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A confluence of technological capabilities is creating an opportunity for machine learning
and artificial intelligence (AI) to enable “smart” nanoengineered brain machine interfaces
(BMI). This new generation of technologies will be able to communicate with the
brain in ways that support contextual learning and adaptation to changing functional
requirements. This applies to both invasive technologies aimed at restoring neurological
function, as in the case of neural prosthesis, as well as non-invasive technologies
enabled by signals such as electroencephalograph (EEG). Advances in computation,
hardware, and algorithms that learn and adapt in a contextually dependent way will be
able to leverage the capabilities that nanoengineering offers the design and functionality
of BMI. We explore the enabling capabilities that these devices may exhibit, why they
matter, and the state of the technologies necessary to build them. We also discuss a
number of open technical challenges and problems that will need to be solved in order
to achieve this.

Keywords: nanotechnology, neuroscience, machine learning, artificial intelligence (AI), brain machine interface
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INTRODUCTION

A confluence of technological capabilities is creating an opportunity for machine learning and
artificial intelligence (AI) to enable “smart” nanoengineered brain machine interfaces (BMI). The
goal is for this new generation of technologies to be able to communicate with the brain in ways
that support contextual learning and adaptation to changing functional requirements. This applies
to both invasive technologies aimed at restoring neurological function, as in the case of neural
prosthesis, as well as non-invasive technologies enabled by signals such as electroencephalograph
(EEG). Advances in computation, hardware, and algorithms that learn and adapt in a contextually
dependent way will be able to leverage the capabilities that nanoengineering offers the design and
functionality of BMI. Eventually, these technologies will be able to carry out learning and adaptation
in (near) real time, as external shifting demands from the environment and physiology require
them. Ultimately, the goal is to produce personalized individual user experiences for applications
such as gaming, and to allow the device to learn and adapt to changing disease requirements in
clinical scenarios. In this commentary we explore the enabling capabilities that these devices may
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exhibit, why they matter, and the state of the technologies
necessary to build them. We also discuss a number of open
technical challenges and problems that will need to be solved in
order to achieve this.

THE OPPORTUNITY FOR “SMART”
BRAIN MACHINE AND BRAIN
COMPUTER INTERFACES

Brain machine and brain computer interfaces (we use these
terms interchangeably here) represent technologies designed
to communicate with the central nervous system: the brain,
spinal cord, and neural sensory retina. Clinically, depending
on the design and intent of the technology, the goal can be
to record and interpret neural signals in order to execute
an intended neural command through an external device,
or to achieve neural stimulation, often to restore neural
function following disease or trauma, or both (Adewole et al.,
2016; Choi et al., 2017; Slutzky and Flint, 2017; Rezeika
et al., 2018). Some devices make use of feedback in an
attempt to optimize performance, whether physiological or via
patient specific intent and instructions (Widge et al., 2018).
There is also a growing list of non-invasive brain machine
interface technologies not meant for clinical use, primarily
driven by innovative startup companies. These technologies
are intended to augment the user experience and control
interface for gaming and augmented (AR) and virtual reality
(VR) applications. Although of course very different than
technologies aimed at treating and restoring clinical function
and quality of life to patients, this is a market that should
not be ignored. Not the least of which because it could
provide leveraging resources to the benefit of clinically related
research. For example, advances in our understanding of the
relevant neurophysiology, cognitive neuroscience, mathematical
and engineering aspects of signal processing, and hardware,
can significantly impact both the gaming industry as well
as clinical devices and neural prosthesis. The brain machine
interface market is projected to reach $1.46B by 2020, with
a compound annual growth rate (CAGR) of 11.5% between
2014 to 2020 by one estimate (Allied Market Research,
2015), and a comparable $1.72B in 2022, with a predicted
CAGR of 11.5% between 2012 and 2022 by another estimate
(Grand View Research, 2018). Much of this projected growth
will be due to non-invasive technologies, with the gaming
industry as a market driver roughly on par with healthcare
applications.

As significant as these numbers are, these projections
primarily reflect enabling technologies for interfacing between
neural control and sensory experiences with machines. They do
not reflect opportunities that go beyond what is currently possible
with the existing state of the art. BMI that can learn and adapt
reflect the cutting edge of what is technologically possible, due to
a confluence of BMI technologies, in particular nanotechnologies,
machine learning and AI, alongside a continued increasing
understanding of the relevant neuroscience. AI can provide
opportunities to create “smart” BMI that contextually learn and

adapt to changing functional requirements and demands. This
has the potential to produce personalized individual experiences
in gaming and AR/VR, and allow for the changing requirements
associated with patient specific disease progression and evolution
in clinical applications. This latter point cannot be overestimated,
because not only would it accommodate the differing clinical
demands of different neurological disorders, it would allow for
patient specific adaptation of BMI functionality to the needs of
different patients. And it would allow the technology to continue
to adapt as disease progression evolves in individuals over time.
One of the significant limitations of current state of the art BMI
and neural prosthesis is the assumption of one size fits all. In in
other words, the assumption that a technology operating under
a specific set or range of functionality will properly treat all
patients. While we are not aware (yet) of a device or technology
that reflects the actualized integration of machine learning and
nanotechnology applied to BMI, we argue that the potential and
impact of doing make the subject worth exploring. Each on their
own, machine learning and nanotechnology, are already being
used in the design and function of BMI and neural prosthesis
in a number of ways that align with the vision we propose
here.

INTEGRATION OF BMI WITH MACHINE
LEARNING

What advantages does machine learning and artificial Intelligence
(AI) offer BMI? What exactly are machine learning algorithms
learning, and how can they use that information to adapt in a
meaningful way? What these algorithms can learn is information
provided by feedback and telemetry from the hardware. This
could be information about the current state of the output
settings of the device, or any kind of external information
measured by sensors in the BMI. For example, physiological
measurements in response to stimulation, feedback from other
algorithms external to the BMI-machine learning system, such
as haptic or computer vision feedback, or the internal parameter
settings of current stimulation or recording protocols to the
device. In the case of internal parameters the algorithms
have constant access to variables such as pulse durations and
amplitudes, stimulation frequencies, energy consumption by the
device, stimulation or recording densities, electrical properties of
the neural tissues it is interfacing with (resistances, impedances),
and continuous or near continuous levels of biochemical factors
such as neurotransmitters or other metabolites. Of course, none
of these are mutually exclusive, with multiple types and streams
of information possibly being provided to the algorithms in
parallel, albeit at likely different sampling resolutions. With this
information, machine learning algorithms could then identify
subtle and non-trivial patterns and phenomena in the data,
ideally in (near) real time, in order to produce desired functional
outcomes from the BMI that change dynamically as external
(e.g., clinical or functional) requirements demand them. This
would necessitate the development and training of machine
learning models and algorithms offline as part of the design of
the BMI system. The algorithms would need to learn a wide
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enough range of the parameter spaces in order to appropriately
identify patterns in the data they encounter when online.
Subsequent algorithms can then autonomously make decisions
about how to use that data. This step does not necessarily have
to be part of the brain machine interface system itself, and
could be executed with algorithms computing in the cloud, if
sufficient bandwidth was available. Or even offline following
periodic data downloads, for example. Clearly though, on board
decision algorithms that operate in real time with the machine
learning algorithms that are identifying patterns in the data
would be ideal. This would alleviate issues of data transfer
delays, and bandwidth insufficiency. This could also allow for
the need to store less data on the device, which could be
limited due to physical constrains. Data would only have to
be stored long enough for the system to make an autonomous
decision, essentially as a moving window that matches the
processing capabilities of the algorithms. Of course, it may
still be valuable or necessary to store some data or types of
data for offline analyses even though they may not be needed
for the BMI system to make a decision. For example, in
order to understand offline after the fact why the algorithms
made the decisions they made and the clinical outcomes of
those decisions. With this process complete we close the loop:
information is provided to the machine learning algorithms,
followed by learning, pattern identification, and subsequent
executable autonomous decisions that in turn dynamically
change the output of the brain machine interface and how it
interacts with the external environment it is interfacing with.
This could be the brain itself in the case of a neural prosthesis
intended to restore clinical function, or software in a non-
invasive BMI that is interfacing that is part of an AR or VR
system.

While still early days, a number of research groups have
recognized this potential, and are beginning to explore how
machine learning could inform and integrate neural stimulation
and feedback. Nurse and colleagues (Nurse et al., 2015) have
developed a generalized approach that takes advantage of a
stochastic machine learning method to classify motor related
signals specifically for BMI applications. Importantly, their
classifier does not need to rely on the use of extensive a priori
data to train the BMI. Their algorithms outperformed other
methods on the Berlin BMI IV 2008 dataset, and demonstrated
high levels of classification accuracy when tested on datasets
derived from EEG signals. In another recent study, Ortega
et al. (2018) explored different data pre-processing strategies and
convolution neural network architectures for classification tasks
derived from EEG signals. Interestingly, they found that a rather
straightforward network architecture, when combined with a
pre-processing step that analyzed spectral power preserving
features of the electrode arrangements, was sufficient to handle
the analysis of the data. Their network consisted of a single
convolution layer, one connection layer, and single linear
regression classifier layer. Their approach allowed them to
carry out co-adaptive training on the data to achieve on-line
classification. A different study had explored a similar approach.
Lawhern et al. (2016) carried have also explored a similar
approach.

As discussed above, one of the biggest advantages machine
learning may confer on BMI is the ability to achieve real-time or
near-real-time modulation of output or stimulation parameters
in response to active real-time feedback from physiological
signals, the environment, or other internal cues from the system
itself, such as possibly the output from other internal algorithms
that have processed some amount of data. Most BMI’s have a
decoder component whose job it is to decode and make sense
of neural signals in order to produce executable or actionable
outputs. This typically necessitates extensive supervised training
in order to optimize the interpretation of recorded neural
signals before the decoder can properly correlate observed
signals with desired outputs and commands. This training has
traditionally required supervised feedback with a human in the
loop, typically a technician or clinician often with input from the
patient her/himself, thus making the process highly inefficient
and intermittent. Training and subsequent adjustments can
only occur periodically and are typically time consuming.
Furthermore, the mapping from neural signals to actionable
outputs is limited to the training data the system is exposed
to during the training. This then highly limits the ability of
the BMI to respond to variable real world scenarios it may
encounter when in use, thus severely limiting its functionality
to the patient when such conditions arise. Early work relied
on feedback from external sensory references to compute an
error between the output of the system and desired supervised
target. These included visual and auditory signals (Wessberg
et al., 2000; Lebedev et al., 2005), mechanotransduction (Nicolelis
and Chapin, 2002; O’Doherty et al., 2011), and direct cortical
sensory stimulation (6 Bach-y-Rita and Kercel, 2003). But
these approaches are severely limited due to their need for
continuous information from an external reference target to
adjust the mapping to the output of the BMI. More recent
work has addressed some of these limitations by adapting output
parameters to unsupervised learning methods such as Bayesian
statistical methods and reinforcement learning that do not rely
on an external reference (Vidaurre et al., 2011; Orsborn et al.,
2012, 2014; Bryan et al., 2013; Huang and Rao, 2013; Bauer
and Gharabaghi, 2015). Although in most cases they still require
significant training periods. More recent studies have begun to
investigate the use of endogenous neural signals directly as the
training source in iterative closed feedback loops with the BMI
that can respond and adapt in a much more direct way (Suminski
et al., 2010; Carmena, 2013). For example, Prassad and colleagues
are developing an approach they call Actor-Critic reinforcement
learning that does not need to rely on a supervised error signal
(Pohlmeyer et al., 2014; Prins et al., 2014, 2017).

In general, the BMI field in general and neural prosthesis
field in particular are still exploring machine learning. One of
the challenges is that key state of the art methods, such as deep
learning, that have had huge successes in other applications may
not be the best approach for the constraints imposed by the
needs of BMI (Vidaurre et al., 2015). In a recent paper, Panuccio
et al. (2018) do an excellent job summarizing the current state
and challenges of neural engineering aimed at restoring neural
function, including proposing a number of similar requirements
discussed in the current paper, that emerging algorithms and
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machine learning will need to address in order to build a true
adaptive BMI.

An important consideration that such machine learning
approaches offer that other methods cannot is the opportunity
to develop BMI that adapt to the scaling requirements,
both spatial and temporal, necessitated to achieve targeted
functional outcomes. In the context of neural stimulation, the
optimal density of stimulation required to produce a target
response in neuronal populations being stimulated is a complex
consideration, and may not always be the highest stimulation
density achievable by the device (Shepherd et al., 2013; Patil
and Thakor, 2016). What the right stimulation density should
be can be a complex question to answer, and often depends on
specific physiological and pathophysiological considerations. In
many situations we still do not fully understand what the right
stimulation density should be and why. Furthermore, the optimal
stimulation density is likely to vary from individual to individual
even in the same disorder, and within an individual patient the
disease can greatly evolve over time as the physiology changes
and the body responds and adapts to altered conditions. This
could be a function of age or exogenous perturbations such as
a response to other treatments, diet, and the psychological state
of the patient. Another consideration is that hardware or other
algorithms that need to make use of recorded or measured neural
data in order to interact with the brain could have different
scaling requirements in the data. This would be dependent on
what the external query is and how the neural data needs to
be used. It reflects the technical capabilities and limitations of
the external technologies requesting the data. Under sampling
could lead to poor user interactions, for example, a frustrating or
confusing AR/VR experience, or the inability of a disabled patient
to communicate in a timely or accurate manner. Oversampling
would waste computational resources and time. In a research
setting, data scaling issues could affect the empirically determined
accuracy of a computational model, or how a hypothesis is
tested and interpreted. Clinically, it could impact treatment or
other clinical decisions. Changing temporal and spatial scaling
requirements demanded by exogenous considerations to the BMI
present situationally unique challenges that the existing state
of the art is not yet able to address in a substantive way. The
integration of machine learning and AI with nanoengineered
BMI offers the opportunity for these technologies to learn,
adapt, and respond to their environments in order to address
functionally challenging considerations such as dynamic scaling
demands.

BEYOND THE CURRENT STATE OF THE
ART: MACHINE LEARNING ENABLED
NANOENGINEERED BMI

In recent years there has been an explosion of work focused
on the development and use of nanotechnologies aimed at
interacting and interfacing with the brain and central nervous
system generally (Silva, 2006, 2007a,b, 2008, 2010; Kotov et al.,
2009; De Vittorio et al., 2014; Saxena et al., 2015; Badry and
Mattar, 2017; Scaini and Ballerini, 2017; Rosenthal, 2018), and in

the context of BMI and neural prosthesis in particular (Webster
et al., 2003; Lovat et al., 2005; Fabbro et al., 2012; Nicolas-Alonso
and Gomez-Gil, 2012; Seo et al., 2013; Avants et al., 2016; Ha
et al., 2016; Scaini and Ballerini, 2017). Considerable recent effort
has focused on nanoscale neurotechnologies aimed at recording
from and stimulating from the brain at high densities. This has
to a significant degree been motivated by federal research efforts
in both the United States and the European Union through the
Brain Initiative1 and Human Brain Project,2 respectively. We do
not attempt to review this extensive literature here, but refer the
reader to the references and published literature more broadly.

While the confluence of machine learning and
nanoengineered BMI and neural prosthesis has not yet
occurred, machine learning is playing an increasing role in
other aspects of nanotechnology and related molecular-scale
research (for example, see the review by Sacha and Varona,
2013). In one example, Albrecht et al. (2017) have written a
tutorial for using deep learning convolution neural networks
for analyzing and mining single molecule data from DNA
sequencing experiments. Ju et al. (2017) recently showed they
could use an atomic version of Green’s function and Bayesian
optimization to optimize the interfacial thermal conductance of
Si-Si and Si-Ge nanostructures (Ju et al., 2017). Their method
was able to identify optimal structures within a library of over
60,000 candidate structures. And in another striking recent
study, Lin et al. (2018) were able to implement a deep learning
architecture on an all-optical 3d printed Diffractive Deep Neural
Network (D2NN) that were designed and optimized by deep
learning. These researchers were able to carry out classification
and other imaging tasks without the need or use of any power,
except for the input light into their system. The opportunity for
BMI and neural prosthesis lies in the ability of machine learning
to “learn” (i.e., identify and classify patterns) in highly complex
physical and chemical data derived from devices that have been
engineered at the nanoscale in order to inform and optimize the
design and functional outputs of the devices.

As already alluded to, however, an important consideration in
this quest is the realization that existing machine learning and AI
algorithms may not be optimal for such needs. Thus, there is a
possible opportunity and need for the development of purposely
developed machine learning algorithms specifically designed to
take advantage of and control nanoengineered BMI devices.
Current machine learning methods, in particular deep artificial
neural networks (ANN’s), are incredibly powerful and continue
to show some spectacular progress. What is probably the most
surprising is that at its most fundamental, the underlying learning
rules responsible for the existing state of the art and success of
ANN’s are essentially all variants of gradient descent statistical
learning methods. But like any method, there are theoretical and
practical limitations. The data they operate on must therefore
be able to accommodate these constraints. In particular, existing
algorithms are dependent on exposure to enormous data sets to
train them properly so they can learn (a form of model bias).
They can only find associations and patterns in the data that

1http://www.braininitiative.org/
2https://www.humanbrainproject.eu/en/
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already exist (model bias again). There is always a danger of
over generalizing from a limited training set (model over fitting).
A such, they display an almost complete lack of robustness and
ability to adapt beyond the training sets they are exposed to.
New data may not achieve further learning (model saturation).
And because of these considerations these methods will miss
outliers (data sparseness problem). Finally, they require large
computational resources and the consumption of huge amounts
of energy to properly identify learned patterns. These methods
are limited by a set of fundamental engineering challenges
inherent to statistical learning. Yet, even with these constraints
in mind, and ignoring all the hype currently surrounding
machine learning and AI, it is difficult not to be impressed
by the accomplishments these methods are achieving. If the
data and resources are appropriate to the task being presented
to the algorithms, these methods can work remarkably well
and it is likely impractical (and even unnecessary) to attempt
to develop new methods to supersede them; at least for the
foreseeable future. In some cases it is certainly plausible that
the machine learning needs of nanoengineered BMI’s could be
amenable to the current state of the art (see references and
discussion above). BMI can generate significant amounts of data,
and the range of operating conditions of physiological signals,
stimulation parameters, and recording densities specific to given
functional tasks are sufficiently well understood, at least from
the perspective of defining the extremes of those conditions.
Thus, sufficient data over known and practical physiological
operating ranges could allow existing machine learning to learn
sufficiently in order to guide decision algorithms for adapting the
interactions of the BMI with their targets. This is particularly true
of nanoengineered brain machine interface’s, whereby the degree
of synthesis control over the material or device, and spatial and
temporal stimulation resolutions and recording densities, can be
engineered at the nanoscale. Conceivably, the quality and amount
of information nanoengineered BMI could produce, along with
the degree of functional control nanoscale engineering provides,
are particularly well suited to take advantage of the state of the art
in machine learning and AI in order to achieve smart integrated
BMI.

At the same time, however, it is worth asking if machine
learning and AI architectures designed to learn differently than
existing algorithms could provide a degree of functionality and
integration with BMI’s that does not yet exist. In particular,
machine learning methods that mathematically model and
abstract specific neurobiological properties of interest. Empirical
(i.e., data driven) statistical learning AI works well on problems
where bias, sparseness, and saturation are not (or not yet)
an issue that limit its learning. But it is precisely learning
beyond these constraints that the biological brain excels at.
In particular, the ability of the brain to adapt and extrapolate
beyond data presented to it, and it is incredible computational
and physical robustness to perturbations. These properties go
beyond the current stage of the art in machine learning, but
could be critical to the sophisticated integration of BMI with the
brain. The biological brain represents, learns, and manipulates
information very differently than the way existing artificial
neural networks, machine learning, and statistical methods

“learn” to find patterns in data. The brain primarily learns by
analogy and by abstracting beyond the immediate training sets
presented to it. It is capable of robustly adapting to different
situations and contexts it may not have previously encountered
with an incredible degree of plasticity. The computational
flexibility, adaptation, and robustness of the brain exceed
any existing machine. One extreme example of the human
brain’s incredible robustness and ability to adapt is evident
in a neurological condition called Rasmussen’s encephalitis, a
rare pediatric chronic inflammatory neurological disorder that
typically affects one hemisphere. It is typically characterized by
severe and frequent seizures that result in loss of motor function,
loss of speech, hemiparesis, encephalitis, and cognitive decline
(Freeman, 2005; Varadkar et al., 2014; Venkatesan and Benavides,
2015). Most patients become refractory (stop responding) to
medical treatment. In many cases the only effective treatment
for seizures is hemispherectomy, whereby portions or the entire
affected cortical hemisphere are surgically removed and the
corpus callosum cut from the unaffected hemisphere. The corpus
callosum is the high speed “ribbon cable” that connects our two
sides of the brain. Yet, to varying degrees, the remaining side of
the cortex in these patients is able to take up the functions of the
excised cortical tissue to a remarkable extent. In many cases these
patients are able to function cognitively and physically almost
normally considering how much of their brains are removed.
(Contrast that with what would happen if you remove even a
handful of the transistors or circuits in a computer.) All of this
is even more impressive given the computational and energy
efficiency with which the brain achieves this - using about 20
watts of power, barely enough to power a dim light bulb, in about
3 lbs of “wetware” that occupies a volume equivalent to a 2 liter
bottle of soda.

One final comment worth emphasizing is that although the
biological brain exhibits computational properties and an ability
to learn that we want to understand and leverage, this does not
necessarily mean that we have to reverse engineer the brain to
the point that we are modeling or emulating every aspect of how
the biology itself implements the brain’s internal algorithms. One
approach is to abstract away the biological details and capture the
core algorithms, i.e., rules, that underlie the property or system
being studied in the brain that we want to build into the BMI.
The end result are mathematical models that are independent of
the underlying biological details, but which capture the functional
mechanisms at an appropriate scale of abstraction in order to
arrive at algorithmic descriptions that emulate those properties.
Admittedly, where that line of abstraction is drawn can be more
an art than a science.

CHALLENGES AND OPEN PROBLEMS

In this final section we briefly introduce some of the challenges
and open problems associated with actually executing the vision
discussed above. We do not elaborate in this paper, but leave them
open for further discussion and dialog.

First, most (all) of the recent efforts in the development of
neurotechnologies aimed at high density recording or stimulation
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have focused on the physics, chemistry, and engineering of
the core nanotechnologies themselves. This is understandable
because the fundamental technologies necessary to enable
stimulation or recordings at the actual interface with the
brain have to come first. They need to precede any methods
or technologies intended to modify or make use of data
and information such technologies provide. Beyond the actual
interface itself, mechanical and operational stability and long
term reliability of the devices is critical in order to ensure accurate
recordings or stimulation. For example, if the electrodes move
or there is excessive reactive gliosis it will severely affect the
efficacy and accuracy of the devices, rendering any control or
adaptation by machine learning algorithms irrelevant. These
reflect fundamental engineering challenges that have attracted
significant amounts of work. And while significant progress has
been made, it very much remains highly active areas of research.
We do not discuss these issues further in this paper (see for
example Lega et al., 2011; Gilja et al., 2011; Lu et al., 2012).

Beyond these well-known issues surrounding the fabrication
and functionality of BMI devices, there are open problems
that have received comparatively less attention. Of particular
relevance are questions surrounding how data from these devices
can be accessed and used, which are of importance to any
discussion about integrating machine learning as part of the
overall system. At the nanoscale, the density of recording or
stimulation can be so large that the telemetry problem of how
do you keep track of all those signals becomes an issue. In
other words, how do you keep track of where and when signals
are coming from (in the case of recordings) or going to (in
the case of stimulation). With high density recordings, e.g.,
many thousands of signals, it becomes physically impossible to
follow the standard micro-scale strategy of having individual
leads “read out” signals. Most of the nanotechnologies currently
being developed for recording at such extreme densities are
being engineered as individual standalone nanoscale devices
that can then be deployed in large numbers. But even if
each individual device is indeed able to faithfully record local
signals, how does one extract that information globally across
the entire population of sensors and how does one make
sense of the resultant data? In the case of applications that
necessitate spatial “corticotopic” information, this question is
critical. We do not yet have a clear answer, but the impact of
the problem cannot be overstated. Whatever the solutions end
up being, they will almost certainly necessitate a combination of
developments in nanotechnology, algorithms, and data analyses
methods. The analogous problem with neural stimulation at
nanoscales is how do you selectively target, i.e., turn on and
off, nanoscale electrodes in controlled and coordinated spatial
and temporal combinations according to defined optimized
protocols to produce the most efficient clinically meaningful
stimulation paradigms? As discussed above, these would likely
differ from patient to patient and evolve over time in the same
patient. Being able to accommodate such changes is at the
core of the learning and adaptation machine learning methods
applied to BMI and neural prosthesis could provide. The design
of BMI devices from a materials and engineering standpoint
should be aligned with the implementation and integration of

machine learning intended to be deployed as part of the overall
system.

Other important considerations are broader topics and go
beyond just nanoengineered BMI integration with AI, but no
less relevant or important. For example, we do not completely
understand the neurophysiology, neural code, and intent of
neural signals in the context of information processing. This
makes it difficult or not yet possible to develop meaningful
machine learning algorithms for controlling BMI. So even if
the neural stimulation or neural recording interface technologies
were perfected, and even if we could develop efficient and
accurate machine learning for closed loop feedback control, it
still is not clear what we should be optimizing for. We just
do not understand how the brain works well enough to do
this. With existing neural prosthesis technologies in particular,
it is the brain that adapts to the engineered technology, and
not the other way around. Other open problems reflect open
engineering challenges, beyond the neuroscience. For example,
how can machine learning and AI be efficiently implemented
on board the device itself given limited form factors and
local computational resources? If access to more significant
computational resources on the cloud are required, the usual
questions of insuring appropriate bandwidth access becomes
important, in particular if such reliance was needed under
clinically sensitive situations. Is edge computing a possible
emerging alternative?

Finally, it is important to acknowledge and consider ethical
challenges that arise from the development and use of these
technologies. Neurotechnologies and AI on their own each
have important ethical considerations. And in at least one
recent commentary the ethical considerations of neuroscience,
neurotechnologies, and AI were simultaneously discussed (Yuste
et al., 2017). Those authors identified four principles that these
technologies must adhere to and respect for each individual:
privacy, identity, agency and equality. This needs to be an on-
going and evolving conversation that tracks with the progress of
the technology. The potential risks are too high to ignore or defer.

CONCLUDING COMMENTS

The integration of machine learning and AI with nanoengineered
brain machine and brain computer interfaces offers the potential
for significant advances in neurotechnology. BMI’s that have
the ability to learn and adapt from the environment and
situational demands of external requirements offer tremendous
possibilities to radically change the treatment and quality of
life of patients. It also offers opportunities for non-invasive
interactions and collaborations between humans and machines
that at the moment are still in the realm of science fiction. It
is conceivable that we are approaching an era of personalized
individual experiences that will impact both clinical and non-
clinical applications. Of course, as with any truly disruptive
and paradigm changing progress, there remain many technical
challenges that must be overcome, many in no way trivial or
easy, and serious ethical questions that have to be thoughtfully
considered and navigated. But it is hard not to be excited about
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the prospects, what it could mean for how we interact with and
use technology and computers for everyone, and the life changing
effects it could have on the quality of life and well-being of
patients who stand to benefit the most.

We end with one last parting consideration. We have argued
the position that the machine learning and AI algorithms that
will be required to arrive at “smart” nanoengineered brain
machine interface systems may include the use of existing
state of the art algorithms, but also possibly new neural
derived algorithms and machine learning architectures that more
directly model computational and systems neuroscience. What
we have not argued for, and what is in no way obvious, is
a need for artificial general intelligence (AGI) as necessary to
achieve this. Advanced applications such as smart adaptive BMI
will almost certainly benefit from advanced algorithms that
depend on new mathematical models and theory grounded in
empirical neurobiological data. But such algorithms in isolation
and out of context do not constitute AGI (although they

could conceivably contribute to it). These algorithms need to
be able to execute very sophisticated data analyses, pattern
recognition, learning, and decision making, but only within
the context and embodiment of the neurotechnologies they
are supporting. The concept of a self-aware or conscious
machine is not required, and should not be confused with
the technical considerations that actually are needed, i.e.,
the discussion in this paper. This distinction is important,
because the serious societal and ethical concerns and on-going
conversations surrounding AGI are very different than the
societal and ethical questions that we need to discuss involving
neurotechnologies.
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