimental observations are identifying that markers
of metabolic dysregulation are also present in AD, the most remarkable being insulin resistance
(Talbot et al., 2012; De Felice, 2013; Boles et al., 2017). However, the molecular mechanisms
underlying this crosstalk are still elusive, as well as how central and peripheral insulin signaling
operate in AD (Biessels and Despa, 2018).

Over the last decade, cumulative data have reinforced that the brain is an insulin-sensitive organ.
The insulin receptor (IR) and related insulin-like growth factor receptors 1 and 2 (IGF1-R/IGF2-R)
are expressed not only in rodent hypothalamus, the critical brain region for metabolic control, but
also in cortex, hippocampus, thalamus, olfactory bulb, and in lower levels, in cerebellum, striatum,
midbrain, and brainstem (Fernandez and Torres-Alemán, 2012; Kleinridders et al., 2014).

Beyond the canonical role of insulin in whole body metabolism regulation (Brüning et al., 2000),
insulin also modifies neuronal activity promoting synaptic plasticity (Wan et al., 1997; Schmitz
et al., 2018) and improves memory function in mammalian brain (Park et al., 2000; Benedict
et al., 2007). Glial insulin signaling functions are gaining attention. Hypothalamic astrocyte
IRs control glucose-induced activation of POMC neurons, central and peripheral response to
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glucose availability, and glucose transport through the blood-
brain barrier (BBB, García-Cáceres et al., 2016). Additionally,
insulin modulates proinflammatory cytokine secretion in
microglia and astrocytes in vitro (Spielman et al., 2015;
Kurochkin et al., 2018). Under brain injury, IGF1 can be
produced by activated microglia and is required for vessel
remodeling (Walter et al., 1997; Lopez-Lopez et al., 2004).
Further studies are required to decipher the complex regulation
of insulin signaling in distinct cell types, but these data suggest
that IR/IGF-Rs play a role in central nervous system (CNS)
physiology.

Remarkably, several studies show that insulin signaling is
impaired in the brains of AD patients and AD experimental
models (Boyt et al., 2000; Craft et al., 2003; Steen et al.,
2005; Bomfim et al., 2012; Hiltunen et al., 2012; Talbot et al.,
2012). Neuronal insulin resistance can be induced by Aβ-
oligomers in primary cultures of hippocampal neurons and by
intracerebroventricular injection of AβOs in mice and monkeys.
It is mediated by TNF-α activation and IRS inhibition and
has major impact on synaptic dysfunction, impaired synaptic
plasticity, and synapse loss (Townsend et al., 2007; De Felice
et al., 2009; Bomfim et al., 2012; Batista et al., 2018) Remarkably,
our group found that icv injection of Aβ oligomers also
induce peripheral glucose intolerance with classic hallmarks
of peripheral insulin resistance, a process also observed in
transgenic AD mice models(Clarke et al., 2015) and that may
underlie increased risk for diabetes in AD (Janson et al.,
2004).Additionally, anti-diabetic drugs exerts beneficial effects
on cognition, synapse protection, insulin signaling deficits, and
other AD-related pathological mechanisms, such as endoplasmic
reticulum stress and chronic inflammation (Lourenco et al., 2013;
Sebastião et al., 2014; Batista et al., 2018; Tai et al., 2018).

Here, we review evidence regarding similar mechanisms
of insulin resistance shared by T2D, obesity, and AD. We
will discuss recent findings that help explain the connection
between peripheral metabolic deregulation and AD, the cause-
consequence between these diseases and how boosting insulin
pathway provide therapeutic alternatives for treating AD.

CROSSTALK BETWEEN PERIPHERAL
METABOLIC DISEASES AND BRAIN
PATHOLOGY

A key question to understand the connection between diabetes
and obesity to AD is to learn how metabolic impairment in
periphery may cause pathological alterations in the brain.

Fatty acids and lipids in general are well-established players
in obesity, diabetes, and AD. A recent meta-analysis study
revealed the potential mechanistic, diagnostic, and therapeutic
implications of different classes of lipids in AD (Zarrouk et al.,
2017). Obesity and diabetes present inflammatory components
(Wang et al., 2018). Indeed, obese patients often display basal
low-grade systemic inflammation in adipose tissue and increased
susceptibility to immune-mediated diseases (Sun et al., 2012;
Mraz and Haluzik, 2014). Free fatty acids (FFA) from feeding
trigger an inflammatory cascade initiated by Toll-like receptor 4

(TLR4) stimulation, releasing pro-inflammatory cytokines such
as TNF-α and interleukins IL-1β and IL-6 (Weisberg et al.,
2003; Shu et al., 2012). High levels of FFA can further inhibit
the anti-lipolytic action of insulin, increasing the rate of FFA
release into the bloodstream (Guenther, 2009). FFA binding to
BBB endothelial cell alters permeability, allowing FFA infiltration
into the brain (Rapoport, 2001). Hence, the increase in cerebral
FFA triggers detrimental events such as ceramide production,
pattern recognition receptors activation, inflammation, and ER
stress (Spiegel, 2005; Guenther, 2009; Groop et al., 2018). When
the brain detects homeostatic disruption, microglia are activated
leading to neuroinflammation (Jha et al., 2016). Saturated fatty
acids and mono-unsaturated fatty acids were shown to activate
microglial NF-kB pathway in a TLR4-dependent manner, leading
to increased production of proinflammatory cytokines, and
reactive oxygen species (ROS, Wang et al., 2012; Arnold et al.,
2014; Button et al., 2014; Carroll et al., 2018). Saturated fatty
acids were also shown to induce TLR4-dependent activation of
astrocytes in culture leading to cytokine production (Gupta et al.,
2012; Wang et al., 2012).

Advanced glycation end-products (AGEs) also represent a
common feature in diabetes and AD, and may be involved in
the crosstalk between periphery and CNS that underlies this
connection. AGEs are the product of unspecific and uncontrolled
reactions between proteins or lipids with sugars. AGEs increase
during normal aging, but their formation is promoted in glucose-
rich environments, such as in hyperglycemia. Interestingly,
elevated AGEs levels are also observed in AD brains (Shuvaev
et al., 2001; Choei et al., 2004; Takeuchi et al., 2007).
Importantly, AGE-receptor (RAGE) was suggested as a possible
receptor for Aβ (Yan et al., 1996) and to mediate Abeta
toxic mechanisms such as induction of ER-stress (Chen et al.,
2018). Moreover, RAGEs have been shown to promote Aβ

production, tau hyperphosphorylation and tangle formation,
synaptic impairment cognitive decline, and neurodegeneration
(Cai et al., 2016). Downregulating RAGE signaling specifically
in microglia prevented synaptic deficit and cognitive impairment
and diminished the activation of stress-related kinases in a
mouse model of AD (Criscuolo et al., 2017). Importantly, recent
evidences indicate that RAGE mediates Abeta impact on BBB
integrity and tight junction regulation as well APOE4-induced
BBB anomalies (Park et al., 2014; Wan et al., 2014, 2015; Alata
et al., 2015).

Collectively, these observations indicate that lipidemic
dysregulation in metabolic disorders may lead to BBB
permeabilization to FFAs, triggering a cascade of events
leading to activation of glial cells, and neuroinflammation. In
parallel, increased AGE levels in hyperglycemia may contribute
to RAGE-mediated disruption of BBB integrity and further
promote brain pathology leading to AD. Proinflammatory
cytokines reaching the brain through compromised BBB form
a toxic environment for neurons, leading to neuronal insulin
resistance, and synaptic dysfunction (Bomfim et al., 2012; Gupta
et al., 2012; Lourenco et al., 2013; Kiernan et al., 2016; Vieira
et al., 2017, Figure 1). Consistent with this hypothesis, it has
been shown that HFD activates inflammatory responses in the
mouse hippocampus (Lu et al., 2011; Almeida-Suhett et al., 2017)
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and impairs insulin signaling (Arnold et al., 2014) whereas a
high-AGE diet aggravates AD-like phenotypes in a mouse model
of AD.

THE IMPACT OF IMPAIRED INSULIN
SIGNALING IN BRAIN AND PERIPHERAL
CELLS

Intriguingly, many studies suggest that the incidence of AD is
higher in T2D patients and obese individuals, implying common
mechanisms driving these disorders (Kivipelto et al., 2005; Razay
et al., 2006; Whitmer et al., 2007; Baker et al., 2011; Crane et al.,
2013; Ikram et al., 2017). A core feature shared among diabetes,
obesity, and AD is insulin resistance (Kullmann et al., 2016). In
AD patients brains, impaired insulin signaling is a risk factor
but also aggravates the pathology (Matsuzaki et al., 2010; Arnold
et al., 2018).

During the past decades, mounting studies correlate the
alterations in IR/IGF-R signaling pathways and AD (Boyt et al.,
2000; Craft et al., 2003; Bomfim et al., 2012; Hiltunen et al., 2012;
Talbot et al., 2012; Pitt et al., 2017). In addition, alterations in
other proteins involved in insulin signaling were also described.
Insulin-degrading enzyme (IDE) is essential for insulin and Aβ

clearance (Farris et al., 2003). Insulin resistance in AD and
diabetes can lead to hyperinsulinemia, thereby, saturating IDE for
insulin and Aβ degradation. Furthermore, IDE function declines
with age, the major risk factor for sporadic AD (Kurochkin et al.,
2018). Also, phosphatase and tensin homolog (PTEN), protein
kinase B (Akt), and glycogen synthase kinase 3β (GSK3β) are
recruited to the synaptic compartments impairing LTP after Aβ

exposure (Knafo et al., 2016).
In diabetes and obesity, increased levels of pro-inflammatory

cytokines, particularly tumor necrosis factor alpha (TNF-α)
activates c-Jun terminal kinase (JNK), resulting in insulin
receptor substrate 1 (IRS1) suppression by increasing
the inhibitory phosphorylation of Ser312IRS1, Ser636IRS1,
and decreasing activating phosphorylation of Tyr465IRS1
(Hotamisligil et al., 1993; Rui et al., 2001; Pedersen et al., 2003).
These alterations were also identified in AD pathogenesis:
JNK activation and IRS1 inhibition are present in the
hippocampus of AD transgenic mice and cynomolgus
monkeys after intracerebroventricular (icv) injections of
Aβ oligomers (Ma et al., 2009; Forny-Germano et al., 2014).
Of note, these alterations in insulin signaling pathway were
also described in AD patients. Initial evidence comes from
a study showing that AD brains display markedly reduced
levels of both insulin and insulin-like growth factors (IGF)-I
and –II, accompanied by decreased expression of IR mRNA,
IRS-associated PI3K, and activated Akt (Steen et al., 2005).
This observations were subsequently corroborated by studies
demonstrating progressively increased phosphorylation of IRS-1
in inhibitory serine residues, accompanied by augmented levels
of their activated serine-kinases GSK-3, IKK, JNK, mTOR, and
PKCζ/λ, as patients evolve from non-demented to MCI to AD
(Bomfim et al., 2012; Talbot et al., 2012). Increased IRS-1 serine
phosphorylation was later found to co-localize with neurons

presenting tau-pathology and tangles (Yarchoan et al., 2014).
Additionally, it was observed increased phosphorylation of
Ser312IRS1 in neural-derived blood exosomes of AD, frontal
dementia, and T2D patients. The most interest point of this
study is that increased p-Ser312IRS1 manifested in prodromal
AD patients that sustained these alterations 10 years later, as
AD patients (Kapogiannis et al., 2015), suggesting that insulin
resistance in AD develops years before clinical manifestations
and that neural-derived exosomes carries potential for early
AD diagnosis. Exosomal biomarkers for insulin resistance were
further associated with morphometric changes in AD brains
(Mullins et al., 2017). Notably, the inhibitory phosphorylation of
IRS-1 and IRS-2 described in AD patients brains and transgenic
mice are correlated to memory deficits and leads to insulin
resistant states (Steen et al., 2005; Bomfim et al., 2012; Talbot
et al., 2012).

In peripheral tissues, such as the adipose tissue, of
diabetes and obesity models, TNF-α release also activates
stress kinases IκB kinase (IKK) and double-stranded RNA-
dependent protein kinase (PKR), promoting inflammation and
inducing endoplasmic reticulum stress besides insulin signaling
deregulation (Hotamisligil et al., 1993; Wellen and Hotamisligil,
2005; Yang et al., 2009). Conversely, TNF-α depletion protects
mice from obesity-induced insulin resistance (Uysal et al., 1997).
Similarly, Aβ oligomers also induce TNF-α secretion and the
consequent induction of IKK and PKR activation in AD animal
models (Bomfim et al., 2012; Lourenco et al., 2013), suggesting a
common mechanism promoting insulin resistance.

Interestingly, icv injections of Aβ oligomers in mice
provokes peripheral glucose intolerance, insulin resistance, and
inflammation characterized by activation of JNK and IKK and
IRS-1 inhibition, connecting AD pathology progression to the
development of diabetes (Clarke et al., 2015). In AD patients,
it was proposed an association between peripheral and central
insulin resistance by correlating [18F]-fln AD patients, i positron
emission tomography (FDG-PET) scans in the brain and the
homeostasis model assessment of insulin resistance (HOMA-
IR) in the blood. The study evaluated AD-vulnerable regions of
interest (ROIs) and predicted higher HOMA-IR and lower FDG
in all ROIs, indicating that central hypoglycemia and peripheral
insulin resistance are related. Additionally, both were associated
with immediate and delayed memory deficits in the medial
temporal lobe (Willette et al., 2015).

Although not completely elucidated, it is now acknowledged
that the alterations of insulin signaling in AD and diabetes
are associated. On that account, a great effort has been
made to distinguish the selective insulin responses in cellular
types and contexts. Most of insulin effects were thought
to be mediated by neurons, but recent findings indicate
insulin actions on glial cells affecting their functions and
whole-body response (Bélanger et al., 2011; García-Cáceres
et al., 2016; Fernandez et al., 2017). Astrocytic IR-knockout
mice present moderate glucose intolerance and depressive-
like behavior. Furthermore, astrocytic-mediated ATP traffic
to neurons is impaired, affecting purinergic signaling and,
consequently, decreasing dopamine release. Curiously, these
phenotypes were only observed in male mice, suggesting a
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FIGURE 1 | A possible cascade of events connecting peripheral metabolic dysregulation to dementia. In diabetic and/or obese subjects, dyslipidemia, and increased

circulating free fat acids as well as hyperglycemia and elevated peripheral AGEs levels (1) may increase blood-brain barrier permeability, allowing the influx of FFAs into

the brain (2). Disrupted BBB along with high levels of brain FFAs and AGEs, in turn, would cause activation of microglia and astrocytes and the release of

proinflammatory cytokines (3). Low-grade, chronic brain inflammation leads to detrimental events in neurons, including insulin resistance (4), priming the brain to

cognitive impairment and Alzheimer’s disease.

possible sex-specific role for IR in astrocytes (Cai et al., 2018).
This could represent a new molecular link between AD and
other psychiatric disorders, since clinical evidence has linked
depression and AD (Ownby et al., 2006; Modrego, 2010). In line
with these observations, knocking out astrocytic IGF1-R in mice
debilitates mitochondrial function, elevating ROS production,
and impairs working memory. In addition, astrocytic IGF1-
R knockout decreases glucose and Aβ uptake by astrocytes,
contributing to Aβ accumulation in the brain (Logan et al.,
2018).

A neurotoxic astrocyte phenotype induced by activated
microglia was recently described. This A1-like astrocyte
is associated with aging and aggravation of several
neurodegenerative disorders (Liddelow et al., 2017; Clarke
et al., 2018). Conversely, targeting microglia-mediated
conversion of astrocytes into A1 type with NLYP01, a
novel glucagon like peptide 1 receptor (GLP1R) agonist,
increases lifespan and reverses the loss of dopaminergic
neurons, and behavioral deficits in mouse models of
Parkinson’s disease (Yun et al., 2018). In the future, it will
be interesting to investigate if the beneficial effects of targeting
microglia GLP1 pathway offer any improvement to other
neurodegenerative diseases, such as AD (Liddelow and Barres,
2017).

The strongest genetic risk factor for late-onset Alzheimer
is the isoform ApoE4 of apolipoprotein E (ApoE4) protein,
involved in cholesterol metabolism (Strittmatter et al., 1993a,b).
Alongside with ApoE4 risk, AD patients also present abnormal
levels of 24-hydroxycholesterol (24-OHC), a cholesterol oxide
derivative which is important for learning and memory, in the
plasma and cerebrospinal fluid (CSF) (Zarrouk et al., 2017).
Interestingly, ApoE4 appears to exacerbate AD neuropathology
in individuals with T2D (Malek-Ahmadi et al., 2013). It was
also observed that insulin resistance in ApoE4 carriers is
correlated with higher levels of phosphorylated tau in the
CSF (Starks et al., 2015). Increasingly reports are trying to
figure out the connection between ApoE4 carriers, development
of AD, and metabolic changes associated with obesity and
diabetes (Peila et al., 2002; Reiman et al., 2005; Moser and
Pike, 2017; Zhao et al., 2017). It was described that ApoE4
genotype aggravates weight gain, impaired glucose metabolism,
augmented Aβ plaque load, and gliosis in mice under high fat
and sugar diet (Moser and Pike, 2017). Also, human ApoE4
variant interacts with insulin receptor trapping it on endosomes
in neurons, reducing IRs availability in neuronal surface and
diminishing insulin sensitivity. Remarkably, these effects are age-
dependent and accelerated under high fat diet (HFD, Zhao et al.,
2017). It was also described that the TREM2-ApoE pathway

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 830

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Ferreira et al. Insulin Resistance in Alzheimer’s Disease

regulates the switch to neurodegenerative microglia induced by
phagocytosis of apoptotic neurons, playing a detrimental role
in AD (Krasemann et al., 2017). However, if and how insulin
signaling participates in this process remains to be determined.
Importantly, TREM2 polymorphisms also determines high risk
for late-onset AD, but their role in neurodegenerative diseases
are controversial (Jay et al., 2015; Wang et al., 2015). Therefore,
the current challenge is to identify distinct roles of insulin
signaling in multiple genetic and environmental backgrounds
comprising AD risk and development to selectively modulate
insulin signaling.

BENEFICIAL EFFECTS OF BOOSTING
INSULIN SIGNALING IN THE CONTEXT OF
AD

Drugs currently in use for AD treatment target acetylcholinergic,
NMDA-type glutamatergic, and glutaminergic pathways. These
therapies offer symptomatic relief of memory defects but
do not combat the pathological mechanisms underlying AD
progression (Graham et al., 2017). Therapies based on the
amyloid hypothesis, aimed to reduce Aβ production, and toxic
Aβ aggregates in the brain (Barage and Sonawane, 2015), have
proven unsuccessful due to severe collateral effects (Searfoss et al.,
2003; Wong et al., 2004), unfavorable pharmacological properties
(Vassar, 2014), or fail to improve cognition of AD patients in
clinical trials (Salloway et al., 2014; Lasser et al., 2015; Kennedy
et al., 2016; Egan et al., 2018; Honig et al., 2018). In this context,
it is important to explore alternative targets that may provide
symptom relief and ameliorate pathology with minor collateral
effects.

On this matter, mounting data indicate that anti-diabetes
drugs could be neuroprotective in AD models and clinical
studies. Our group has contributed investigating the modulation
of insulin signaling by clinically used anti-diabetic drugs in
diverse AD models. We identified that insulin prevents Aβ

oligomers-induced synapse loss and surface IR reduction in
vitro (De Felice et al., 2009) and also rescued the PKR-
mediated endoplasmic reticulum stress in AD models (Lourenco
et al., 2013). Also, we investigated the beneficial effects
of GLP1-R agonists, such as exendin-4 and liraglutide, in
hippocampal cultures exposed to Aβ oligomers, transgenic
AD mice, and cynomolgus monkeys injected icv with Aβ

oligomers. These drugs activate insulin-related pathways through
G-protein dependent signaling, regardless of IR, and IGF-
R (Andersen et al., 2018). Exendin-4 acted decreasing the
inhibitory phosphorylation of Ser312IRS1, Ser636IRS1, and of
JNK, while restoring activating Tyr465IRS1 phosphorylation,
then counteracting insulin signaling impairment, memory
deficits and diminishing amyloid plaque load in APP/PS1
transgenic AD mice (Bomfim et al., 2012). Liraglutide reduced
tau phosphorylation and prevented IR reduction and synapse loss
in a c-AMP dependent manner in cynomolgus monkeys injected
icv with Aβ oligomers (Batista et al., 2018). Other groups also
showed that liraglutide can reduce inflammation and enhance
LTP in AD transgenic mice (McClean et al., 2011; McClean and

Hölscher, 2014), that exendin-4 prevents neuronal excitotoxicity
in a neurodegenerative rat model (Perry, 2002) and icv insulin
injections enhance cognitive performance (Park et al., 2000,
Table 1).

Observations taken from preclinical and epidemiological data
encouraged clinical trials repurposing insulin as a prospect
treatment to AD patients (Table 1). Anti-diabetics exerts
neuroprotective effects by mitigating Aβ toxicity, reducing
inflammation, and improving memory deficits (Bomfim et al.,
2012; Lourenco et al., 2013). In this context, anti-diabetic
therapy offers a multitarget approach covering several aspects
of AD pathology progression. However, concerns about off-
targeting consequences have been raised, as insulin signaling
systemically controls various cellular processes. To bypass this
problem, one propitious solution is the intranasal delivery,
restricting it to CNS and avoiding major peripheral effects
such as hypoglicemia, besides being more effective than oral
administration (Born et al., 2002; Spetter and Hallschmid, 2015;
Schmid et al., 2018). In mild cognitive impairment (MCI)
and early AD patients, acute intranasal insulin administration
facilitates verbal memory recall. Nevertheless, ApoE4 carriers
presented poorer verbal memory recall after the treatment,
suggesting a role for ApoE4 genotype in central effects of
insulin (Craft et al., 2003; Reger et al., 2006, 2008a). The
same group described that chronic intranasal insulin doses
enhanced selective attention, retention of new information,
and functional status of MCI and early AD subjects (Reger
et al., 2008b). Importantly, selective effects of intranasal insulin
treatment were observed. It was reported that women show better
scores of cognitive improvement than men after the intranasal
insulin treatment (Benedict et al., 2008). Conversely, in obese
individuals, intranasal insulin have no effect on body weight but
improved declarative memory and mood (Schneider et al., 2014).
At this moment, there are ten ongoing unpublished clinical trials
accessing intranasal insulin beneficial effects on AD patients
(NCT00581867, NCT02010476, NCT01436045, NCT01636596,
NCT03038282, NCT01767909, NCT00018382, NCT01595646,
NCT01547169, NCT02462161).

Besides insulin, GLP1-R agonists are also an alternative
to be invested on clinical trials, considering prior positive
results in preclinical models (Duarte et al., 2013; Tramutola
et al., 2017). One pilot study with few patients noted that
subcutaneous liraglutide prevented the decline of brain glucose
consumption, but had no effect on Aβ load or cognition
(Gejl et al., 2016). Currently, there are two ongoing larger
clinical trials accessing liraglutide neuroprotective effects in
AD (NCT01469351, NCT01843075). Other anti-diabetic drugs
targeting alternative pathways are also considered to address AD,
such as peroxisome-proliferator activated receptor γ (PPAR γ)
agonists rosiglitazone and pioglitazone (Miller et al., 2011). Pre-
clinical evidence showed that rosiglitazone improved memory
and decreased phosphorylated tau (Escribano et al., 2010).
However, these studies are also incipient and reported no
beneficial effects so far (Harrington et al., 2011; Miller et al.,
2011). In the next years, the results of the ongoing larger clinical
trials will provide further information about how metabolic
status of AD patients interfere on treatment success and also the
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TABLE 1 | Summary of preclinical and clinical studies on the efficacy of anti-diabetic, insulin-sensitizing drugs on multiple aspects of AD pathology in human patients and

animal models.

Compound Finding Model References

Insulin Prevention of AβO induced synapse loss and IR

reduction; amelioration of PKR-mediated ER stress

Rat hippocampal neuronal cultures De Felice et al., 2009;

Lourenco et al., 2013.

Insulin AD patients that are not ε4 carriers have reduced

sensitivity to insulin, affecting cognitive performance

AD patients homozygous or not for the apoE-ε4

allele and normal subjects intravenously injected

Craft et al., 2003.

Insulin Improve verbal memory in MCI AD ε4- subjects after

acute insulin administration but not in ε4 carriers

AD patients homozygous or not for the apoE-ε4

allele, mild cognitive impaired patients and normal

subjects intranasally administrated

Reger et al., 2006, 2008a

Insulin Chronic intranasal insulin doses enhanced selective

attention, retention of new information and

functional status of MCI and early AD subjects

AD patients, mild cognitive impaired patients and

normal subjects intranasally administrated

Reger et al., 2008b

Insulin Only women presented improved working memory

after treatment

Healthy men and woman intranasally administrated Benedict et al., 2008

Liraglutide Reduction of tau phosphorylation; prevention of IR

reduction and synapse loss in a c-AMP dependent

manner

Cynomolgus monkeys injected icv with AβO Batista et al., 2018

Liraglutide Improvement of memory deficits in novel object

recognition test and fear conditioning

Swiss mice injected icv with AβO Batista et al., 2018

Liraglutide Restore memory deficits in object regonition test

and morris water maze; enhance LTP; Reduce

microglial activation; diminish amyloid plaque load

APP/PS1 mice McClean et al., 2011;

McClean and Hölscher,

2014

Exendin-4 Decrease of the inhibitory phosphorylation of

Ser312 IRS1, Ser636 IRS1 and of JNK, while

restoring activating Tyr465 IRS1 phosphorylation

Rat hippocampal neural cultures Bomfim et al., 2012.

Exendin-4 Improvement of spatial memory in moris water

maze; reduced amyloid plaque load

APP/PS1 mice Bomfim et al., 2012

Exendin-4 Liraglutide eIF2α phosphorylation reduction Rat hippocampal neural cultures, APP/PS1 mice,

cynomolgus monkeys injected icv with AβO

Lourenco et al., 2013

GLP-1 Exendin-4 Reduction of neural excitotoxicity Rat hippocampal neural cultures; Rats injected on

the basal nucleus with ibotenic acid

Perry, 2002

Rosiglitazone Reversal of memory deficits in object recognition

test and morris water maze; Aβ levels reduction

AD transgenic mice J20 line Escribano et al., 2010

potential of anti-diabetic therapies in dementia, specially, insulin
intranasal use as a possible AD therapy (Femminella et al., 2017).

CUMULATIVE HYPOTHESIS FOR AD
PROGRESSION

Some puzzles of AD progression are now assembled, however, the
sequence of biological alterations that elicits disease development
needs clarification. One of the most accepted hypothesis to
explain AD is that pathology develops as consequence of the
build up of Aβ oligomers and amyloid plaques in the brain
(Hardy and Higgins, 1992; Haass and Selkoe, 2007). In familial
AD, many mutations are associated with Aβ processing, such
as APP and PSEN, supporting this idea. However, it is still
elusive the mechanism of Aβ oligomers accumulation and how
other mutations apparently non-related to Aβ increase sporadic
AD risk (Rao et al., 2014). The understanding that AD can
be triggered by inflammation and insulin resistance brought
a new perspective. It is possible that allostatic load, multiple
environmental effects accumulated during life, accelerates AD
pathogenesis. A crosstalk between brain and whole-body

metabolic homeostasis is thought to be one of the drivers of
sporadic AD (De Felice, 2013; Mattson and Arumugam, 2018).

Environmental factors interfere on cognitive performance
even in first years of life, when traumatic brain injury, maternal
separation, and psychological trauma might increase the risk of
neurodegenerative disease (Barlow, 2005). This correlation is also
present in brain injury suffered during adulthood (McKee and
Robinson, 2014). Other psychiatric disorders, such as depression,
can increase the susceptibility of AD (Ownby et al., 2006). In
this context, the brain is subordinate to many types of insults
and can also reflect peripheral tissue abnormal function. Sleep
disordered breathing is associated with glucose intolerance and
insulin resistance that may lead to T2D (Punjabi et al., 2004).
Moreover, sleep deprivation also play a role in AD pathogenesis
modulating Aβ accumulation (Bliwise, 2004; Kang et al., 2009)
and AD-like pathology in mice (Kincheski et al., 2017).

An unhealth lifestyle accelerates the detrimental effects of
aging, such as loss of endocrinological control leading to insulin
resistance, declines in growth hormone, IGF-1, and sex steroids
(Barzilai et al., 2012). A recent study showed that western
diet (composed majority by sugar and fat) is associated with
hippocampal atrophy (Jacka et al., 2015) and was reported to be
associated with a significant rise of AD incidence in Japan (Grant,
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2014). Smoking, lack of physical activity, and alcohol abuse are
some of other unhealthy practices that increase the risk of AD
(Baumgart et al., 2015).

Importantly, older women show faster deterioration of
cognition than men, present higher risk for developing AD
and abnormal insulin signaling (Li and Singh, 2014; Duarte
et al., 2018). Gene network analysis in mice revealed that age-
related transcriptional changes happen differently and earlier in
female compared to male brain (Zhao et al., 2016). Furthermore,
abdominal obesity is correlated with increased death risk in
older women and contributes to insulin resistance (Folsom
et al., 1993). Besides, other treatments can increase the risk
for AD. The Woman Health Initiative observed that hormone
replacement therapy combining estrogen plus progestin could
upregulate several age related markers, augmenting the risks for
cognitive decline, and cardiovascular disease (Writing Group for
the Women’s Health Initiative Investigators, 2002; Duarte et al.,
2018).

In this scenario, it is essential to identify modifiable risks
that reduce AD incidence and/or slow down sporadic AD
progression. In accordance with the notion that metabolic
changes triggers aging, it is possible that AD occurs as
a consequence of metabolic dysfunction, that can be
caused by cumulative lifelong impacts of lifestyle and other
conditions.

CONCLUSION

The clinical/epidemiological evidence associating metabolic
disorders with dementia has encouraged scientists to search
for the biological mechanisms underlying this connection.
The pivotal finding that insulin signaling is impaired in AD
brains represents a major advance in our current understanding
of AD physiopathology. Furthermore, compelling evidence
demonstrate that the molecular mechanisms leading to brain
insulin resistance in AD share striking similarity to those
involved in peripheral insulin resistance in diabetes and

obesity. Those include chronic, low-grade inflammation, TNF-α-

mediated inhibition of IRS-1, and endoplasmic-reticulum stress.
Importantly, these findings also led to the proposition that
drugs currently used to overcome peripheral insulin resistance
in diabetes may be repurposed to rescue brain insulin signaling
in AD. Since insulin signaling is neurotrophic, neuroprotective
and plays a key role in synaptic plasticity and cognitive processes,
boosting neuronal insulin signaling may come to be a disease
modifying therapeutic approach in AD. Indeed, preclinical
studies and clinical trials have been performed to test the efficacy
of anti-diabetic drugs, including insulin itself, in AD, with some
promising results (Table 1). In addition, dissection of the actions
of insulin in neuronal and glial cells is likely to foster knowledge
on the roles of insulin and related signaling pathways in CNS
physiology. Finally, a better comprehension of the crosstalk
between peripheral energy metabolism and brain function may
also help identifying therapeutic targets and modifiable risk
factors for AD and other brain disorders, improving public health
policies and public awareness.
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