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Silent mating type information regulation 2 homolog 1 (Sirt1), a nicotine adenine
dinucleotide (NAD+)-dependent enzyme, is well-known in playing a part in longevity.
Ischemic stroke is a major neurological disorder and is a leading cause of death and
adult disability worldwide. Recently, many studies have focused on the role of Sirt1 in
ischemic stroke. Numerous studies consider Sirt1 as a protective factor and investigate
the signaling pathways involved in the process under ischemic stress. However, the
answer to whether upregulation of Sirt1 improves the outcome of stroke is still a
controversy. In this review, we discuss the role and mechanisms of Sirt1 in the setting of
ischemic stroke.
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INTRODUCTION

Stroke is the second leading cause of death and a major cause of adult disability worldwide
(Cushman et al., 2008; Donnan et al., 2008). Ischemic stroke is the most common type of stroke
and accounts for 87% of all stroke cases (Macrez et al., 2011). Vascular recanalization therapies,
including tissue plasminogen activator thrombolysis and thromboembolectomy, are currently
considered the best therapies but are limited due to a narrow treatment window and several safety
concerns (Del Zoppo et al., 2009; Albers et al., 2018; Nogueira et al., 2018; Thomalla et al., 2018).
There is no effective treatment for ischemic stroke so far. It is crucial to find new therapies for this
major medical problem.

There are two major injuries to the brain. Firstly, a blocked cerebral artery and secondly, the
subsequent reperfusion may cause the secondary injury. Penumbra, defined as a zone of tissue
surrounding the core of the infarction area, is an important target for researchers and clinicians
to find effective therapies (Wang et al., 2012). The occlusion of a cerebral artery can cause the
deprivation of oxygen and energy, thereby leading to the dysfunction of cerebral tissue and
neuron death. After the early phase of necrosis, the following pathophysiological reactions such as
formation of free radicals, changes in gene expression, apoptosis, and inflammation contribute to
the delayed phase of tissue damage (Moskowitz et al., 2010; Petegnief and Planas, 2013). However,
the ineffectiveness of current therapies indicates that there should be other important mechanisms
leading to the pathophysiology of ischemic stroke.

Silent mating type information regulation 2 homolog 1 (Sirt1), also called sirtuin 1, is a
nicotine adenine dinucleotide (NAD+)-dependent enzyme (Kelly, 2010). Among several potential
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TABLE 1 | Role and mechanisms of Sirt1 in ischemic stroke.

Compound SIRT1 role Mechanism Reference

IRF9 Anti-apoptosis IRF9 inhibits Sirt1 deacetylase activity, culminating in the
acetylation and activation of p53-mediated cell death
signaling in response to acute I/R stress.

Zhang et al., 2017

LKE Anti-apoptosis, anti-inflammation LKE mediated, at least in part, through CRMP2 and Sirt1
upregulation and PARP1 inhibition.

Nada et al., 2012

Resveratrol Anti-oxidation, anti-apoptosis, anti-inflammation Resveratrol upregulates the Sirt1/PGC-1a, Akt/pCREB, and
p38 pathways and downregulates pERK1/2 expression in
ischemic injury.

Zhu et al., 2010

Regulation in glycolytic function Resveratrol via neuronal Sirt1 promotes glycolytic efficiency
to combat energetic stress.

Yue et al., 2008

Energy regulation Resveratrol provides neuroprotection by inhibiting PDEs
and regulating the cAMP/AMPK/Sirt1 pathway.

Kundu and
Thompson, 2008

Resveratrol preconditioning Anti-oxidation and regulation of neural survival The mechanism is mediated by Sirt1 through upregulation
of BDNF and downregulation of uncoupling protein 2.

Koronowski et al.,
2015

HBO-PC Anti-oxidation HBO-PC is mediated by the activation of Sirt1 and
Nrf2/antioxidant defense pathway.

Xue et al., 2016

Arctigenin Anti-inflammation Arctigenin inhibited NLRP3 inflammasome activation
through Sirt1 pathway.

Hernandez-
Jimenez et al.,
2013

Curcumin Anti-apoptosis Curcumin activates Sirt1 signaling, resulting in decreased
expression of Ac-p53 and Bax and increased Bcl-2
expression.

Miao et al., 2016

Icariin Anti-oxidation Icariin protects against brain ischemic injury by increasing
the Sirt1 and PGC-1a expression.

Kou et al., 2017

Nampt Regulation in autophagy Nampt induces autophagy via TSC2-mTOR-S6K1 signaling
pathway in a Sirt1-dependent manner.

Wang et al., 2012

Energy regulation Nampt protects against ischemic stroke through rescuing
neurons from death via the SIRT1-dependent AMPK
pathway.

Dasgupta and
Milbrandt, 2007

Leptin Anti-apoptosis Leptin increases CB2, Sirt1 and TRPV1 expression as well
as expression of the endogenous leptin receptors and
reduces the expression of CB1 receptors.

Ashrafi et al., 2017

Magnolol Anti-apoptosis and anti-inflammation Magnolol activation of Sirt1 was accompanied by the
inhibition of Ac-FOXO1 expression, which decreased the
expression of bax and increased Bcl-2 expression.

Chen et al., 2014

Melatonin Anti-apoptosis Melatonin increased Sirt1 and reduced Ac-p53 and Ac-NF-
κB and was also associated with a rise of Bcl2 and a
lowering of Bax.

Wang et al., 2008

Tetrahydroxystilbene glucoside Anti-oxidation and Anti-apoptosis The mechanisms are involved with depression of the JNK
and Bcl-2 family-related apoptotic signaling pathway, and
inhibition of iNOS mRNA expression, which was partly
mediated by the activation of Sirt1 and thereby inhibition of
NF-κB activation.

Taxin et al., 2014

SalB Anti-oxidation, anti-apoptosis, anti-inflammation SalB decreased TNF-α and IL-1 levels in the brain tissue
and upregulated the expression of Sirt1 and Bcl-2 and
downregulated the expression of Ac-FOXO1 and Bax.

Guo et al., 2017

Estrogen Energy regulation Estrogen protects against ischemic stroke via the
SIRT1-dependent AMPK pathway.

Wang et al., 2011

HBO-PC Anti-apoptosis SirT1 increased Bcl-2 expression and decrease cleaved
caspase 3.

Yan et al., 2013

/ Effect on BBB permeability Sirt1 inhibited Sirt3 expression through the AMPK-PGC1
pathway, causing mitochondrial ROS generation and then
increase BBB permeability.

Hurtado et al.,
2013

/ Regulation of cerebral blood flow Sirt1 upregulates the nitric oxide (eNOS–NO) system. Briski et al., 2014

IRF9, interferon regulatory factor 9; I/R, ischemia/reperfusion; LKE, lanthionine ketimine 5-ethyl ester; CRMP, collapsin response mediator proteins; PARP, poly-ADP-
ribose polymerase; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator; CREB, cyclic AMP response element-binding protein; ERK, extracellular
signal-regulated kinase; NLRP, NOD-like receptor family pyrin domains; Bcl-2, B-cell lymphoma 2; TSC2, tuberous sclerosis complex-2; mTOR, mammalian target of
rapamycin; CB, cannabinoid receptor type; TRPV, transient receptor potential vanilloid; FOXO, forkhead box protein O; NF-κB, nuclear factor kappa B; AMPK, adenosine
monophosphate (AMP)-activated kinase; JNK, c-Jun N-terminal kinase; BDNF, brain-derived neurotrophic factor; eNOS, endothelial nitric oxide synthase; NO, nitric oxide;
iNOS, inducible NO synthase; BBB, blood–brain barrier; HBO-PC, hyperbaric oxygen preconditioning.
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therapeutic targets, Sirt1 is one of the most valuable candidates
because it can modulate gene expression and adapt cell
metabolism to ischemic stress. Sirt1 deacetylates numerous
transcription factors other than histones and is involved in
various biological processes (Chen et al., 2005). A large
number of studies consider Sirt1 as a survival factor against
aging process, including cardiovascular disease (Li et al.,
2011) and neurodegeneration (Donmez, 2012). In recent years,
Sirt1 has been found to be neuroprotective against cerebral
ischemia/reperfusion (I/R) injury (Herskovits and Guarente,
2014). Activation of Sirt1 alleviates ischemia through several
mechanisms (Table 1). Although it is still a controversy whether
Sirt1 could improve stroke outcome, there have been plenty of
studies indicating the potential therapeutic value of Sirt1 for
ischemic stroke. In this review, we discuss the role and potential
mechanisms by which Sirt1 protects against ischemic stroke
(Figure 1).

ANTI-INFLAMMATORY AND
ANTI-APOPTOTIC EFFECTS

Sirt1 plays an important role in endogenous neuroprotection,
which is demonstrated using pharmacological and genetic gain
of function and loss of function experiments. Activating or
inhibiting enzymatic activity of Sirt1 causes a decrease or an
increase in infarct volume. Sirt1 is considered to be related to
anti-inflammatory and anti-apoptotic effects in cerebral ischemia
because its inhibition exacerbated ischemic injury accompanied
by increased acetylation of p53 and NF-κB (nuclear factor-kappa
B p65), which are important factors mediating inflammatory and
apoptotic pathways causing brain damage (Hernandez-Jimenez
et al., 2013).

Activation of Sirt1 signaling during cerebral ischemia by
curcumin (CCM), a compound mainly extracted from Curcuma
longa, leads to the decreased expression of Ac-p53 and
Bax, increased expression of B-cell lymphoma 2 (Bcl-2),
and finally attenuated the inflammation (Miao et al., 2016).
Similarly, interventions targeting IRF9 inhibition may help
to mediate Sirt1-related ischemic neuron survival through
decreased expression of p53 (Chen et al., 2014).

Arctigenin (ARC), a phenylpropanoid dibenzylbutyrolactone
lignan derived from Arctium lappa L., was reported to
provide neuroprotection against ischemic stroke by inhibiting
NLRP3 inflammasome activation through the activation of
Sirt1 signaling pathway in the middle cerebral artery occlusion
(MCAO) model with decreased infarct volume, neurological
scores, and brain water content (Zhang et al., 2017). Another
study also used MCAO model to demonstrate that LKE
(lanthionine ketimine-5-ethyl ester) protected ischemic brain
tissue partly through CRMP2 and Sirt1 upregulation and PARP1
inhibition (Nada et al., 2012).

Hyperbaric oxygen (HBO) therapy is considered to be one of
the safe and feasible methods to provide neuroprotective benefits
for patients with ischemic stroke. It was demonstrated that Sirt1
was involved in the HBO therapy induced ischemic tolerance
and Nrf2 might be the downstream regulator of Sirt1 (Xue

et al., 2016). Hyperbaric oxygen-preconditioning was found to
upregulate the expression of Sirt1 protein and mRNA after focal
cerebral ischemic injury, leading to the suppression of apoptosis.
Upregulation of Sirt1 caused an increased expression of anti-
apopotic Bcl-2 and a decreased pro-apoptotic cleaved caspase-3
in oxygen–glucose deprivation (OGD) injury models (Yan et al.,
2013).

ANTIOXIDATION

Cerebral ischemia was found to produce a large number of free
radicals and cause neurotoxicity in I/R injury (Crack and Taylor,
2005). Increased generation of intracellular reactive oxygen
species (ROS) such as the hydroxyl radical is demonstrated to
induce oxidative stress and mitochondrial enzyme dysfunction,
leading to the pathophysiology of damage of cerebral ischemia,
and this damage, in turn, aggravates cerebral injury (Mattiasson
et al., 2003; Slemmer et al., 2008). Therefore, to prevent
intracellular calcium accumulation and further cell apoptosis
followed by oxidative stress in ischemic stroke, it is critical to
find targets to inhibit such cellular signal transduction pathways
(Chan, 2004; Mehta et al., 2007; Doyle et al., 2008; Thompson
et al., 2015).

Several studies suggested that Sirt1 plays an important role
in oxidative stress in ischemic stroke. Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) is
a potent stimulator of mitochondrial respiration and gene
transcription in the liver, heart, skeletal muscle, and neurons
(Wareski et al., 2009). Hypoxia increases mRNA levels and the
protein expression of PGC-1α in wild type mice (Gutsaeva et al.,
2008). Increased expression of PGC-1α could reduce neuronal
death mediated by oxidative stress (St-Pierre et al., 2006). Sirt1
could directly affect PGC-1α activity through phosphorylation
and deacetylation (Canto and Auwerx, 2009), thereby protecting
against ischemia stroke.

Resveratrol (3,5,4′-trihydroxystilbene), a polyphenol found in
red wine, can ameliorate neuronal damages caused by cerebral
ischemia and neurodegenerative diseases such as Alzheimer’s
and Parkinson’s disease (Sun et al., 2010; Wang et al., 2014;
Pasinetti et al., 2015). Resveratrol was demonstrated to protect
ischemic stroke by upregulating the Sirt1-PGC-1α signaling
pathways and exert an antioxidative effect under ischemic stress
(Shin et al., 2012). Furthermore, resveratrol preconditioning
was showed to upregulate BDNF and downregulate uncoupling
protein 2 by mediating Sirt1, tolerance in brain (Koronowski
et al., 2015). In addition, alpha-lipoic acid (ALA, 1,2-dithiolane-
3-pentanoic acid), a free radical scavenger in its oxidized
state functions as an essential co-factor in the mitochondrial
dehydrogenase complexes. Icariin (ICA), one of the major
active flavonoids extracted from the Chinese medicinal herb,
Epimedium brevicornum Maxim, were also proved to protect
against ischemic stroke by increasing Sirt1 and PGC-1α

expression (Zhu et al., 2010; Fu et al., 2014).
Another study found that Sirt1 was upregulated chronically

at 14 days after a single resveratrol preconditioning treatment.
This phenomenon was associated with negative regulation of
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FIGURE 1 | Sirt1 main functions in ischemic stroke. SIRT1 interacts with multiple targets in ischemic stroke, which is involved in the regulation of apoptosis,
autophagy, DNA repair, inflammation, metabolism and oxidative stress, cerebral blood flow.

mitochondrial uncoupling protein-2 (UCP2), a proton channel
found in the inner mitochondrial membrane that uncouples
oxidative phosphorylation (Della-Morte et al., 2009), by binding
directly to its promoter (Bordone et al., 2006) and upregulation
of brain-derived neurotrophic factor (BDNF), which is an
important growth factor that promotes the survival and growth
of neurons (Bramham and Messaoudi, 2005).

In addition, salvianolic acid B (Sal B) (Lv et al., 2015), which
is the most abundant and bioactive compound of danshen
(Salvia miltiorrhiza), and Magnolol (Kou et al., 2017), an
organic compound found in the bark of Houpu magnolia
(Magnolia officinalis), were demonstrated to activate Sirt1
signaling, accompanied by reduced expression of ac- FoxO1
whose function is to synthesize antioxidants and further help
neurons provide resistance against oxidative stress (Brunet et al.,
2004).

DNA REPAIR

As a result of ischemic stroke, oxidative stress will further cause
damage to the DNA including oxidative base modifications and
strand breaks. The accumulation of oxidative DNA lesions is
attributed to the death of neurons. Therefore, the capacity for
DNA repair plays an important role in the destiny of neurons
in the condition of ischemic stress. Base excision repair (BER) is
one of the most crucial parts in the DNA repair systems, which
is the endogenous defense mechanism to rescue oxidative DNA
damage (Srivastava et al., 1998).

Ku70 is one of the multifunctional DNA repair proteins,
which triggers a DNA repair pathway by binding to broken DNA
ends including double-strand breaks (Kim et al., 2001). With the
decrease of Ku70 after focal cerebral ischemic injury, the repair
process was found to be hindered (Kim et al., 2001). Sirt1 is found
to regulate the acetylation of Ku70, thereby regulating the DNA
repair pathways (Jeong et al., 2007).

Sirt1 also increases the activity of several other DNA repair
pathways. The activation of poly [ADP-ribose] polymerase-
1 (PARP-1), a key mediator of cell death in excitotoxicity,
ischemia, and oxidative stress, contributes to the depletion
of NAD+ and the release of apoptosis-inducing factor (AIF)
from mitochondria, leading to cell death (Alano et al., 2010).
The replenishment of cellular NAD+ was demonstrated to
confer marked neuroprotection effects by enhancing the DNA
repair process against ischemic cell death (Wang et al., 2008).
Kolthur-Seetharam et al. (2006) reported that SIRT1 modulates
PARP-1 activity upon DNA damage. Sirt1 upregulation by
resveratrol can reduce PARP-1 activity, however, there is a
drastic increase in PAR synthesis leading to AIF-mediated
cell death in the sirt1-null cells. This study indicated the
protection mechanism of Sirt1 in ischemic stress. Further
research is still needed to elucidate the full picture of
the role of Sirt1 in DNA repair under ischemic stroke
conditions.

CEREBRAL BLOOD FLOW (CBF)
MAINTAINING

Sirt1 can deacetylate endothelial nitric oxide synthase (eNOS)
and then maintain CBF (Hattori et al., 2014). In one particular
study, mice overexpressing Sirt1 were found to provide resistance
to global ischemia by retaining cerebral perfusion up to 45%–
50% of baseline data (Hattori et al., 2015). Moreover, Hattori
et al. (2014) found that endothelial Sirt1 deacetylates and
activates eNOS, thus normalizing CBF. They further suggested
that Sirt1-eNOS-NO system is responsible for the suppression
of Sirt1-induced cerebral hypoperfusion. Sirt1 overexpression
significantly attenuated blood–brain barrier (BBB) disruption,
and an interaction of Sirt1 with eNOS facilitated NO-dependent
vascular relaxation (Hattori et al., 2014).
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FUNCTION ON ENERGY METABOLISM

The brain consumes more energy per gram of tissue than any
other organ (Taxin et al., 2014). The state of ischemia in the
brain confers onto energy exhaustion. In turn, this metabolic
stress aggravates the ischemic injury. Therefore, to promote cell
survival and improve ischemic injury in the brain, it is important
to find defense mechanisms in energy exhaustion (Guo et al.,
2017). AMP-activated protein kinase (AMPK) is considered to
be a major metabolic energy sensor. Decreased cellular energy
charge (increased AMP/ATP ratio) activates AMPK and then
regulates energy metabolic homeostasis (Briski et al., 2014; Zainal
Abidin et al., 2015). Pharmacologic inhibition of AMPK was
reported to alleviate ischemic damage in an ischemia model (Li
et al., 2007). Sirt1 is suggested to be associated with the regulation
of energy metabolism (Boutant and Canto, 2014). Sirt1-related
AMPK pathway was reported to protect against ischemia stroke
in some studies (Wang et al., 2011).

Estrogen was proved to have beneficial effects under cerebral
ischemic stress through Sirt1-AMPK signaling pathway. Estrogen
deficiency is considered as a risk factor for ischemic stroke in
females after menopause (Ahnstedt et al., 2016), which partly
explains the stroke-related gender differences (Persky et al., 2010;
Sohrabji et al., 2013). Guo et al. (2017) showed that upregulating
Sirt1 expression and then promoting AMPK activation can
further regulate energy exhaustion, finally contributing to neuron
survival under ischemic stress. In addition to estrogen, the
adipokynin hormone, leptin, plays a role in severe energy
depletion. Avraham et al. (2010) found that the expression of
Sirt1 gene increased in the cortex after leptin administration,
which was in line with the reduction of infarct volume. This
finding suggested that Sirt1 expression protects cortical neurons
by modulating energetic status (Avraham et al., 2010).

Nicotinamide phosphoribosyltransferase (Nampt, also known
as visfatin), the rate-limiting enzyme in mammalian NAD+

biosynthesis (Wang et al., 2012), plays several roles in protecting
against ischemia, one of which was associated with the Nampt-
Sirt1-AMPK neuroprotective signaling pathway. Wang et al.
(2012) reported that Nampt was significantly upregulated in
the penumbra and infarct core of MCAO models. Inhibition
and overexpression of Nampt augmented and reduced the
infarction in MCAO rats, respectively. The upregulation of
Nampt positively modulated NAD+ levels and then upregulated
Sirt1, contributing to LKB1 deacetylation, and thereby activating
AMPK. This finding indicated that Nampt is an important
protective factor in ischemic stroke (Wang et al., 2012).

Emerging studies showed that resveratrol could activate
AMPK (Dasgupta and Milbrandt, 2007). Resveratrol was
reported to activate a PDE-mediated signaling pathway that
activates p-AMPK and Sirt1, thereby conferring cerebral
ischemic tolerance (Wan et al., 2016).

The brain relies heavily on glucose for energy production
(Koronowski et al., 2017). Production of ATP from glycolysis
is crucial for fast axonal transport of vesicles (Zala et al.,
2013), the energetic demand of action potential firing (Ashrafi
et al., 2017), and the maintenance of synaptic ATP levels under
energetic stress (Jang et al., 2016). Under ischemic conditions,

it is important to utilize glucose more efficiently. Glycolysis
can produce a significant amount of ATP to maintain ion
gradients and delay depolarization. This effect is associated
with neuronal Sirt1. One particular study demonstrated that
resveratrol preconditioning increased glycolytic rate in a Sirt1-
dependent manner in neurons, thereby combating energetic
stress in ischemic conditions (Koronowski et al., 2017).

AUTOPHAGY

Autophagic processes have been implicated as cell death
mechanisms in the degradation and recycling of subcellular
organelles (Kundu and Thompson, 2008). Generally, in the
neuronal system, moderate autophagy is neuroprotective while
inadequate or excess autophagy may lead to neuronal death
(Shacka et al., 2008; Yue et al., 2008). Recently, autophagy has
been recognized as a key process in ischemic stroke in addition to
neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease (Yue et al., 2008; Puyal et al., 2009). Sirt1 was first reported
to regulate autophagy in Lee et al. (2008).

In addition to the Nampt-Sirt1-AMPK signaling pathway
mentioned above, Nampt was demonstrated to have regulatory
effects on autophagy under cerebral ischemic conditions (Wang
et al., 2012). Wang et al. (2012) reported that Nampt promotes
neuronal survival through inducing autophagy via regulating
the TSC2-mTOR-S6K1 signaling pathway in a Sirt1-dependent
manner during cerebral ischemia. Further studies are needed to
find out more about the relationship between autophagy and
ischemic stroke.

IMPACT ON BLOOD–BRAIN BARRIER
(BBB)

Although most studies suggest that Sirt1 is a protective mediator
in ischemic stroke, there are still a few studies that contradict
these findings. Chen et al. (2018) reported that the activation of
Sirt1 was associated with increased BBB permeability through
AMPK-PGC1. Disruption of BBB and the cerebral edema
that follows are the key pathogenic events contributing to
neurological dysfunction and cerebral infarct after ischemic
stroke (Chen et al., 2018). It is important to investigate further
to find out the detailed mechanism and explain the contradiction
between such studies.

OTHER MECHANISMS

Some studies reported that Sirt1 is important in the protection
against ischemic stroke. Caloric restriction (CR) is defined
as approximately 30% reduction in caloric intake, without
compromising the maintenance of all essential nutrients
(Redman et al., 2007). Short-term food restriction (40% less food
over a 3-month period) was reported to attenuate ischemia-
induced damage and improve functional recovery following
global ischemia (Roberge et al., 2008). Proper period of CR can
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protect neurons from focal ischemic injury (Duan et al., 2001).
Caloric restriction was found to increase the synthesis of Sirt1 and
reduce the downregulation of Sirt1 expression in MCAO (Ran
et al., 2015). Another study found that CDP-choline (citicoline),
an intermediate in the biosynthesis of phosphatidylcholine, acted
as Sirt1 activator by upregulating its expression and thereby
reducing infarct volume in ischemic models (Hurtado et al.,
2013). Further studies are still needed to elucidate the specific
mechanisms.

CONCLUSION AND PROSPECTS FOR
FUTURE RESEARCH

Since Sirt1 could exacerbate energy depletion and is associated
with increased BBB permeability, there is still a controversy
whether choosing Sirt1 as a treatment target and increasing the
Sirt1 level would benefit the cerebral tissue under ischemic stress.
Therefore, additional studies investigating the role of Sirt1 in
ischemic stroke involving different cerebral cell types and animal

models are necessary to arrive at more convincing conclusions.
Besides, the relationship between Sirt1 genetic polymorphism
and ischemic stroke has not been researched extensively, which
also needs further exploration. Altogether, Sirt1 is a promising
therapeutic target for ischemic stroke for attenuating ischemic
stress and improving stroke outcome.
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