
ORIGINAL RESEARCH
published: 16 November 2018
doi: 10.3389/fnins.2018.00840

Frontiers in Neuroscience | www.frontiersin.org 1 November 2018 | Volume 12 | Article 840

Edited by:

André van Schaik,

Western Sydney University, Australia

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Terrence C. Stewart,

University of Waterloo, Canada

Mark D. McDonnell,

University of South Australia, Australia

*Correspondence:

Chen Liu

chen.liu@tu-dresden.de

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 29 July 2018

Accepted: 29 October 2018

Published: 16 November 2018

Citation:

Liu C, Bellec G, Vogginger B,

Kappel D, Partzsch J, Neumärker F,

Höppner S, Maass W, Furber SB,

Legenstein R and Mayr CG (2018)

Memory-Efficient Deep Learning on a

SpiNNaker 2 Prototype.

Front. Neurosci. 12:840.

doi: 10.3389/fnins.2018.00840

Memory-Efficient Deep Learning on a
SpiNNaker 2 Prototype
Chen Liu 1*†, Guillaume Bellec 2†, Bernhard Vogginger 1, David Kappel 1,2,3,

Johannes Partzsch 1, Felix Neumärker 1, Sebastian Höppner 1, Wolfgang Maass 2,

Steve B. Furber 4, Robert Legenstein 2 and Christian G. Mayr 1

1Chair of Highly-Parallel VLSI-Systems and Neuromorphic Circuits, Department of Electrical Engineering and Information

Technology, Institute of Circuits and Systems, Technische Universität Dresden, Dresden, Germany, 2 Institute for Theoretical

Computer Science, Graz University of Technology, Graz, Austria, 3Bernstein Center for Computational Neuroscience, III

Physikalisches Institut – Biophysik, Georg-August Universität, Göttingen, Germany, 4 Advanced Processor Technologies

Group, School of Computer Science, University of Manchester, Manchester, United Kingdom

The memory requirement of deep learning algorithms is considered incompatible with the

memory restriction of energy-efficient hardware. A low memory footprint can be achieved

by pruning obsolete connections or reducing the precision of connection strengths after

the network has been trained. Yet, these techniques are not applicable to the case

when neural networks have to be trained directly on hardware due to the hard memory

constraints. Deep Rewiring (DEEP R) is a training algorithm which continuously rewires

the network while preserving very sparse connectivity all along the training procedure. We

apply DEEP R to a deep neural network implementation on a prototype chip of the 2nd

generation SpiNNaker system. The local memory of a single core on this chip is limited

to 64 KB and a deep network architecture is trained entirely within this constraint without

the use of external memory. Throughout training, the proportion of active connections is

limited to 1.3%. On the handwritten digits dataset MNIST, this extremely sparse network

achieves 96.6% classification accuracy at convergence. Utilizing the multi-processor

feature of the SpiNNaker system, we found very good scaling in terms of computation

time, per-core memory consumption, and energy constraints. When compared to a X86

CPU implementation, neural network training on the SpiNNaker 2 prototype improves

power and energy consumption by two orders of magnitude.

Keywords: deep rewiring, pruning, sparsity, SpiNNaker, memory footprint, parallelism, energy efficient hardware

1. INTRODUCTION

The number of connections is the main limiting factor in the up-scaling of neural network
implementations. It dominates the required chip area (Benjamin et al., 2014; Schmitt et al., 2017)
and power consumption (Schemmel et al., 2008; Akopyan et al., 2015) in special purpose hardware
and the required memory and computation time (Brette et al., 2007) in software simulations. When
neural networks are used in embedded systems, e.g., for medical applications, robotics, or tactile
devices, their physical realization needs to be extremely energy efficient to meet requirements on
durability, size, and heat emission (König et al., 2002; Sze et al., 2017). These limitations have so
far prevented the use of resource-intensive deep learning algorithms (LeCun et al., 2015) directly
in embedded systems.

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00840
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00840&domain=pdf&date_stamp=2018-11-16
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chen.liu@tu-dresden.de
https://doi.org/10.3389/fnins.2018.00840
https://www.frontiersin.org/articles/10.3389/fnins.2018.00840/full
http://loop.frontiersin.org/people/533084/overview
http://loop.frontiersin.org/people/613100/overview
http://loop.frontiersin.org/people/36546/overview
http://loop.frontiersin.org/people/125997/overview
http://loop.frontiersin.org/people/27149/overview
http://loop.frontiersin.org/people/638753/overview
http://loop.frontiersin.org/people/185553/overview
http://loop.frontiersin.org/people/10884/overview
http://loop.frontiersin.org/people/71641/overview
http://loop.frontiersin.org/people/10883/overview
http://loop.frontiersin.org/people/10753/overview

Liu et al. Neuromorphic Rewiring

Here, we show an implementation of a deep neural network
with learning capabilities on a neuromorphic hardware chip.
Both the training phase and the inference phase are implemented
on a 2nd generation SpiNNaker prototype. All the memory that
is required for neuron and synapse parameters is kept in the
fast, local 64 KB SRAM of the chip. To operate the network at
such a low memory footprint, we use the recently introduced
Deep Rewiring (DEEP R) model for training deep networks with
sparse weight matrices (Bellec et al., 2018a). DEEP R searches
for an optimal connectivity structure by dynamically cutting off
and rebuilding network connections online. Therefore, despite
the severe memory limitations on this hardware, optimization of
neural networks with DEEP R can be implemented directly on-
chip using sparse weightmatrices. The presented implementation
thus runs at a constant memory budget that is orders of
magnitude smaller than that of a fully connected network.
This innovation drastically cuts memory and computation time
requirements at only a small performance loss. DEEP R has
previously been applied to feedforward and recurrent networks
with sparse weights as well as convolutional models with sparse
feature maps. Here for the first hardware implementation of
DEEP R, it is used to train a feedforward model with sparse
weights under the strong memory limitation of a tiny four-core
prototype.

Our implementation makes efficient use of the hardware
accelerators that are available on the SpiNNaker prototype chip.
The chip is equipped with high-throughput accelerators for fixed-
point exponentiation and random number generation. Both
operations are commonly needed in the neural network domain
and are also used in the DEEP R algorithm. We show that using
the hardware accelerators results in a speedup of around 1.62× in
our setup without any further software optimizations. Together
with parallelization from one core to four cores, a total speedup
of 7.7× is achieved.

We evaluated our implementation of DEEP R on the
SpiNNaker prototype chip using a benchmark network
architecture for learning the MNIST benchmark dataset.
The complete network can be simulated on a single core
of the chip using <40 KB of the SRAM (see section 3.1)
and also on multiple cores for time speedup and higher
energy efficiency purpose. In section 3.2 we study the
computation time speedup that can be gained by using
hardware accelerators and multiple cores. Finally, in section
3.3 we study the power and energy requirements of our
system. In summary, our results demonstrate a full on-chip
deep learning system, that achieves 96.6% accuracy on the
MNIST benchmark dataset, using <4% memory compared
to a fully connected network, and only 2% of the power
budget compared to running the same algorithm on an X86
processor.

2. MATERIALS AND METHODS

2.1. Hardware
SpiNNaker (Furber et al., 2014) is a digital neuromorphic
hardware system based on low-power ARM processors built for
the real-time simulation of spiking neural networks (SNNs). On

FIGURE 1 | System overview of the SpiNNaker 2 prototype system.

Components used in this article are highlighted in green.

the basis of the first-generation SpiNNaker architecture and our
previous work in power efficient multi-processor systems on
chip (Haas et al., 2016, 2017), the second generation SpiNNaker
system (SpiNNaker2) is currently being developed in the Human
Brain Project (Amunts et al., 2016). By employing a state-of-the-
art CMOS technology and advanced features such as per-core
power management, more processors can be integrated per chip
at significantly increased energy-efficiency.

In this article, we use the first SpiNNaker2 prototype
chip which has been implemented in GLOBALFOUNDRIES
28 nm SLP CMOS technology (Höppner et al., 2017). Its
system overview is shown in Figure 1: It contains four
processing elements (PEs) with ARM M4F processors and
128 KB local SRAM (64 KB instruction, 64 KB data), an
LPDDR2 interface to 128 MB off-chip DRAM, the SpiNNaker
router for on- and off-chip handling of spike packets, and
a network-on-chip (NoC) for the communication between
all chip components. The system operates in a globally
asynchronous locally synchronous (GALS) scheme, where each
component has its own clock generator based on an all-
digital phased-locked loop (ADPLL) (Höppner et al., 2013).
Additionally, each PE contains high-throughput accelerators
for the fixed-point exponential function (Partzsch et al.,
2017) and pseudo random numbers (PRNG). A true random
number generator (TRNG) in the periphery of the chip
provides true randomness from silicon noise at a lower
bandwidth (Neumärker et al., 2016) and a shared SRAM is
also available to the PEs via the NoC. The above described
features are not all used in this implementation. Only the
components highlighted in Figure 1 are essentially involved in
our implementation.

A photo of our setup is shown in Figure 2. For lab evaluations,
a power supply PCB is used which hosts up to four chip modules.
This is connected to an FPGA evaluation board via serial links
(SerDes) or JTAG which then connects to the host PC via
standard Ethernet for debugging and result observing purpose.

2.2. MNIST Learning Task
We apply the DEEP R algorithm (see section 2.3) to train a
network architecture that was previously chosen in Han et al.

Frontiers in Neuroscience | www.frontiersin.org 2 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 2 | Photo of the entire setup and the prototype chip (Höppner et al., 2017). The setup consists of one SpiNNaker prototype chip hosted on a PCB board and

an FPGA evaluation board. The chip photo is enlarged and placed at the top left corner.

FIGURE 3 | Details to the implementation of the neural network architecture

and execution procedures. The network input and target data is held in the

slow DRAM (left). One example input image and binary coded target vector

are shown. The network parameters are held in the fast SRAM (right). Training

images are presented to the input layer (im) with 784 channels (28× 28 pixels).

Network activations (ai) are propagated forward through the network and

errors (1i) are propagated backward. The 10 neurons of the output layer (y)

correspond to 10 classes of digits. The weight matrices stores the connection

weights and related sparsity are marked with W plus percentage. The target

(lab) is encoded with one-hot code. The circled numbers with arrows at the

bottom present the order of execution procedures in one training iteration and

their scopes.

(2015) to benchmark memory efficient networks. As shown
in Figure 3, this architecture has a 784-neuron input layer,
two hidden layers with 300 and 100 neurons respectively, and

a 10-neuron output layer. All hidden units use a rectified
linear activation function. All layers are sparsely connected
and connections are selected online using DEEP R. The
connectivity of weight matrices (i.e., the percentage of non-
zero matrix entries) is constrained to a fixed value of 1, 3,
and 30% for matrices to hidden layers 1, 2, and to the output
layer respectively. These choices follow the rule of thumb
from Bellec et al. (2018a): the smaller the weight matrix,
the more densely it is connected. This results in a fixed
overall connectivity of 1.3%. Thus the memory footprint is
significantly reduced compared to a fully connected architecture
and weight matrices, activation vectors, errors, and gradients
can all be accommodated in the 64 KB local SRAM, which
means that the on-chip training is possible within a single
core.

To benchmark the performance characteristics of the
implementation on the prototype chip, we used the MNIST
dataset (LeCun et al., 1998). It contains 60 k 256-level digital gray
scale images, where each image has the size of 28× 28 pixels. We
reserved 50 k images as the training set and 10 k as the test set.

2.3. The DEEP R Algorithm
In DEEP R, every potential connection of the neural network
can at any time during training either be active or dormant. An
active connection is actually realized, its parameters are stored
in memory, and information is transmitted over this connection.
A dormant connection is not realized at that moment, no
parameters are stored in memory, and no information is
transmitted.

The DEEP R algorithm alternates stochastic gradient descent
(SGD) steps and rewiring steps. SGD updates are applied to
weights of all active connections using error backpropagation,

Frontiers in Neuroscience | www.frontiersin.org 3 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

while the weight of dormant connections are by definition 0 and
do not need to be stored or updated. In addition L1-regularization
and gradient noise is applied to active connections in each SGD
step. For each active weight that crosses zero (changes sign)
after the SGD update, DEEP R sets this connection dormant and
activates another connection that was dormant. New connections
are randomly drawn from all possible neuron pairs within the
layer with equal probability. The new connection is initialized
with a weight of 0 and then evolves according to SGD updates.

It was proven in Bellec et al. (2018a), that this algorithm
samples weights and network architectures (connectivities) from
a well-defined posterior distribution that respects the global
objective function underlying the SGD updates and the sparsity
constraints. In other words, the algorithm is theoretically
guaranteed to converge to a network configuration where the
active connections and their weights are close to a minimum
of the classification error and at the same time strictly obey the
prior sparsity. To illustrate the sampling process of DEEP R,
one can consider a newly replenished connection: if its gradients
at the next time step predicts that this connection reduces the
classification error, the SGD update is likely to set the weight
apart from zero and the connection is kept; if this connection has
no effect or is detrimental to the network function, the gradient—
pressured by the L1-regularization—crosses zero in the very
next time step, and disappears. As a result, only functional
connections have a high chance to remain in the network.

Algorithm 1: Pseudocode of the online version of the DEEP
R algorithm implemented on-chip.

1 for image i in [1,Nimages] do
2 Import the image i and corresponding label from

DRAM to SRAM.
3 Backpropagation: apply one SGD step using error

backpropagation.
4 Rewiring (once every 10 images): for each weight that

changed its sign, set it dormant and activate a different,
randomly chosen dormant connection.

5 end

DEEP R is implemented on the SpiNNaker 2 prototype chip
in an online fashion, i.e., one input image is processed after
another. A summary of the algorithm is given in Algorithm 1.
The entireMNIST dataset cannot be stored in the SRAM. Instead,
the images are placed in the external DRAM and only the image
that is currently processed with its associated label are loaded into
the SRAM via the LPDDR2 interface in the form of NoC packets.
After each image importation (line 2 ofAlgorithm 1) the DRAM
interface is turned-off to avoid unnecessary energy consumption.

Each backpropagation step at line 3 is split into a forward and
a backward pass. In the forward pass—also called inference—
the activation generated by an image is propagated from the first
layer to the last through the network to predict the image label. In
the backward pass, the predicted label is compared to the target
label and the error is backpropagated from the last layer to the
first. The learning rate η for SGD is initialized to 0.05 and decays

by a factor of 0.5 every 2 training epochs. The L1-regularization
parameter of DEEP R is set to 10−5. The temperature T for the
gradient noise of theDEEPR algorithm is also annealed alongside

the learning rate, i.e., T = η σ 2

2 where σ = 0.0003. For details
on the initialization of sparse weight matrices see Bellec et al.
(2018a).

The DEEP R algorithm ensures that the memory consumed
by the network connectivity is constant and the memory
requirement is a parameter of the algorithm that can be chosen
to fit hardware limitations. We constrained the number of
connections individually for each weight matrix, i.e., the number
of connections between adjacent layers, such that each weight
matrix consumes a fixed amount of memory on one particular
core.

2.4. Sparse Matrix Formats and
Implementation Details of the Rewiring
Algorithm
To perform the rewiring step at line 4 of Algorithm 1, we delete
all the weights that changed signs during the SGD step, and
reconnect the corresponding number of connections elsewhere.
The weights in each layer constitute a sparse weight matrix, and
there exist several possibilities how such sparse matrices can be
stored efficiently in memory. The choice of the matrix format
was indeed important to optimize both memory consumption
and speed. To optimize speed one has to take into account that
within the forward and the backward passes of backpropagation
it is required to multiply the sparse weight matrices from two
different directions. In the rewiring step it is required to delete
and insert elements efficiently.

The popular matrix formats, compressed sparse row (CSR)
and compressed sparse column (CSC) first described in Tinney
and Walker (1967), are inappropriate for backpropagation.
They are optimized for either left or right side matrix-vector
multiplication while multiplication from the other side is slow.
We chose instead a variant of the compressed coordinate (COO)
format, where each entry is stored as a tuple (row, column, weight
amplitude, and weight sign) and the entries are stored as arrays
sorted by row/column pairs (see Figure 4 for an illustration).
Rows and columns are stored in 16-bit integer (int16) format,
weight amplitudes are stored in 32-bit floating point (float32)
format. To optimize the memory consumption we used arrays
ordered by row and column coordinates which avoids storing
one pointer per matrix element in comparison to linked lists.
This saves 4 bytes per matrix element with most compilers. The
drawback is that the rewiring step involves more computations
but this was compensated by applying rewiring only every 10
iterations. The reasons for this choice are detailed in section
3.2.

The rewiring step is split into a deletion and an insertion
step. The deletion step erases the entries of all weights that
changed the sign during the last gradient descent step. The
insertion step replaces the deleted coefficients by other randomly
selected matrix entries. The deletion is performed by passing
once through the four arrays shown in Figure 4. Each matrix
coefficient that has a negative weight amplitude is deleted.

Frontiers in Neuroscience | www.frontiersin.org 4 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 4 | Illustration of the sparse matrix format. (A) Example matrix of size

8× 8 with 5 non-zero entries encoded in the sparse matrix format. Each row

encodes one entry. Entries are sorted by the row/column pair (row first,

column second). (B) The full matrix that corresponds to the example sparse

matrix in (A).

Due to the data structure, this deletion is implemented by
swapping entries in all four arrays until the deleted elements
are pushed at the end of the arrays. Then the insertion step
begins. Firstly, all deleted elements are replaced by new matrix
coefficients with: random coordinates, zero weight amplitude,
and a random binary sign. Secondly one needs to sort the entire
matrix representation by row and column indices. One solution
is to apply quicksort to sort the array as a whole. This method
is rather fast but may overload the SRAM because quicksort
requires the storage of temporary variables and the amount of
such variables is hard to estimate. In practice, only the few
dozens of newly inserted zero-elements which are now grouped
at the end of the array are sorted with quicksort (we bounded
the number of zero-elements that can be inserted in each step
to avoid memory overload). At that stage the arrays are split
into two sorted sections: the preserved matrix elements at the
beginning, and the newly inserted elements at the end. Taking
advantage that the two sections are already sorted correctly, the
arrays are merged with an in-place variant of merge-sort.

2.5. Distributed Implementation
The neural network we implemented in this article is relatively
simple and can be fully stored in a 64 KB SRAM of one
ARM core. But with the escalating complexity of the modern
machine learning architectures, a network involving numerous
parameters may not be accommodated in one machine. Also, a
larger network results in more computation time and a larger
memory footprint. It is thus necessary to discuss how to use
multiple computation nodes to train a deep neural network.
SpiNNaker 2 is a multi-core system that naturally features multi-
core distributed implementations such that we employed the
4-core prototype chip to implement the above network.

2.5.1. Distribution Methodology
Neural network training algorithms are memory-intensive
because they involve massive data sets and complex network
architectures with large parameter sets. In terms of these two
factors, there are in principle two strategies for parallel training
(Shrivastava et al., 2017).

2.5.1.1. Data parallelism
Data too big to fit into the memory of a single node can
be partitioned across several nodes. The learning model is
duplicated into each node and trained with different input data
simultaneously. This approach maintains the model structure in
each node and facilitates rapid deployment acrossmultiple nodes.

2.5.1.2. Model parallelism
If network (or model) parameters cannot be accommodated in a
single node, they can be split into several sub-modules and stored
in different nodes. In this case the same data is fed into different
nodes, but on each node only a subset of the model is trained.
In other words, the computation of the entire model is separately
allocated on the distributed nodes.

The network structures considered in this article are
feedforward neural networks. Although the connections between
adjacent layers are sparse, the memory is dominated by the
weight matrices and not by the neuron activities (see section
3.1). With data parallelism, all weight matrices are duplicated
in each node. On the other hand, model parallelism is well-
suited to distribute large models where model parameters
dominate the memory consumption. Therefore, we did not
adopt data parallelism but model parallelism as the implemented
distribution methodology.

2.5.2. Partition Scheme
The performance improvement of model parallelism depends
directly on how the model is split. A good model partition
scheme should balance the computational load of each node
while minimizing the data dependency between nodes.

Figures 5A,B illustrate 2 different partition schemes. If the
model is layer-wise partitioned, each layer of a deep neural
network is deployed in one node and all nodes form a pipeline
structure. Only the activities in the forward pass and errors in the
backward pass are passed between nodes. However, the size of
different layers can vary dramatically so that the required amount
of computation on different nodes also differs significantly. This
unbalanced utilization of resources among nodes can evidently
hamper the execution efficiency of the pipeline.

Another partition scheme is channel-wise partitioning, under
which each node stores partial parameters of one layer. These
partial parameters throughout all layers are combined to form a
channel. Whether in forward pass or backward pass, to compute
the output of one layer multiple nodes need to communicate
with each other and broadcast their intermediate results because
each node has only partial parameters and cannot complete
the computation alone. The channel-wise partition makes
distributed computing independent of the network structure so
it has a better adaptability to different network depths or layer
sizes, and the computational load is evenly distributed on each

Frontiers in Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 5 | Different partition schemes and their communication overhead

analysis. The forward pass (fp) and backward pass (bp) directions are marked

in blue and red, respectively. Given that the matrix has a size of m× n. (A)

Layer-wise partition stores one layer in one node, such as l1, l2, l3. (B)

Channel-wise partition stores one channel in one node, such as c1, c2, c3, c4.

(C) 1D vertical channel-wise partition. (D) 1D horizontal channel-wise partition.

(E) 2D channel-wise partition.

node to maximize the use of resources. We adopted the channel-
wise partition to implement the distributed training so the weight
matrices, various activations, errors, and gradients are deployed
on different nodes and are updated locally.

To bemore specific, the channel-wise partition has also several
variants. If we focus on the weight matrix, the most computation-
intensive operation in backpropagation is essentially the vector-
matrix multiplication of the form y ← Ax. To perform
the vector-matrix multiplication in parallel, we decompose the
input vector and the matrix into multiple sub-vectors and sub-
matrices and map them into different computation nodes for
simultaneous calculation. Finally, the results on each node are
restored to the original result. The matrix can be partitioned
into multiple column vectors, row vectors, or sub-matrices (Uçar
and Aykanat, 2005). Figures 5C–E depicts the vertically and
horizontally one-dimensional (1D) channel-wise partition and
two-dimensional (2D) channel-wise partition. We assume that
the input and output vectors have the length of m and n,
respectively. p, which is a square number, computation nodes are
available.

We analyze the communication pattern in the forward pass
under 1D vertical partition as an example. Firstly, the input
vector is duplicated onto p nodes, the transmission amount is
pm. After the completion of vector-matrix multiplication on each
node we obtain the output vector component ni, i ∈ [1, p]

FIGURE 6 | Data flow in 4 cores for parallel vector-matrix multiplication. The

diagonal cores (core 1, 4) are highlighted in gray. 1©Importing ml into core 1,2

and mh into core 3,4. 2©Vector-matrix multiplication in each core.

3©Non-diagonal cores vertically send local results nl2,nh1 to diagonal cores

and merge the local results there to nl and nh. 4©Diagonal cores horizontally

broadcast the output vector components to non-diagonal cores (core 1 to

core 2, core 4 to core 3).

dispersedly. Then the vector components are synchronized
among the nodes to prepare for the forward propagation for the
next layer. For instance, the core c1 sends the vector component
n1 with the length of n

p to core cj, j ∈ [2, p], which brings

a communication overhead of (p − 1) np . Therefore, p nodes

delivered (p − 1)n data. Thus, in the 1D vertical partition,
a forward propagation in one layer transfers pm + (p − 1)n
data. The multifarious communication overheads in forward
and backward pass with 1D and 2D partitions are listed at the
bottom of Figure 5. For one layer we found that since the forward
pass involves right dot multiplication while the backward pass
involves left dot multiplication, 1D partitioning always rewards
one and punishes the other. In contrast, 2D partitioning can
primely balance the communication overhead in both directions
and reduce the communication complexity from O(p) to O(

√
p).

This so-called checkerboarding 2D partition method is proved to
be more efficient than 1D partition (Kumar et al., 1994).

2.5.3. Distributed Training on the Prototype Chip
We adopted the checkerboarding partition scheme to partition
the network model. p is instantiated to 4 since 4 cores are
available. The first weight matrix with the size of 784×300 is split
into four 392 × 150 sub-matrices. Analogously this procedure
generates 4 sub-matrices of size 150 × 50 for the second matrix
and 50×5 sub-matrices for the third. All the activations and error
vectors are equally partitioned into a high-end fraction and low-
end fraction. Figure 6 shows how a vector-matrix multiplication
is performed in parallel on the prototype chip. In the first step,
the high-end fraction mh and low-end fraction ml of the input
vector are loaded into 2 cores respectively. In the second step,
each vector fraction is multiplied by the local weight sub-matrix,
obtaining 4 vector components nl1, nl2 and nh1, nh2. In the
third step, the non-diagonal cores vertically send the local vector
components to diagonal cores and merge them with their local
vector components to get the output vector’s high-end fraction nh
and low-end fraction nl, e.g., in core 1 we gathered nl = nl1+nl2.
In the fourth step, the diagonal cores horizontally synchronize

Frontiers in Neuroscience | www.frontiersin.org 6 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

the vector fractions to non-diagonal cores, so that the low-end
fraction nl locates in core 1, 2 and the high-end fraction nh in
core 3, 4. At this time the vector fractions in each core are ready
for the vector-matrix multiplication of the next layer.

Unlike the vector-matrix multiplication, the rewiring step
involves matrix element addressing, removing, appending and
sorting in a sparse matrix space. The parallelization does
not negatively affect the speed of these operations. Instead
it improves element addressing and sorting because the
splitting of one big weight matrix into 4 quarter matrices
reduces the lengths of the arrays represented in Figure 4.
Yet, as the constraints are defined on quarters of matrices,
there is less freedom in the choice of the position of
the non-zero coefficients. This could in principle affect
accuracy but we did not experience any loss of accuracy
in practice. The acceleration result will be exhibited in
Figure 10.

3. RESULTS

We implemented a benchmark neural network architecture,
previously used in Han et al. (2015), on the next-generation
SpiNNaker prototype chip shown in Figure 2. This neural
network architecture was previously used to benchmark the
accuracy of sparsely connected low-memory footprint networks
(Collins and Kohli, 2014; Han et al., 2015). Note that
in these works, the network had a low-memory footprint
only after training, while the training procedure itself is
memory intensive. Here, for the first time, we train this
architecture on a hardware with very restrictive memory
constraints.

To train the network on the prototype chip with only
64 KB of SRAM memory per core, we used the DEEP R
algorithm (Bellec et al., 2018a), which maintains a small memory
footprint throughout training by dynamically disconnecting and
reconnecting network connections (see section 2 for details).

Network training with the fixed connectivity of 1.3%
converged in 9 epochs with a classification accuracy of 96.6%
on the test set (see Figure 7). This is 1.6% below the baseline
performance of 98.2% achieved by a fully connected network
that cannot be trained on the chip. For comparison, we trained
another sparsely connected network on-chip where we initialized
the network connections from the same distribution that was
found by DEEP R (see Bellec et al., 2018a) but did not
rewire connections during training. The network performed
significantly worse, reaching a classification accuracy of only
81.3%. This comparison shows that on-line rewiring is crucial
for good network performance. For further comparison, since
the 1.3% connectivity underutilizes the available memory in the 4
core setup (4PA case), we also tried fully utilizing the memory in
the four processors. This way, we can go up to 9.3% connectivity
and achieve 97.7% accuracy on the test set.

In the following, we analyze the memory profile, time
consumption, power and energy consumption of the
implementation based on 1 core and 4 cores of the prototype
chip respectively.

FIGURE 7 | Classification accuracy of different setups. The accuracy of a fully

connected network (FC, dashed line) is 98.2%, while sparsely connected

networks (1.3% connection probability) achieve 96.6% with DEEP R (red) and

81.3% without online rewiring (blue).

FIGURE 8 | Memory profile of a fully connected network (FC Overall) and a

sparse rewired network with one-core (1PA Overall) and four-core

implementations (4PA Overall). Here number plus P indicates the utilized

processor numbers and A stands for using hardware accelerators. For FC, the

weight matrices, activity vectors, and temporary storage occupy 1072.34,

6.28, and 2.14 KB, respectively. In 1PA, there is no change on vectors and

temporary storage but the weight matrix portion shrinks to 28.21 KB. In the

four-core distributed implementation, the overall memory requirement of

temporary storage, activity vector and weight matrix rise to 8.56, 15.16, and

28.24 KB. Dividing these values by four is the used resources in each core,

which is indicated with 4PA per core. The total memory footprint in each case

is shown above each bar.

3.1. Memory Footprint
Figure 8 shows the memory footprint for the fully connected
network, the sparse network optimized with DEEP R, the same
network with a training procedure parallelized over four cores
and also visualizes the memory snapshot of one of these four
cores. Memory consumption is divided into three components:
the memory for the weight matrices, memory for activity vectors
(including memory needed for backpropagated errors), and

Frontiers in Neuroscience | www.frontiersin.org 7 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 9 | Accuracy and time consumption of applying rewiring with different periods. The iteration number between 2 rewiring operations is defined as the rewiring

period. The time consumption is normalized by the time required with a rewiring period of 1 and depicted with percentage.

temporary storage. Here, temporary storage includes memory
needed for dynamic function calls.

The DEEP R algorithm reduced the total memory footprint
from 1080.78 KB down to 36.63 KB (with the small decrease in
the performance described above). This enabled us to perform
full training on a single core of the prototype chip with its
limited SRAM of 64 KB. The weight matrices dominate memory
consumption in all scenarios. Comparing the weight matrix
portion between FC and 1PA, the sparse connectivity is 1.3%
while the memory footprint percentage is 28.21/1072.34 = 2.6%,
because storing the position of a sparse weight with COO format
doubled the consumed memory.

The 2D channel-wise parallelization allocates the sub weight
matrices into different cores, so there is no change on the overall
volume of weight matrices, but it increased the activity vectors
storage with 2.4× and quadrupled the temporary storage. Two of
this 2.4 are attributed to the duplicated storage of activity vectors
by parallelization and the rest 0.4 come from some additional
memory overhead of core-core communication. All these factors
raised the overall memory consumption from 36.63 up to 51.96
KB. However, under 4-core implementation the available SRAM
is also grown from 64 up to 256 KB, so the memory constraints
are actually alleviated. For visualization, the memory footprint
of one core under parallelization is depicted as the rightmost
bar in Figure 8. Comparing the 2nd and 4th column, the SRAM
utilization per core reduced from 57.2% (36.63/64) down to
20.3% (12.99/64).

3.2. Computation Time
In a vanilla implementation of DEEP R with rewiring at each
update step, the time needed for image data import, forward
pass, backward pass, and rewiring accounted for 0.2, 2.5, 7.2, and
90.1% of the total computation time, respectively. Rewiring is
the most time intensive step, because randomly replenishing new
connections involve random number generations and sorting

of matrix entries in the chosen memory-efficient sparse matrix
format (see section 2.4). To improve runtime, we refined
the algorithm such that it performs rewiring operations in
only a fraction of the iterations. We refer to the number of
iterations (i.e., parameter updates) between two consecutive
rewiring operations as the rewiring period. Figure 9 shows the
dependence of the accuracy and time consumption on the
rewiring period. When the period is 10, no accuracy loss is
observed, but the overall training speed is accelerated by a
factor of almost 4. Further increasing the period value will
decrease the network accuracy for the same number of training
epochs. We chose a rewiring period of 10. At this rewiring
period, the consumed time proportion of image data import,
forward pass, backward pass, and rewiring steps are 1.0, 13.4,
38.0, and 47.6%, respectively, so that the time consumption
of rewiring is comparable with that of the two passes of
backpropagation.

On the SpiNNaker 2 system, hardware accelerators are
available for random number generation and exponential
function. Therefore, to perform any of these two operations,
the ARM core can directly invoke the corresponding hardware
module, consuming considerably fewer clock cycles, and less
energy. In the discussed application, initialization of the weight
matrix, generation of new connections, and noisy gradient
updates involve random processes, and the softmax function
in the last layer includes exponential operations. We therefore
compare below the training time of the system with hardware
acceleration and a pure ARM implementation that does not make
use of these hardware accelerators.

The SpiNNaker 2 system is designed as a massively parallel
processing network with many parallel cores that communicate
via lightweight messages. Parallel training using multiple cores
does not only allow for more complex networks, but is also
expected to reduce training time. We tested parallelization
of network training in the SpiNNaker 2 system, where we

Frontiers in Neuroscience | www.frontiersin.org 8 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 10 | Time comparison on X86 platform and on SpiNNaker prototype

chip with different setups. 1P indicates that 1 processor is utilized running pure

ARM software, 1PA stands for 1 processor with hardware-based acceleration

for random number generation and exponential computation, and 4PA stands

for a 4-core parallelization with hardware acceleration.

channel-wise partitioned the model into 4 channels and deployed
them to 4 processors of the prototype chip.

Training time was evaluated in four setups (see Figure 10).
First, we considered training (of a sparse network with DEEP
R) on a X86 architecture (Intel Core i5 6500: 3.2–3.6 GHz;
single core). This setup should serve as a baseline. Note that the
clock frequency of this chip is more than 6 times higher than
that of the SpiNNaker 2 prototype chip (500 MHz). Second, we
considered an implementation on a single core of the SpiNNaker
2 prototype chip without hardware acceleration modules (1P).
Figure 10 shows that the SpiNNaker implementation is about
8 times slower than the X86 implementation. However, when
considering time consumption on a per-clock-cycle basis, we find
that the SpiNNaker 2 prototype implementation is only slightly
less efficient. Third, we considered a single-core implementation
on the prototype chip with acceleration modules (1PA) for
random number generation and exponential operation. The
former is frequently carried out in the rewiring step and
the latter is involved in the softmax function in the output
layer. These special hardware features on the prototype provide
an acceleration of 1.62×, which decreased the training time
from 1,755 down to 1,082 s. Finally, we considered a 4-core
parallelized implementation on the SpiNNaker 2 prototype
(4PA). In comparison with the single-core implementation
(1PA), the training time drops from 1,082 to 228 s, which
is only 21% of the original and is basically the same as the
training time on the X86. It might seem surprising that the 4.75×
acceleration even outperforms the increment of processors. In
fact, the parallelization strategy splits each weight matrix into
4 smaller matrices which are constrained to keep 4 times less
non-zero coefficients during rewiring. This reduces the number
of operations required by the sorting algorithms in the rewiring
step. This result indicates that training of sparse neural networks
with DEEP R can be highly parallelized on the SpiNNaker 2
system, with good speedup and per-core memory reduction.
While we focus on the overall time course of the learning in this
section, for comparison to other work (O’Connor et al., 2013;

TABLE 1 | Power and energy consumption of neural network training with DEEP

R on an X86 platform and the SpiNNaker2 prototype with one (1P, 1PA) and four

(4PA) cores.

X86 Prototype 1P Prototype 1PA Prototype 4PA

Power [mW] 20,500 88 88 227

Time [s] 209 1,805 1,082 228

Energy [J] 4,285 159 95 52

Stromatias et al., 2015) it is also interesting to give a perspective
of a single MNIST image feedforward inference, which takes
0.27 ms in the 1 PA implementation and 0.1 ms in the 4 PA
implementation.

3.3. Power and Energy Consumption
The profiled power consumption on the two platforms is listed in
the first row in Table 1. We used the running average power limit
(RAPL) energy sensor, which is a new feature provided by Intel
since the Sandy Bridge micro-architecture (Hähnel et al., 2012),
to measure the power consumption of the X86 CPU. The power
of the prototype chip was determined by reading the supplied
voltage and current from an ADC on the prototype PCB board.
The power consumption of the X86 CPU in idle and running
state was measured as 800 and 20,500, mW respectively. In the
idle state, the CPU is powered on, maintaining the operating
system, while in running state the training is performed.

The prototype chip can be configured in a fine-grained form so
that we could selectively activate different modules of the chip in
different execution phases. The whole training execution could be
divided into two phases: import (step 1 in Figure 3) and training
(step 2, 3, 4 in Figure 3). In the import phase, the input data
(images and labels) are loaded from the external DRAM via the
LPDDR2 interface into the SRAM but the ARM core does not
process them. In the training phase, the ARM core processes the
data in SRAM and we close the LPDDR2 interface since no data
flows from DRAM and we could save 46.4 mW. Note that the
import phase accounted for only 1% of the total execution time,
so that the average power consumption could be approximated as
the training power. The power consumption during training was
87.9 mW in the 1P and 1PA (one core without/with accelerators)
setups and 227.0 mW in 4PA (4 cores with accelerators) setup.
This is a power reduction of 2 orders of magnitude compared to
the X86 CPU implementation.

Considering the differences of computation time and power
consumption on both platforms, Table 1 compares the energy
required for the entire training process on a single core of the
X86 platform and the prototype with either 1 or 4 cores. Profiting
from the natural low-power characteristic of the ARM core
and the minimized external DRAM accesses, the overall energy
consumption in the SpiNNaker2 system with 1 core (1P) is only
159 J, which is 3.7% of the energy consumed on the X86 platform.
Incorporating the integrated acceleration modules on the core
(1PA) further reduces energy to 95 J, which is 2.2% of the X86
platform. With 4 cores (4PA), the energy consumption further
drops to 52 J, only taking 1.2% of the consumed energy on the

Frontiers in Neuroscience | www.frontiersin.org 9 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

X86 platform. The energy benefit of parallelization is contributed
to the over-expected time acceleration with a factor of 4.75, while
the running power is only increased to 2.6 times of the one-
core implementation. Please note that the power values for the
SpiNNaker2 prototype include some baseline power (leakage,
infrastructure) that is independent of the number of switched-on
cores. Therefore, the increase in power from 1 to 4 cores is less
than a factor of 4.

For comparison of the energy efficiency with other hardware
systems in section 4, we estimate that it takes around 7,500
FLOPs (7 k for multiply-accumulation, 500 for ReLU) for each
digit classification, which consumes 23 µJ on both 1PA and 4PA
setups. Thus the effective energy efficiency of 0.33 GFLOPS/W
can be derived as the reciprocal of the energy per operation.

4. DISCUSSION

In the classical von Neumann architecture, computing time and
energy consumption is dominated by memory access. Memory
access is particularly costly in this computing paradigm, due
to the von Neumann bottleneck. By using a massively parallel
architecture, the brain avoids the von Neumann bottleneck.
This is believed to be one important factor contributing to
the extraordinary energy efficiency of the brain and mimicked
in neuromorphic hardware. However, in massively parallel
architectures, communication is still a bottleneck (now, not
between the central processor and the memory, but between
the parallel processors or neurons). This is the case for both,
the brain, and artificial neuromorphic systems. The brain
volume is dominated by white matter, that is, by long-range
connections between neurons. In the SpiNNaker system, there
is a communication bandwidth limit between the parallel cores.
But an even more severe bottleneck in the neural network
implementation considered here is the local memory needed to
store synaptic parameters. In other words, biological and artificial
information processing systems face the same problems in one or
the other way. The DEEP R algorithm was inspired by the way
how this problem is tackled in the brain, that is, by an ongoing
rewiring of connections. This uses the available resources in
a flexible way such that network structure can be adjusted to
the task demands. We have shown in this article that this
biological principle is also applicable to artificial neuromorphic
systems.

4.1. Scaling Analysis
We showed that the SpiNNaker 2 prototype chip can be used
for handwritten digit classification as exemplified by the MNIST
dataset. The network used is a fully connected feedforward
network whereas a convolutional network is necessary to achieve
state-of-the-art performance on interesting computer vision
problems, and recurrent networks are necessary to tackle speech
recognition. In Bellec et al. (2018a), DEEP R has already
proven its practicability on the CIFAR-10 image dataset with
convolutional networks and on the TIMIT speech recognition
dataset with recurrent LSTM networks. For an acceptable drop
of 2% of accuracy on CIFAR-10, the global number of non-
zero parameters in the network were cut down to 5%. Similar

performance was achieved with LSTM networks on TIMIT. In
Bellec et al. (2018a), DEEP R was used to reduce further the
memory footprint of the convolutional networks by constraining
the number of non-zero coefficients inside the feature maps.
Nevertheless, those sparse networks are still too large to be
implemented on the current SpiNNaker 2 prototype which has
only 4 cores and thus 4 × 64 KB of memory. Based on these
small-scale prototypes, the hardware roadmap in the Human
Brain Project foresees a large-scale SpiNNaker 2 chip containing
ca. 160 cores around 2020. This chip will be used to build
up the 10 Mio core final SpiNNaker 2 system, capable of a
significantly higher level of parallelism and thus performance
than the prototype used here. In the following scaling analysis,
we analyze the memory required for the implementation of the
CIFAR and TIMIT networks of Bellec et al. (2018a) with the
described approach. This gives us a lower bound for the number
of cores on which the network has to be distributed on the final
SpiNNaker 2 system.

We first evaluate the memory requirements of the
convolutional network used in Bellec et al. (2018a) on CIFAR-10.
As demonstrated for MNIST in Figure 8 the memory is mainly
occupied by the weight matrices and the intermediate activation
of each layer which need to be stored for backpropagation.
In this scaling analysis we consider that the storage of other
temporary variables is negligible. For each connection of the fully
connected layers, one has to store a row/column index, weight,
and sign. This leads to 65-bits per parameter. In a convolutional
layer, the convolutional kernel are indexed by 4 integers i, j, k, l
where i, j are the row and column indices of the feature map
which are lower than 5, and k and l are the input and output
channels of the convolution which are bounded by 64. Storing
each of the four integers on 8-bit, 1-bit for the sign and adding
32-bit to store of the real-valued weight, each parameter of a
convolutional feature map is also stored on 65-bit. Thus the
number of bits required to store the network parameters is
65 × nc × p where nc is the number of parameters and p = 5%
is the number of non zero parameters which were shown to be
required to train a convolutional network on CIFAR-10 with
DEEP R (Bellec et al., 2018a). The network was constituted of two
convolutional layers with feature maps of shape 5 × 5 × 3 × 64
and 5× 5× 64× 64 and two fully connected layers with matrices
of shape 2, 304 × 384 and 384 × 192. This results in 53 K
non-zero coefficients which occupies 417 KB of memory. The
memorization of neuron activations requires 32-bit per neuron.
These are stored in dense vectors and occupy about 182 KB of
memory in total (Figure 11). Thus we evaluate that about 10
cores (640 KB of SRAM) are required to train a network on the
CIFAR-10 dataset. However, due to the size of the full dataset
and the number of operations required to process each image,
the training speed of the algorithm might become an issue if
the algorithm is parallelized on only 10 cores (the training took
approximatively 6 hours on a Tesla p100 GPU with 3,584 cores).
For such large datasets, more cores will have to be utilized and a
scalable implementation of sparse matrix multiplications will be
necessary.

For the TIMIT dataset for speech recognition, a network of
200 recurrent LSTM units was used in Bellec et al. (2018a). LSTM

Frontiers in Neuroscience | www.frontiersin.org 10 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

FIGURE 11 | Scaling-up to real-world images and speech recognition. To

study the importance of DEEP R on larger problems we evaluate the memory

consumed by the storage of parameters in blue and the activity vectors

required for backpropagation in green.

units are more expensive than normal neurons in terms of the
number of parameters. More lightweight alternatives have been
proposed in Chung et al. (2014), Mikolov et al. (2014), and Bellec
et al. (2018b), however, here we consider LSTM networks for
benchmarking purposes (Hochreiter and Schmidhuber, 1997).
All the parameters of an LSTM are stored in the form of fully
connected weight matrices which are constrained to have only
5% of non zero coefficients with DEEP R in Bellec et al. (2018a).
The networkmodel is a bi-directional LSTM constituted with two
sets of input weights of shape 39×800, recurrent weights of shape
800 × 200 and output weights of shape 200 × 39. The 20K non-
zero parameters of this sparse LSTM network occupy 158 KB
of memory. The network was trained using backpropagation
through time (BPTT). At each time step, 6.4 KB were consumed
to memorize the activations of the LSTM 1200 gates and 400
LSTM cells and we used 100 unrolled time steps for BPTT so that
the activations consumed 640 KB of memory in total (Figure 11).
Thus, around 12 cores are needed for training this network.
Here, the activations occupy 4 times more memory than the
weights due to the storage of unrolled timesteps for BPTT. As
a consequence, it might seem that the sparsity in the weights
are less relevant in the context of recurrent networks. Interesting
possibilities to reduce memory consumption for recurrent neural
networks are the quantization and sparsification of the network
activity—a specific feature of spiking neural networks. Another
alternative is to reduce the number of unrolled timesteps using
extensions of BPTT, such as the usage of synthetic gradients
(Jaderberg et al., 2016).

This scaling analysis shows that training of models for real-
world image and speech recognition will soon be possible
on neuromorphic hardware. With the use of DEEP R and a
distributed memory storage, a few tens of cores similar to those
of our SpiNNaker 2 prototype are enough to store and process
the necessary information. With this software solution, such
energy-efficient chips will not suffer from their memory
restrictions to solve deep learning problems.

4.2. Related Neuromorphic Hardware
A number of papers show implementations of deep neural
networks on neuromorphic hardware. Most of these use a spiking,
pre-trained approach, i.e., the networks are trained in either
ANN or SNN fashion, then in the case of ANNs, converted
to SNNs, and implemented on the spiking neuromorphic
hardware. Examples include TrueNorth (Esser et al., 2015, 2016),
SpiNNaker 1 (Jin et al., 2010), the BrainScaleS system (Petrovici
et al., 2017; Schmitt et al., 2017), or the Zurich subthreshold
systems (Indiveri et al., 2015). Of these, only the last one
incorporates some learning, i.e., the last layer of the deep SNN is
subject to online supervised learning, with the other layers having
pretrained fixed weights. The overall power consumption is not
given in Indiveri et al. (2015), but from the power figures of the
individual chips, it seems to be below 5 mW. However, as not all
weights in the network are trained and no time course for the
learning is given, a direct comparison to the energy analysis in
section 3.3 is not possible. Stromatias et al. (2015) detailed a non-
learning spiking MNIST implementation on SpiNNaker 1. They
employed 650 k synapses in a fully connected 4-layer network,
which forced the usage of 12 cores and necessitated storing
synaptic weights on external DRAM, in turn pushing power
consumption to 0.3 W. This clearly shows the advantage of our
sparse connectivity approach, which reduces computation and
memory requirements concurrently. Esser et al. (2015) classified
MNIST on TrueNorth with an accuracy between 92.7 and 99.42%
at an energy per image between 0.268 and 108 µJ. In contrast, we
show 96.6% inference accuracy for MNIST at ≈ 23 µJ per image
classification, which is comparable to TrueNorth. Regarding
inference time per image, we achieve 0.1 ms (see section 3.2) and
outperform both Stromatias et al. (2015)(tens of milliseconds)
and Esser et al. (2015)(1 ms).

4.2.1. Fully Programmable, Flexible Learning Function
Almost all of the above examples use pre-trained, fixed-weight
deep networks. This is likely due to the fact that neuromorphic
systems usually have very narrowly configurable plasticity
functions unsuitable for ANNs (Indiveri et al., 2015; Noack et al.,
2015). Lately, the notion of a dedicated plasticity processor has
gained traction for both mixed signal (Friedmann et al., 2017)
and digital systems (Davies et al., 2018). These should in principle
offer more freely configurable plasticity. However, both cited
examples have restrictions on the state variables accessible to the
processor, likely limiting their exploration capability in an ANN
context. In the case of the next-generation BrainScaleS system
(Friedmann et al., 2017), the processor has access to STDP-
type time difference measurements of pre- and post-synaptic
spike time differences, firing rates and external signals. The

Frontiers in Neuroscience | www.frontiersin.org 11 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

Loihi chip (Davies et al., 2018) is geared toward various kinds
of spike time and rate variables as the basis for plasticity. In
contrast, we show that the SpiNNaker 2 prototype has very little
restrictions in terms of learning rules. Essentially, we took the
theoretical learning rule and directly implemented it in hardware
with virtually no hardware-caused adaptations. SpiNNaker 2
can incorporate reward factors and access membrane activation
as part of the learning as shown here, can do both rate- and
spike-based learning, etc.

In the form of structural plasticity, the brain is very good at
using limited resources to maximum advantage. Neuromorphic
systems are usually not a good fit for this learning paradigm, as
they contain synaptic matrices fixedly assigned to postsynaptic
neurons with only the presynaptic sources to some degree
flexible (Noack et al., 2010). Rewiring is possible in such a
setup, but has to operate postsynaptic-centric and has a fixed
number of synapses per postsynaptic neuron (George et al.,
2015). Memristive crossbar arrays are even worse (Du et al., 2015;
Mostafa et al., 2015), as both pre- and post-synaptic contacts are
fixed and all possible synapses of the rewiring scheme need to be
physically instantiated, i.e., using less synapses does not reduce
the used resources either in silicon area or in power. In contrast,
the flexible memorymodel we use in this paper on the SpiNNaker
2 prototype allows us to take full advantage of resource
reduction.

4.3. Efficient DNN Processing
Besides applying deep learning on neuromorphic hardware, in
recent years, there have been many efforts in building dedicated
hardware for efficient DNN processing and developing models
with a low memory and compute footprint with negligible loss
of performance. The common objective is the application of
DNNs for inference in mobile systems with limited memory and
computing power (smartphones, robotics, IoT devices, etc.).

Memory reduction is desirable for two reasons: First, on
embedded systems the available memory for storing DNN
parameters and activations is very limited, and second, the
energy cost per memory access can dominate the overall power
consumption, e.g., an external memory access can consume
more than two orders of magnitude more energy than one
multiply-accumulate operation (Horowitz, 2014; Han et al.,
2016). A rather old approach for compression of trained
networks is pruning, which erases less-effective connections
from weight matrices. Typically, the pruning is followed
by a fine-tuning of the remaining weights. This way, the
overall memory per network can be reduced by one order of
magnitude or more at negligible loss of network performance
(Han et al., 2015). Node pruning (He et al., 2014), weight
matrix decomposition (Xue et al., 2013), and filter separation
(Bhattacharya and Lane, 2016) are complementary ways to
create sparser DNNs with reduced computing requirements. In
contrast, quantization uses lower bit width numbers to store the
multifarious parameters of a DNN: Previous works (Courbariaux
et al., 2016; Esser et al., 2016; Hubara et al., 2018) have
quantized the weight matrices and layer activations to reduce the
memory footprint. This reduces the memory consumption of a
network for testing but not during training as it is necessary to

propagate full-precision gradients during training of those neural
networks.

At the same time, there is active research in the design of
efficient models targeted for mobile applications, e.g., MobileNets
(Howard et al., 2017) are light-weight models using depth-
wise separable convolutions allowing to trade off computational
complexity against model accuracy through hyperparameters.
Similarly, ShuffleNet (Zhang et al., 2017) and CondenseNet
(Huang et al., 2017) apply sparsely connected convolutions
between feature maps in CNNs to reduce the compute load.
All these models have in common that they are optimized
for inference in mobile devices but need to be trained in
data-centers.

4.3.1. Hardware for Efficient Inference of DNNs
Typically employs many multiply-accumulate (MAC) units as
this is the main operation in DNNs. Often, low-bit integer
operations are implemented as they require less power and
silicon area than floating point units Horowitz (2014). To achieve
high throughput and energy-efficiency, hardware architectures
have an optimized data flow that reuses data (weights, feature
maps) as much as possible and avoids accessing off-chip memory
(Sze et al., 2017). While most DNN hardware systems directly
benefit from quantization and efficient model architectures,
sparse networks require dedicated accelerators (Han et al., 2016).
Instead, sparse activity (neurons with output 0) can be exploited
more easily (Aimar et al., 2017; Moons et al., 2017). State-of-the-
art DNN processors achieve an energy-efficiency in the order of
10 TOPS/W with few-bit integers (Lee et al., 2018) or even more
than 500 TOPS/W for binarized neural networks in mixed-signal
hardware (Bankman et al., 2018). Although these systems are
orders of magnitude more efficient than our prototype system
(see section 3.3), their application is limited to inference and
on-chip training is not possible.

4.4. Deep Learning With a Small Memory
Footprint
The training of machine learning models with memory
constraints is especially useful for low-power mobile and edge
devices: For example, in the context of Internet of Things, smart
sensors can employ deep learning to extract relevant features
from raw data. While pre-trained models can be loaded to the
sensors, an in-place training and fine-tuning allow for adapting
themodel to the environment or changes of sensor characteristics
(e.g., from aging). Aside from that, simple robots interacting with
the environment can learn autonomously to perform specific
tasks. Especially reinforcement learning is highly applicable
to the device as training examples are immediately available.
Only a few algorithms for deep learning with a small memory
footprint have been proposed. (Cheng et al., 2015; Sindhwani
et al., 2015) replaced matrix multiplications with structured
operations that require less memory. A method called WAGE
has been developed to train DNNs with low bitwidth integers at
all stages, including gradients and backpropagated errors (Wu
et al., 2018). Very recently, training methods were also ported
onto specific hardware systems: Gonugondla et al. (2018) present
a deep in-memory architecture with on-chip training, which is

Frontiers in Neuroscience | www.frontiersin.org 12 November 2018 | Volume 12 | Article 840

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

primarily useful to compensate for PVT variations of the analog
circuits.

In this article, we presented a scalable implementation of a
4-layer DNN for digit recognition on a SpiNNaker 2 prototype
chip using the DEEP R algorithm (Bellec et al., 2018a). This show
that rewiring is a viable strategy for neuromorphic hardware
with strong memory constraints. The training was achieved with
less than 52 KB overall memory while being two orders of
magnitudes more energy-efficient than a CPU. In the future,
a combination of the proposed approach with low bit-width
training methods such as WAGE (Wu et al., 2018) could be used
to further reduce the memory requirements during training and
inference.

DATA AVAILABILITY STATEMENT

The X86 implementation of the DEEP R algorithm used in this
paper will be made available at publication of the paper.

AUTHOR CONTRIBUTIONS

CL performed the experiment on the prototype chip and
measured the metrics with the aid of BV. GB and RL conceived

and designed the DEEP R algorithm with the help of DK. JP and

FN developed the hardware accelerator of exponential function
and random number generation. SH and SF contributed to the
chip design. RL, WM, and CM supervised the findings of this
work. All authors discussed the results and contributed to the
final manuscript.

FUNDING

The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7)
under grant agreement No 604102 and the EU’s Horizon 2020
research and innovation programme under grant agreements No
720270 and 785907 (Human Brain Project, HBP).

ACKNOWLEDGMENTS

The authors thank ARM and Synopsis for IP and the Vodafone
Chair at TU Dresden for contributions to the RTL design. We
thank Yexin Yan from HPSN chair for his contributions to the
code base. Discussions at the yearly Fürberg workshop of the
Human Brain Project contributed to the DEEP R concept and
implementation.

REFERENCES

Aimar, A., Mostafa, H., Calabrese, E., Rios-Navarro, A., Tapiador-Morales, R.,

Lungu, I.-A., et al. (2017). Nullhop: a flexible convolutional neural network

accelerator based on sparse representations of feature maps. arXiv [preprint]

arXiv:1706.01406. doi: 10.1109/TNNLS.2018.2852335

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circ. Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Amunts, K., Ebell, C., Muller, J., Telefont, M., Knoll, A., and Lippert, T. (2016). The

human brain project: creating a european research infrastructure to decode the

human brain. Neuron 92, 574–581. doi: 10.1016/j.neuron.2016.10.04

Bankman, D., Yang, L., Moons, B., Verhelst, M., and Murmann, B. (2018). “An

always-on 3.8 µj/86% CIFAR-10 mixed-signal binary CNN processor with all

memory on chip in 28 nm CMOS,” in Solid-State Circuits Conference-(ISSCC),

2018 IEEE International (San Diego, CA), 222–224.

Bellec, G., Kappel, D., Maass, W., and Legenstein, R. (2018a). “Deep rewiring:

training very sparse deep networks,” in International Conference Learning

Representations (ICLR) (New Orleans, LA).

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018b). Long

short-term memory and learning-to-learn in networks of spiking neurons.

arXiv preprint arXiv:1803.09574. Available online at: https://arxiv.org/pdf/

1803.09574.pdf

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J.-M., et al. K. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Bhattacharya, S., and Lane, N. D. (2016). “Sparsification and separation of deep

learning layers for constrained resource inference on wearables,” in Proceedings

of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM

(Stanford, CA), 176–189.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,

et al. (2007). Simulation of networks of spiking neurons: a review of tools

and strategies. J. Comput. Neurosci. 23, 349–398. doi: 10.1007/s10827-007-

0038-6

Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., and Chang, S.-F. (2015).

“An exploration of parameter redundancy in deep networks with circulant

projections,” in Proceedings of the IEEE International Conference on Computer

Vision (Santiago), 2857–2865.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv [preprint]

arXiv:1412.3555. Available online at: https://arxiv.org/pdf/1412.3555.pdf

Collins, M. D., and Kohli, P. (2014). Memory bounded deep convolutional

networks. arXiv [preprint] arXiv:1412.1442. Available online at: https://arxiv.

org/pdf/1412.1442.pdf

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016).

Binarized neural networks: training deep neural networks with weights and

activations constrained to+ 1 or-1. arXiv [preprint] arXiv:1602.02830. Available

online at: https://arxiv.org/pdf/1602.02830.pdf

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Du, N., Kiani, M., Mayr, C. G., You, T., Bürger, D., Skorupa, I., et al.

(2015). Single pairing spike-timing dependent plasticity in bifeo3 memristors

with a time window of 25 ms to 125 µs. Front. Neurosci. 9:227.

doi: 10.3389/fnins.2015.00227

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S.

(2015). “Backpropagation for energy-efficient neuromorphic computing,”

in Advances in Neural Information Processing Systems (Montreal, QC),

1117–1125.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier, K.

(2017). Demonstrating hybrid learning in a flexible neuromorphic hardware

system. IEEE Trans. Biomed. Circ. Syst. 11, 128–142. doi: 10.1109/TBCAS.2016.

2579164

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

SpiNNaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.

2304638

Frontiers in Neuroscience | www.frontiersin.org 13 November 2018 | Volume 12 | Article 840

https://doi.org/10.1109/TNNLS.2018.2852335
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1016/j.neuron.2016.10.04
https://arxiv.org/pdf/1803.09574.pdf
https://arxiv.org/pdf/1803.09574.pdf
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1007/s10827-007-0038-6
https://arxiv.org/pdf/1412.3555.pdf
https://arxiv.org/pdf/1412.1442.pdf
https://arxiv.org/pdf/1412.1442.pdf
https://arxiv.org/pdf/1602.02830.pdf
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fnins.2015.00227
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/JPROC.2014.2304638
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

George, R., Mayr, C., Indiveri, G., and Vassanelli, S. (2015). “Event-based softcore

processor in a biohybrid setup applied to structural plasticity,” in 2015

International Conference on Event-based Control, Communication, and Signal

Processing (EBCCSP) (Krakow), 1–4.

Gonugondla, S. K., Kang, M., and Shanbhag, N. (2018). “A 42pj/decision 3.12

tops/w robust in-memory machine learning classifier with on-chip training,”

in 2018 IEEE International Solid-State Circuits Conference-(ISSCC) (San

Francisco, CA), 490–492.

Haas, S., Arnold, O., Nöthen, B., Scholze, S., Ellguth, G., Dixius, A., et al.

(2016). “An MPSoC for energy-efficient database query processing,” in Design

Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE (Austin, TX),

1–6.

Haas, S., Seifert, T., Nöthen, B., Scholze, S., Höppner, S., Dixius, A., et al. (2017).

“A heterogeneous SDR MPSoC in 28 nm CMOS for low-latency wireless

applications,” in Proceedings of the 54th Annual Design Automation Conference

2017 (Austin, TX: ACM), 47.

Hähnel, M., Döbel, B., Völp, M., and Härtig, H. (2012). Measuring energy

consumption for short code paths using rapl. SIGMETRICS Perform. Eval. Rev.

40, 13–17. doi: 10.1145/2425248.2425252

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016).

“Eie: efficient inference engine on compressed deep neural network,” in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Architecture

(ISCA) (Seoul), 243–254.

Han, S., Pool, J., Tran, J., and Dally, W. (2015). “Learning both weights and

connections for efficient neural network,” in Advances in Neural Information

Processing Systems (Montreal, QC), 1135–1143.

He, T., Fan, Y., Qian, Y., Tan, T., and Yu, K. (2014). “Reshaping deep neural

network for fast decoding by node-pruning,” in 2014 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP) (Florence),

245–249.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780.

Höppner, S., Haenzsche, S., Ellguth, G., Walter, D., Eisenreich, H., and

Schuffny, R. (2013). A fast-locking adpll with instantaneous restart

capability in 28-nm cmos technology. IEEE Trans. Circ. Syst. II

60, 741–745. doi: 10.1109/TCSII.2013.2278123

Höppner, S., Yan, Y., Vogginger, B., Dixius, A., Partzsch, J., Neumärker, F., et

al. (2017). “Dynamic voltage and frequency scaling for neuromorphic many-

core systems,” in 2017 IEEE International Symposium on Circuits and Systems

(ISCAS) (Baltimore, MD).

Horowitz, M. (2014). “1.1 computing’s energy problem (and what we can do about

it),” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014

IEEE International (San Francisco, CA), 10–14.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: efficient convolutional neural networks for mobile vision

applications. arXiv [preprint] arXiv:1704.04861. Available online at: https://

arxiv.org/pdf/1704.04861.pdf

Huang, G., Liu, S., van derMaaten, L., andWeinberger, K. Q. (2017). Condensenet:

an efficient densenet using learned group convolutions. arXiv [preprint]

arXiv:1711.09224. Available online at: https://arxiv.org/pdf/1711.09224.pdf

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2018).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18, 1–30. arXiv [preprint]

arXiv:1609.07061. Available online at: https://arxiv.org/pdf/1609.07061.pdf

Indiveri, G., Corradi, F., and Qiao, N. (2015). “Neuromorphic architectures for

spiking deep neural networks,” in Electron Devices Meeting (IEDM), 2015 IEEE

International (Washington, DC), 4–2.

Jaderberg, M., Czarnecki, W. M., Osindero, S., Vinyals, O., Graves, A., Silver,

D., et al. (2016). Decoupled neural interfaces using synthetic gradients. arXiv

[preprint] arXiv:1608.05343. Available online at: https://arxiv.org/pdf/1608.

05343.pdf

Jin, X., Luján, M., Khan, M. M., Plana, L. A., Rast, A. D., Welbourne, S. R., et al.

(2010). “Algorithm for mapping multilayer BP networks onto the spinnaker

neuromorphic hardware,” in 2010 Ninth International Symposium on Parallel

and Distributed Computing (ISPDC) (Istanbul), 9–16.

König, A., Mayr, C., Bormann, T., and Klug, C. (2002). “Dedicated implementation

of embedded vision systems employing low-power massively parallel feature

computation,” in Proceedings of the 3rd VIVA-Workshop on Low-Power

Information Processing (Chemnitz), 1–8.

Kumar, V., Shekhar, S., and Amin, M. B. (1994). A scalable parallel formulation of

the backpropagation algorithm for hypercubes and related architectures. IEEE

Trans. Parallel Distrib. Syst. 5, 1073–1090.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86, 2278–2324.

Lee, J., Kim, C., Kang, S., Shin, D., Kim, S., and Yoo, H.-J. (2018). “Unpu: a 50.6

tops/w unified deep neural network accelerator with 1b-to-16b fully-variable

weight bit-precision,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE

International (San Francisco, CA), 218–220.

Mikolov, T., Joulin, A., Chopra, S., Mathieu, M., and Ranzato, M. (2014). Learning

longer memory in recurrent neural networks. arXiv [preprint] arXiv:1412.7753.

Available online at: https://arxiv.org/pdf/1412.7753.pdf

Moons, B., Uytterhoeven, R., Dehaene,W., and Verhelst, M. (2017). “14.5 envision:

a 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-frequency-

scalable convolutional neural network processor in 28nm FDSOI,” in Solid-

State Circuits Conference (ISSCC), 2017 IEEE International (San Francisco, CA),

246–247.

Mostafa, H., Khiat, A., Serb, A., Mayr, C. G., Indiveri, G., and Prodromakis,

T. (2015). Implementation of a spike-based perceptron learning rule

using tio2-x memristors. Front. Neurosci. 9:357. doi: 10.3389/fnins.2015.

00357

Neumärker, F., Höppner, S., Dixius, A., and Mayr, C. (2016). “True random

number generation from bang-bang ADPLL jitter,” in 2016 IEEENordic Circuits

and Systems Conference (NORCAS) (Copenhagen), 1–5.

Noack, M., Partzsch, J., Mayr, C., Henker, S., and Schüffny, R. (2010).

“Biology-derived synaptic dynamics and optimized system architecture for

neuromorphic hardware,” in Mixed Design of Integrated Circuits and Systems

(MIXDES), 2010 Proceedings of the 17th International Conference (Breslau),

219–224.

Noack, M., Partzsch, J., Mayr, C. G., Hänzsche, S., Scholze, S., Höppner,

S., et al. (2015). Switched-capacitor realization of presynaptic short-term-

plasticity and stop-learning synapses in 28 nm CMOS. Front. Neurosci. 9:10.

doi: 10.3389/fnins.2015.00010

O’Connor, P., Neil, D., Liu, S. C., Delbruck, T., and Pfeiffer, M.

(2013). Real-time classification and sensor fusion with a spiking

deep belief network. Front. Neurosci. 7:178. doi: 10.3389/fnins.2013.

00178

Partzsch, J., Höppner, S., Eberlein, M., Schüffny, R., Mayr, C., Lester, D. R., et al.

(2017). “A fixed point exponential function accelerator for a neuromorphic

many-core system,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore, MD), 1–4.

Petrovici, M. A., Schmitt, S., Klähn, J., Stöckel, D., Schroeder, A., Bellec,

G., et al. (2017). “Pattern representation and recognition with accelerated

analog neuromorphic systems,” in 2017 IEEE International Symposium on

Circuits and Systems (ISCAS) (Baltimore, MD), 1–4.

Schemmel, J., Fieres, J., and Meier, K. (2008). “Wafer-scale integration of analog

neural networks,” in IEEE International Joint Conference on Neural Networks,

2008. IJCNN 2008.(IEEEWorld Congress on Computational Intelligence) (Hong

Kong), 431–438.

Schmitt, S., Klaehn, J., Bellec, G., Grübl, A., Guettler, M., Hartel, A., et

al. (2017). “Neuromorphic hardware in the loop: training a deep spiking

network on the brainscales wafer-scale system,” Proceedings of the 2017

IEEE International Joint Conference on Neural Networks (Anchorage, AK),

2227–2234.

Shrivastava, D., Chaudhury, S., and Jayadeva, D. (2017). A data andmodel-parallel,

distributed and scalable framework for training of deep networks in apache

spark. arXiv [preprint] arXiv:1708.05840. Available online at: https://arxiv.org/

pdf/1708.05840.pdf

Sindhwani, V., Sainath, T., and Kumar, S. (2015). “Structured transforms for small-

footprint deep learning,” in Advances in Neural Information Processing Systems

(Montreal, QC), 3088–3096.

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S.-C., and Furber, S. (2015).

“Scalable energy-efficient, low-latency implementations of trained spiking deep

Frontiers in Neuroscience | www.frontiersin.org 14 November 2018 | Volume 12 | Article 840

https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1109/TCSII.2013.2278123
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://arxiv.org/pdf/1711.09224.pdf
https://arxiv.org/pdf/1609.07061.pdf
https://arxiv.org/pdf/1608.05343.pdf
https://arxiv.org/pdf/1608.05343.pdf
https://doi.org/10.1038/nature14539
https://arxiv.org/pdf/1412.7753.pdf
https://doi.org/10.3389/fnins.2015.00357
https://doi.org/10.3389/fnins.2015.00010
https://doi.org/10.3389/fnins.2013.00178
https://arxiv.org/pdf/1708.05840.pdf
https://arxiv.org/pdf/1708.05840.pdf
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Liu et al. Neuromorphic Rewiring

belief networks on spinnaker,” in 2015 International Joint Conference on Neural

Networks (IJCNN) (Killarney), 1–8.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing

of deep neural networks: a tutorial and survey. Proc. IEEE 105,

2295–2329. doi: 10.1109/JPROC.2017.2761740

Tinney, W. F., and Walker, J. W. (1967). Direct solutions of sparse network

equations by optimally ordered triangular factorization. Proc. IEEE 55,

1801–1809.

Uçar, B., and Aykanat, C. (2005). A Library for Parallel Sparse Matrix-

Vector Multiplies. Technical Report BU-CE-0506, Department of Computer

Engineering, Bilkent University, Ankara, Turkey.

Wu, S., Li, G., Chen, F., and Shi, L. (2018). “Training and inference with integers in

deep neural networks,” in International Conference on Learning Representations

(Vancouver, BC).

Xue, J., Li, J., and Gong, Y. (2013). “Restructuring of deep neural network acoustic

models with singular value decomposition,” in Interspeech (Lyon), 2365–2369.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017). Shufflenet: an extremely efficient

convolutional neural network for mobile devices. CoRR abs/1707.01083.

Available online at: https://arxiv.org/pdf/1707.01083.pdf

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Liu, Bellec, Vogginger, Kappel, Partzsch, Neumärker, Höppner,

Maass, Furber, Legenstein and Mayr. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 15 November 2018 | Volume 12 | Article 840

https://doi.org/10.1109/JPROC.2017.2761740
https://arxiv.org/pdf/1707.01083.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Memory-Efficient Deep Learning on a SpiNNaker 2 Prototype
	1. Introduction
	2. Materials and Methods
	2.1. Hardware
	2.2. MNIST Learning Task
	2.3. The DEEP R Algorithm
	2.4. Sparse Matrix Formats and Implementation Details of the Rewiring Algorithm
	2.5. Distributed Implementation
	2.5.1. Distribution Methodology
	2.5.1.1. Data parallelism
	2.5.1.2. Model parallelism

	2.5.2. Partition Scheme
	2.5.3. Distributed Training on the Prototype Chip

	3. Results
	3.1. Memory Footprint
	3.2. Computation Time
	3.3. Power and Energy Consumption

	4. Discussion
	4.1. Scaling Analysis
	4.2. Related Neuromorphic Hardware
	4.2.1. Fully Programmable, Flexible Learning Function

	4.3. Efficient DNN Processing
	4.3.1. Hardware for Efficient Inference of DNNs

	4.4. Deep Learning With a Small Memory Footprint

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

