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Neuromorphic engineering (NE) encompasses a diverse range of approaches to

information processing that are inspired by neurobiological systems, and this feature

distinguishes neuromorphic systems from conventional computing systems. The brain

has evolved over billions of years to solve difficult engineering problems by using

efficient, parallel, low-power computation. The goal of NE is to design systems capable

of brain-like computation. Numerous large-scale neuromorphic projects have emerged

recently. This interdisciplinary field was listed among the top 10 technology breakthroughs

of 2014 by the MIT Technology Review and among the top 10 emerging technologies

of 2015 by the World Economic Forum. NE has two-way goals: one, a scientific goal to

understand the computational properties of biological neural systems by using models

implemented in integrated circuits (ICs); second, an engineering goal to exploit the

known properties of biological systems to design and implement efficient devices for

engineering applications. Building hardware neural emulators can be extremely useful

for simulating large-scale neural models to explain how intelligent behavior arises in the

brain. The principal advantages of neuromorphic emulators are that they are highly energy

efficient, parallel and distributed, and require a small silicon area. Thus, compared to

conventional CPUs, these neuromorphic emulators are beneficial in many engineering

applications such as for the porting of deep learning algorithms for various recognitions

tasks. In this review article, we describe some of the most significant neuromorphic

spiking emulators, compare the different architectures and approaches used by them,

illustrate their advantages and drawbacks, and highlight the capabilities that each can

deliver to neural modelers. This article focuses on the discussion of large-scale emulators

and is a continuation of a previous review of various neural and synapse circuits (Indiveri

et al., 2011). We also explore applications where these emulators have been used and

discuss some of their promising future applications.

Keywords: neuromorphic engineering, large-scale systems, brain-inspired computing, analog sub-threshold,

spiking neural emulator
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INTRODUCTION

“Building a vast digital simulation of the brain could transform
neuroscience and medicine and reveal new ways of making more
powerful computers” (Markram et al., 2011). The human brain is
by far the most computationally complex, efficient, and robust
computing system operating under low-power and small-size
constraints. It utilizes over 100 billion neurons and 100 trillion
synapses for achieving these specifications. Even the existing
supercomputing platforms are unable to demonstrate full cortex
simulation in real-timewith the complex detailed neuronmodels.
For example, for mouse-scale (2.5 × 106 neurons) cortical
simulations, a personal computer uses 40,000 times more power
but runs 9,000 times slower than a mouse brain (Eliasmith et al.,
2012). The simulation of a human-scale cortical model (2 ×
1010 neurons), which is the goal of the Human Brain Project, is
projected to require an exascale supercomputer (1018 flops) and
as much power as a quarter-million households (0.5 GW).

The electronics industry is seeking solutions that will
enable computers to handle the enormous increase in data
processing requirements. Neuromorphic computing is an
alternative solution that is inspired by the computational
capabilities of the brain. The observation that the brain operates
on analog principles of the physics of neural computation
that are fundamentally different from digital principles in
traditional computing has initiated investigations in the field of
neuromorphic engineering (NE) (Mead, 1989a). Silicon neurons
are hybrid analog/digital very-large-scale integrated (VLSI)
circuits that emulate the electrophysiological behavior of real
neurons and synapses. Neural networks using silicon neurons
can be emulated directly in hardware rather than being limited
to simulations on a general-purpose computer. Such hardware
emulations are much more energy efficient than computer
simulations, and thus suitable for real-time, large-scale neural
emulations. The hardware emulations operate in real-time, and
the speed of the network can be independent of the number of
neurons or their coupling.

There has been growing interest in neuromorphic processors
to perform real-time pattern recognition tasks, such as object
recognition and classification, owing to the low energy and
silicon area requirements of these systems (Thakur et al., 2017;
Wang et al., 2017). These large systems will find application
in the next generation of technologies including autonomous
cars, drones, and brain-machine interfaces. The neuromorphic
chip market is expected to grow exponentially owing to
an increasing demand for artificial intelligence and machine
learning systems and the need for better-performing ICs and
new ways of computation as Moore’s law is pushed to its limit
(MarketsandMarkets, 2017).

The biological brains of cognitively sophisticated species
have evolved to organize their neural sensory information
processing with computing machinery that are highly parallel
and redundant, yielding great precision and efficiency in pattern
recognition and association, despite operating with intrinsically
sluggish, noisy, and unreliable individual neural and synaptic
components. Brain-inspired neuromorphic processors show
great potential for building compact natural signal processing

systems, pattern recognition engines, and real-time autonomous
agents (Chicca et al., 2014; Merolla et al., 2014; Qiao et al., 2015).
Profiting from their massively parallel computing substrate
(Qiao et al., 2015) and co-localized memory and computation
features, these hardware devices have the potential to solve
the von Neumann memory bottleneck problem (Indiveri and
Liu, 2015) and to reduce power consumption by several orders
of magnitude. Compared to pure digital solutions, mixed-
signal neuromorphic processors offer additional advantages in
terms of lower silicon area usage, lower power consumption,
reduced bandwidth requirements, and additional computational
complexity.

Several neuromorphic systems are already being used
commercially. For example, Synaptics Inc. develops touchpad
and biometric technologies for portable devices, Foveon Inc.
develops Complementary Metal Oxide-Semiconductor (CMOS)
color imagers (Reiss, 2004), and Chronocam Inc. builds
asynchronous time-based image sensors based on the work in
Posch et al. (2011). Another product, an artificial retina, is
being used in the Logitech Marble trackball, which optically
measures the rotation of a ball to move the cursor on a
computer screen (Arreguit et al., 1996). The dynamic vision
sensor (DVS) by iniLabs Ltd. is another successful neuromorphic
product (Lichtsteiner et al., 2008). Table 1 provides a detailed
timeline, with major breakthroughs in the field of large-scale
brain simulations and neuromorphic hardware.

In this work, we describe a wide range of neural processors
based on different neural design strategies and synapses that
range from current-mode, sub-threshold to voltage-mode,
switched-capacitor designs. Moreover, we will discuss the
advantages and strengths of each system and their potential
applications.

INTEGRATE-AND-FIRE ARRAY
TRANSCEIVER (IFAT)

The Integrate-and-Fire Array Transceiver (IFAT) is a mixed-
mode VLSI-based neural array with reconfigurable, weighted
synapses/connectivity. In its original design, it is comprised of
the array of mixed-mode VLSI neurons, an LUT (look-up table),
and AER (Address Event Representation) architecture. The
AER architecture is used for the receiver and transmitter. The
AER communication protocol is an event-based, asynchronous
protocol. Addresses are inputs to the chip (address-events,
AEs). The addresses represent the neuron receiving the input
event/spike. When a neuron outputs an event, it outputs the
address (output AE) of the neuron emitting the event/spike. The
LUT holds the information on how the network is connected.
It consists of the corresponding destination address(es) (post-
synaptic events) for each incoming AE (pre-synaptic event).
For each connection, there is a corresponding weight signifying
the strength of the post-synaptic event. The larger the weight,
the more charge integrated onto the membrane capacitance of
the destination neuron receiving the post-synaptic event. There
is also a polarity bit corresponding to each synapse signifying
an inhibitory or excitatory post-synaptic event. The original
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TABLE 1 | Timeline of neuromorphic simulation and hardware.

References Contributions

Mead, 1989a Initiated the field of neuromorphic engineering

Mead, 1989b Adaptive Retina: among the first biologically

inspired silicon retina chip

Mahowald and Douglas, 1991 Silicon Neuron: neuron using subthreshold

aVLSI circuitry

Prange and Klar, 1993 BIONIC: an emulator with simulation of 16

neurons with 16 synapses

Yasunaga et al., 1990 LSI composed on 576 digital neurons

Wolpert and Micheli-Tzanakou,

1996

Modeling nerve networks based on the I&F

model in silicon

Jahnke et al., 1996 NESPINN: SIMD/dataflow architecture for a

neuro-computer

Schoenauer et al., 1999 MASPINN: a neuro-accelerator for spiking

neural networks

Wolff et al., 1999 ParSPIKE: a DSP accelerator simulating large

spiking neural networks

Schoenauer et al., 2002 NeuroPipe-Chip: a digital neuro-processor for

spiking neural networks

Furber et al., 2006 High-performance computing for systems of

spiking neurons

Markram, 2006 Blue Brain Project: large-scale simulation of the

brain at cellular level

Boahen, 2006 Neurogrid: emulating a million neurons in the

cortex

Koickal et al., 2007 aVLSI adaptive neuromorphic olfaction chip

Djurfeldt et al., 2008 Brain-scale computer simulation of the

neocortex on the IBM Blue Gene

Maguire et al., 2007 BenNuey: platform comprises up to 18M

neurons and 18M synapses

Izhikevich and Edelman, 2008 Simulation of thalamocortical with 1011 neuron

and 1015 synapses

Ananthanarayanan et al., 2009 Cortical simulations with 109 neurons, 1013

synapses

Serrano-Gotarredona et al., 2009 CAVIAR: a 45 k neuron 5M synapse 12G

connects/s AER hardware

Schemmel et al., 2008, 2010 BrainScales: a wafer-scale neuromorphic

hardware

Seo et al., 2011 CMOS neuromorphic chip with 256 neurons

and 64K synapses

Cassidy et al., 2011 EU SCANDLE: one-million-neuron, single

FPGA neuromorphic system

Moore et al., 2012 Bluehive project: simulation with 256 k neurons

and 256M synapses

Zamarreno-Ramos et al., 2013 AER system with 64 processors, 262 k

neurons, and 32M synapses

Furber et al., 2014 SpiNNaker: Digital neuromorphic chip with

multicore System-on-Chip

Merolla et al., 2014 TrueNorth: IBM introduces the TrueNorth

“neurosynaptic chip”

Benjamin et al., 2014 Neurogrid: A mixed-analog-digital large-scale

neuromorphic simulator.

Park et al., 2014 IFAT: neuromorphic processor with 65 k-neuron

I&F array transceiver

Wang et al., 2014 An FPGA framework simulating 1.5 million LIF

neurons in real time

(Continued)

TABLE 1 | Continued

References Contributions

Qiao et al., 2015 A spiking neuromorphic processor with 256

neurons and 128K synapses

Park et al., 2017 HiFAT-IFAT: reconfigurable large-scale

neuromorphic systems

Cheung et al., 2016 Neuromorphic processor capable of simulating

400 k neurons in real-time

Pani et al., 2017 An FPGA platform with up to 1,440 Izhikevich

neurons

Moradi et al., 2018 DYNAP-SEL: neuromorphic mixed-signal

processor with self-learning

Davies et al., 2018 Loihi: Intel neuromorphic chip with

“self-learning chip”

Wang and van Schaik, 2018;

Wang et al., 2018

DeepSouth: cortex simulator up to 2.6 billion

LIF neurons

design of the IFAT utilized probabilistic synapses (Goldberg
et al., 2001). The weights were represented by a probability. As
events were received, the probability of the neuron receiving the
event was represented as the weight. The neuron circuit used
was essentially a membrane capacitor coupled to a comparator
and a synapse implemented as a transmission gate and charge
pump. The next generation of the IFAT used conductance-
based synapses (Vogelstein et al., 2007a). Instead of representing
weights as probabilities, a switch-cap circuit was used. The
weight then represented the synapse capacitance, and therefore,
was proportional to the amount of charge integrated onto the
membrane capacitance.

In sections MNIFAT: (Mihalas–Niebur and Integrate-and-
Fire Array Transceiver) and HiAER-IFAT: Hierarchical Address-
Event Routing (HiAER) Integrate-and-Fire Array Transceivers
(IFAT), two novel variants of the IFAT will be depicted: MNIFAT
and HiAER IFAT.

MNIFAT: (Mihalas–Niebur And
Integrate-And-Fire Array Transceiver)
This section describes novel integrate-and-fire array transceiver
(IFAT) neural array (MNIFAT), which consists of 2,040 Mihalas–
Niebur (M–N) neurons developed in the lab of Ralph Etienne-
Cummings at the Johns Hopkins University. The M–N neuron
circuit design used in this array was shown to produce
nine prominent spiking behaviors using an adaptive threshold.
Each of these M–N neurons were designed to have the
capability to operate as two independent integrate-and-fire (I&F)
neurons. This resulted in 2,040 M–N neurons and 4,080 leaky
I&F neurons. This neural array was implemented in 0.5µm
CMOS technology with a 5V nominal power supply voltage
(Lichtsteiner et al., 2008). Each I&F consumes an area of 1,495
µm2, while the neural array dissipates an average of 360 pJ of
energy per synaptic event at 5V. This novel neural array design
consumes considerably less power and area per neuron than
other neural arrays designed in CMOS technology of comparable
feature size. Furthermore, the nature of the design allows for
more controlled mismatch between neurons.

Frontiers in Neuroscience | www.frontiersin.org 3 December 2018 | Volume 12 | Article 891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thakur et al. Neuromorphic Spiking Array Processors

Neural Array Design
The complete block diagram of the neuron array chip is shown
in Figure 1. It was implemented with the aim to maximize
the neuron array density, minimize power consumption, and
reduce mismatch due to process variation. This is achieved by
utilizing a single membrane synapse (switch-capacitor circuit)
and soma (comparator) shared by all neurons in the array. The
connection between the neurons is reconfigurable via an off-chip
LUT. Pre-synaptic events are sent first through the LUT where
the destination addresses and synaptic strengths are stored. Post-
synaptic events are then sent to the chip. These events are sent as
AEs along a shared address bus decoded by the row decoder and
column decoder on-chip. The incoming address corresponds to
a single neuron in the array.

The neuron array is made up of supercells, each containing
four cells, labeledAm,At , Bm, and Bt . Each supercell contains two
M–N neurons, one using Am and At cells, and the second using
Bm and Bt cells. Each of these M–N neurons can also operate
as two independent, leaky (I&F) neurons, resulting in a total
of four leaky I&F neurons (Am, At , Bm, and Bt). Incoming AE
selects the supercell in the array and consists of two additional
bits for selecting one of the twoM–N neurons (A or B) within the
supercell, or one of the four cells when operating as I&F neurons.
Finally, the voltage across the storage capacitance for both the
membrane cell and threshold cell is buffered to the processor
via the router (Vm1 − X and Vm2 − X, where X is the row
selected). The router is used for selecting which voltage (from
the membrane cell or threshold cell) is buffered to the processor
as the membrane voltage and/or threshold voltage, depending
on the mode selected (M–N mode or I&F mode). This router
is necessary for allowing the voltage from the threshold (At or
Bt) cell to be used as the membrane voltage when in I&F mode.
After the selected neuron cell(s) buffer their stored voltage to the
external capacitances Cm and Ct , the synaptic event is applied
and the new voltage is buffered back to the same selected cells
that received the event. The synapse and threshold adaptation
elements execute the neuron dynamics as events are received. If
the membrane voltage exceeds the threshold voltage, there is a
single comparator (soma) that outputs a logic high (event).

An output arbiter/transmitter is not necessary in the design
considering that a neuron only fires when it receives an event.
The single output signal always corresponds to the neuron that
receives the incoming event. Having a single comparator not
only reduces power consumption but also reduces the required
number of pads for digital output. In this design, the speed
is compromised (for low-power and low-area) due to the time
necessary to read and write to and from the neuron. However, a
maximum input event rate of ∼1 MHz can still be achieved for
proper operation.

Mihalas–Niebur (M–N) Neuron Model and Circuit

Implementation
Each cell pair (Am/At and Bm/Bt) in this neural array models
the M–N neuron dynamics (Mihalaş and Niebur, 2009). In its
original form, it uses linear differential equations and parameters
with biological facsimiles. It consists of an adaptive threshold
and was shown to be capable of modeling all biologically

relevant neuron behaviors. The differential equations for CMOS
implementation of M–N model are as follows:

Vm
′(t) =

gm
l

Cm
(Vr − Vm(t)) (1)

θ ′(t) =
gt
l

Ct
(θr − θ(t)) (2)

Vm(t + 1) = Vm(t)+
Cm
s

Cm
(Em − Vm(t)) (3)

θ(t + 1) = θ(t)+
Ct
s

Ct
(Vm(t)− Vr) (4)

and,

gml =
1

rm
l

= fml Cl (5)

gtl =
1

rt
l

= f tl Cl (6)

Equations (3) and (4) model the change in membrane potential
(Vm) and threshold potential (θ) at each time step as the
neuron receives an input. Cm

s and Ct
s are the switch-capacitor

capacitance depicting the synapse conductance or threshold
adaptation conductance, respectively. Cm and Ct are the storage
capacitance for the membrane and threshold cells, respectively.
Em is the synaptic driving potential. Equations (1) and (2) model
the leakage dynamics, independent of synaptic connections. gm

l

and gt
l
are the leakage conductances for the membrane and

threshold and are dependent on the clock frequency, fm
l

and f t
l
.

The update rules for this M–N neuron model are as follows:

Vm(t)← Vr (7)

θ(t)← {if θ(t) > Vm(t), θ(t) ; if θ(t) ≤ Vm(t), θr} (8)

Neuron Cell Circuit
The neuron cell circuit is shown in Figure 2. The PMOS
transistor, P1, is the storage capacitance (∼440 fF), Cm or Ct

(depending on whether the cell is being used to model the
membrane or threshold dynamics) implemented as a MOS
capacitor with its source and drain tied to Vdd. Transistors N1
and N2 model the leakage (Equations 1 and 2) via a switch
capacitor circuit with Phi1 and Phi2 pulses at a rate of fm,t

l
(also,

Cl ≪ Cm). Transistors N3 and N4 allow for resetting the neuron
when selected (ColSel = “1”). Transistor N5 forms a source-
follower when coupled with a globally shared variable resistance
located in the processor of the neural array. It is implemented
as an NMOS transistor with a voltage bias (Vb). In read mode
(RW = “0”), switch S2 is closed such that the voltage across
the storage capacitance is buffered to an equivalent capacitance
coupled to the synapse and/or threshold adaptation element. In
write mode (RW = “1”), switch S3 is closed such that the new
voltage from the synapse/threshold elements (after an event is
received) is buffered to the storage capacitance.

Synapse and Threshold Adaptation Circuits
The schematic for modeling the neuron dynamics can be seen
in Figure 3. When a neuron receives an event, RW = “0,” and
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FIGURE 1 | Mihalas–Niebur neural array design.

the neuron’s cell is selected, and its stored membrane voltage
is buffered to the capacitance Cm. In the same manner, if
in M–N mode, the threshold voltage is buffered to Ct . The
Phi1SC and Phi2SC pulses are then applied (off-chip), adding
(excitatory event), or removing (inhibitory event) charge to
Cm via the synapse using a switch-capacitor circuit. A second,
identical switch-capacitor circuit is used for implementing the
threshold adaptation dynamics. As a neuron receives events, the
same Phi1SC and Phi2SC pulses are applied to the threshold
adaptation switch-capacitor circuit that adds or removes charge
to Ct . The new voltage is then buffered (RW = “1”) back to
the neuron cells for storing the new membrane voltage (as
well as the threshold voltage if in M–N mode). When using
each neuron independently as leaky I&F neurons, the threshold
adaptive element is bypassed and an externally applied fixed
threshold voltage is used. A charge-based subtractoris used in
the threshold adaptation circuit for computing Vth + (Vm −

Vr) in modeling Equation (4). This subtraction output is the
driving potential for the threshold switch-capacitor circuit. An

externally applied voltage, Em, is the synaptic driving potential
for the membrane synapse and is used for modeling Equation (3).
Finally, the comparator outputs an event when the membrane
voltage exceeds the threshold voltage. An external reset signal
for both the neuron cell modeling the membrane voltage and
cell modeling the threshold voltage is activated for the selected
neuron (via Reset1-X and Reset2-X) when a spike is outputted.

Results
A single neuron cell in this array has dimensions of 41.7 ×
35.84µm. It consumes only 62.3% of the area consumed by a
single neuron cell in Vogelstein et al. (2007a), also designed in
a 0.5µm process. This work achieves 668.9 I&F neurons/mm2,
Vogelstein et al. (2007a) achieves only 416.7 neurons/mm2, and
Moradi and Indiveri (2011) achieves only 387.1 neurons/mm2.
The number of neurons/mm2 can be further increased by
optimizing the layout of the neuron cell and implementing in
smaller feature-size technology.
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FIGURE 2 | Single neuron cell design.

FIGURE 3 | Block diagram of the processor including the synapse and threshold adaptation circuits.

The mismatch (due to process variations) across the neuron
array was analyzed, as well as the output event to input event ratio
for a fixed synaptic weight and an input event rate of 1 MHz was
observed for each neuron in the array. With this fixed synaptic
weight, the 2,040 M–N neurons have a mean output to input
event ratio of 0.0208±1.22e-5. In the second mode of operation,
the 4,080 I&F neurons have a mean output to input event ratio
of 0.0222 ±5.57e-5. The results were also compared with a
similar experiment performed in the 0.5-µm conductance-based
IFAT in Vogelstein et al. (2007a) (Table 2). The design shows
significantly less deviation. Small amounts of mismatch can be
taken advantage of in applications that require stochasticity.
However, for those spike-based applications that do not benefit
from mismatch, in this neural array, it is more controlled. This
again is a result of utilizing a single, shared synapse, comparator,

and threshold adaptive element for all neurons in the array. The
mismatch between neurons is only due to the devices within the
neuron cell itself.

Another design goal was to minimize power consumption. At
an input event rate of 1 MHz, the average power consumption
was 360 µW at 5.0V power supply. A better representation of
the power consumption is energy per incoming event. From these
measurements, this chip consumes 360 pJ of energy per synaptic
event. A comparison with other state-of-the-art neural array
chips can be seen in Table 3. Compared to those chips designed
in 500 nm (Vogelstein et al., 2007a) and 800 nm (Indiveri et al.,
2006) technology, a significant reduction in energy per synaptic
event was seen. Due to complications in the circuit board,
the low-voltage operation could not be measured. However,
the proper operation at 1.0 V (at slower speeds) was validated
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TABLE 2 | Array characterization showing output events per input event.

Neural array Mean ratio

(µ)

Standard deviation

(σ)

No. of

neurons

IFAT 0.0222 ±5.57e-5 4,080

Vogelstein et al., 2007a 0.0210 ±1.70e-3 2,400

using simulations. Assuming dynamic energy scales with V2

(capacitance remains the same), the energy per synaptic event
was estimated as∼14.4 pJ at 1.0 V. These results are promising, as
these specifications will be even further optimized by designing
in smaller feature-size technology. Table 3 summarizes the
specifications achieved from this chip.

Application
The IFAT system can be employed for mimicking various
biological systems, considering the reconfigurability feature of
the system. Furthermore, the use of the M–N neuron model
allows for simulation of various spiking behaviors, which in
turn allows for a wider range of neurological dynamics to be
implemented. Aside from neurological simulation, this IFAT
system can be utilized for performing visual processing tasks. The
reconfigurability of the synaptic connections between neurons
and the one-to-many capability allows for linear filtering,
including edge and smoothing operators. The reconfigurability
is also dynamic such that it can implement image dewarping
operations. As events/spikes enter the system, they can be
projected to new locations in the neural array based on camera
rotation and translation. These image processing tasks make
our system ideal for low-power visual preprocessing. Recent
technology, including autonomous drones and self-driving cars
require complex visual processing. Utilizing this IFAT system to
perform preprocessing, feed-forward visual tasks would prove
beneficial for such advanced technology performing object
recognition and classification tasks.

HiAER-IFAT: Hierarchical Address-Event
Routing (HiAER) Integrate-And-Fire Array
Transceivers (IFAT)
Hierarchical address-event routing integrate-and-fire array
transceiver (HiAER-IFAT) provides a multiscale tree-
based extension of AER synaptic routing for dynamically
reconfigurable long-range synaptic connectivity in
neuromorphic computing systems, developed in the lab of
Gert Cauwenberghs at the University of California San Diego.
A major challenge in scaling up neuromorphic computing
to the dimensions and complexity of the human brain, a
necessary endeavor toward bio-inspired general artificial
intelligence approaching human-level natural intelligence, is to
accommodate massive flexible long-range synaptic connectivity
between neurons across the network in highly efficient and
scalable manner. Meeting this challenge calls for a multi-
scale system architecture, akin to the organization of gray
and white matter distinctly serving local compute and global
communication functions in the biological brain, that combines

highly efficient, dense, local synaptic connectivity with highly
flexible, reconfigurable, sparse, long-range connectivity.

Efforts toward this objective for large-scale emulation of
neocortical vision have resulted in event-driven spiking neural
arrays with dynamically reconfigurable synaptic connections
in a multi-scale hierarchy of compute and communication
nodes abstracting such gray and white matter organization in
the visual cortex (Figure 4) (Park et al., 2012, 2014, 2017).
Hierarchical address-event routing (HiAER) offers scalable long-
range neural event communication tailored to locally dense and
globally sparse synaptic connectivity (Joshi et al., 2010; Park
et al., 2017), while IFAT CMOS neural arrays with up to 65 k
neurons integrated on a single chip (Vogelstein et al., 2007a,b; Yu
et al., 2012) offer low-power implementation of continuous-time
analog membrane dynamics at energy levels down to 22 pJ/spike
(Park et al., 2014).

The energy efficiency of such large-scale neuromorphic
computing systems is limited primarily by the energy costs of
external memory access as needed for table lookup of fully
reconfigurable, sparse synaptic connectivity. Greater densities
and energy efficiencies can be obtained by integrating them
to replace the core of the external DRAM memory lookup in
HiAER-IFAT flexible cognitive learning and inference systems
with nano-scale memristor synapse arrays vertically interfacing
with neuron arrays (Kuzum et al., 2012), and further optimizing
the vertically integrated circuits (ICs) toward sub-pJ/spike overall
energy efficiency in neocortical neural and synaptic computation
and communication (Hamdioui et al., 2017).

Application
Online unsupervised learning with event-driven contrastive
divergence (Neftci et al., 2014) using a wake-sleep modulated
form of biologically inspired spike-timing dependent
plasticity (Bi and Poo, 1998) produces generative models of
probabilistic spike-based neural representations, offering a
means to perform Bayesian inference in deep networks of
large-scale spiking neuromorphic systems. The algorithmic
advances in hierarchical deep learning and Bayesian
inference harness the inherent stochastic nature of the
computational primitives at the device level, such as the
superior generalization and efficiency of learning of drop-
connect emulating the pervasive stochastic nature of biological
neurons and synapses (Al-Shedivat et al., 2015; Naous et al.,
2016) by the Spiking Synaptic Sampling Machine (S3M)
(Eryilmaz et al., 2016; Neftci et al., 2016). Target applications
range from large-scale simulation of cortical models for
computational neuroscience, and acceleration of spike-based
learning methods for neuromorphic computing adaptive
intelligence.

DEEPSOUTH

DeepSouth, the cortex emulator was designed for simulating
large and structurally connected spiking neural networks
in the lab of André van Schaik at the MARCS Institute,
Western Sydney University, Australia. Inspired by observations
from neurobiology, the fundamental computing unit is called
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TABLE 3 | Measured (*estimated) chip results.

Process (nm) Vdd supply (V) (I&F) neuron density

(neurons/mm2)

Neuron area (µm2) Energy/Event (pJ)

500 5.0 669 1, 495 360

55* 1.2 55, 298 18.1 20.7

FIGURE 4 | Hierarchical address-event routing (HiAER) integrate-and-fire array transceiver (IFAT) for scalable and reconfigurable neuromorphic neocortical processing

(Broccard et al., 2017; Park et al., 2017). (A) Biophysical model of neural and synaptic dynamics. (B) Dynamically reconfigurable synaptic connectivity is implemented

across IFAT arrays of addressable neurons by routing neural spike events locally through DRAM synaptic routing tables (Vogelstein et al., 2007a,b). (C) Each neural

cell models conductance-based membrane dynamics in proximal and distal compartments for synaptic input with programmable axonal delay, conductance, and

reversal potential (Yu et al., 2012; Park et al., 2014). (D) Multiscale global connectivity through a hierarchical network of HiAER routing nodes (Joshi et al., 2010). (E)

HiAER-IFAT board with 4 IFAT custom silicon microchips, serving 256 k neurons and 256M synapses, and spanning 3 HiAER levels (L0-L2) in connectivity hierarchy

(Park et al., 2017). (F) The IFAT neural array multiplexes and integrates (top traces) incoming spike synaptic events to produce outgoing spike neural events (bottom

traces) (Yu et al., 2012). The most recent IFAT microchip-measured energy consumption is 22 pJ per spike event (Park et al., 2014), several orders of magnitude more

efficient than emulation on CPU/GPU platforms.

a minicolumn, which consists of 100 neurons. Simulating
large-scale, fully connected networks needs prohibitively large
memory to store LUTs for point-to-point connections. Instead,
they came up with a novel architecture, based on the
structural connectivity in the neocortex, such that all the
required parameters and connections can be stored in on-
chip memory. The cortex emulator can be easily reconfigured
for simulating different neural networks without any change
in hardware structure by programming the memory. A
hierarchical communication scheme allows one neuron to have
a fan-out of up to 200 k neurons. As a proof-of-concept,
an implementation on a Terasic DE5 development kit was
able to simulate upto 2.6 billion leaky-integrate-and-fire (LIF)
neurons in real time. When running at five times slower
than real time, it can simulate upto 12.8 billion LIF neurons,
which is the maximum network size on the chosen FPGA
board, due to memory limitations. Larger networks could

be implemented on larger FPGA boards with more external
memory.

Strategy
Modular Structure
The cortex is a structure composed of a large number of repeated
units, neurons and synapses, each with several sub-types, as
shown in Figure 5. A minicolumn is a vertical column of cortex
with about 100 neurons and stretches through all layers of the
cortex (Buxhoeveden and Casanova, 2002a). Each minicolumn
contains excitatory neurons, mainly pyramidal and stellate
cells, inhibitory inter neurons, and many internal and external
connections. The minicolumn is often considered to be both a
functional and anatomical unit of the cortex (Buxhoeveden and
Casanova, 2002b), andDeepSouth uses this minicolumnwith 100
neurons as the basic building block of the cortex emulator. The
minicolumn in the cortex emulator is designed to have up to eight
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FIGURE 5 | The modular structure of the cortex emulator. The basic building block of the cortex emulator is the minicolumn, which consists of up to eight different

types of heterogeneous neurons (100 in total). The functional building block is the hypercolumn, which can have up to 128 minicolumns. The connections are

hierarchical: hypercolumn-level connections, minicolumn-level connections, and neuron-level connections.

different programmable types of neurons. Note, the neuron types
do not necessarily correspond to the cortical layers, but can be
configured as such.

In the mammalian cortex, minicolumns are grouped into
modules called hypercolumns (Hubel and Wiesel, 1977). These
are the building blocks for complex models of various areas of
the cortex (Johansson and Lansner, 2007). The hypercolumn acts
as a functional grouping for the emulator. The hypercolumn in
the cortex emulator is designed to have up to 128 minicolumns.
Like the minicolumns, the parameters of the hypercolumns are
designed to be fully configurable.

Emulating Dynamically
Two approaches were employed to solve the extensive
computational requirement for simulating large networks.
First, all neurons were not physically implemented on silicon as
it was unnecessary, and second, time-multiplexing was used to
leverage the high-speed of the FPGA (Cassidy et al., 2011; Wang
et al., 2014a,b, 2017). A single physical minicolumn (100 physical
neurons in parallel) could be time-multiplexed to simulate 200 k
time-multiplexed (TM) minicolumns, each one updated every
millisecond. Limited by the hardware resources (mainly the
memory), the cortex emulator was designed to be capable of
simulating up to 200 k TM minicolumns in real time and 1M
(220) TMminicolumns at five times slower than real time, i.e., an
update every 5ms.

Hierarchical Communication
The presented cortex emulator uses a hierarchical
communication scheme such that the communication cost
between the neurons can be reduced by orders of magnitude.
Anatomical studies of the cortex presented in Thomson and
Bannister (2003) showed that cortical neurons are not randomly
wired together and that the connections are quite structural.

The connection types of the neurons, the minicolumns, and
the hypercolumns were stored in a hierarchical fashion instead
of individual point-to-point connections. In this scheme, the
addresses of the events consist of hypercolumn addresses and
minicolumn addresses. Both are generated on the fly with
connection parameters according to their connection levels,
respectively. This method only requires several kilobytes of
memory and can be easily implemented with on-chip SRAMs.

Inspired by observations from neurobiology, the
communication between the neurons uses events (spike counts)
instead of individual spikes. This arrangement models a cluster
of synapses formed by an axon onto the dendritic branches of
nearby neurons. The neurons of one type within a minicolumn
all receive the same events, which are the numbers of the spikes
generated by one type of neuron in the source minicolumns
within a time step. One minicolumn has up to eight types of
neurons, and each type can be connected to any type of neuron
in the destination minicolumns. Every source minicolumn was
restricted to have the same number of connections to all of the
other minicolumns within the same hypercolumn, but these
could have different synaptic weights. The primary advantage
of using this scheme is that it overcomes a key communication
bottleneck that limits scalability for large-scale spiking neural
network simulations.

This system allows the events generated by one minicolumn
to be propagated to up to 16 hypercolumns, each of which has
up to 128 minicolumns, i.e., to 16× 128× 100= 200 k neurons.
Each of these 16 connections has a configurable fixed axonal delay
(from 1 to 16ms, with a 1ms step).

Hardware Implementation
The cortex emulator was deliberately designed to be scalable and
flexible, such that the same architecture could be implemented
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either on a standalone FPGA board or on multiple parallel FPGA
boards.

As a proof-of-concept, this architecture is implemented on a
Terasic DE5 kit (with one Altera Stratix V FPGA, two DDR3
memories, and four QDRII memories) as a standalone system.
Figure 6 shows its architecture, consisting of a neural engine, a
Master, off-chip memories, and a serial interface.

The neural engine forms the main body of the system.
It contains three functional modules: a minicolumn array,
a synapse array, and an axon array. The minicolumn array
implements TM minicolumns. The axon array propagates the
events generated by the minicolumns with axonal delays to
the synapse array. In the synapse array, these events are
modulated with synaptic weights and assigned their destination
minicolumn address. The synapse array sends these events to
the destination minicolumn array in an event-driven fashion.

Besides these functional modules, there is a parameter LUT,
which stores the neuron parameters, connection types, and
connection parameters. The details are presented in the following
section.

Because of the complexity of the system and large number
of the events, each module in the neural engine was designed
to be a slave module, such that a single Master has full control
of the emulation progress. The Master has a memory bus
controller that controls the access of the external memories.
Because time-multiplexing is used to implement the minicolumn
array, the neural state variables of each TM neuron (such as
their membrane potentials) need to be stored. These are too big
to be stored in on-chip memory and have to be stored in off-
chip memory, such as the DDR memory. Using off-chip memory
needs flow control for the memory interface, which makes the
architecture of the system significantly more complex, especially

FIGURE 6 | The architecture of the cortex emulator. The system consists of a neural engine, a Master, off-chip memories, and a serial interface. The neural engine

realizes the function of biological neural systems by emulating their structures. The Master controls the communication between the neural engine and the off-chip

memories, which store the neural states and the events. The serial interface is used to interact with the other FPGAs and the host controller, e.g., PCs.

FIGURE 7 | The structure of the minicolumn array.

Frontiers in Neuroscience | www.frontiersin.org 10 December 2018 | Volume 12 | Article 891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thakur et al. Neuromorphic Spiking Array Processors

if there aremultiple off-chipmemories. The axon array also needs
to access the off-chip memories for storing events.

The Master also has an external interface module that
performs flow control for external input and output. This module
also takes care of instruction decoding. The serial interface
is a high-speed interface, such as the PCIe interface, that
communicates with the other FPGAs and the host PC. It is
board-dependent, and Altera’s 10G base Phy IP is used here.

Minicolumn Array
The minicolumn array (Figure 7) consists of a neuron-type
manager, an event generator, and the TM minicolumns, which
have 100 parallel physical neurons. These neurons generate
positive (excitatory) and negative (inhibitory) post-synaptic
currents (EPSCs and IPSCs) from input events weighted in the
synapse array. These PSCs are integrated in the cell body (the
soma). The soma performs a leaky integration of the PSCs to
calculate the membrane potential and generates an output spike
(post-synaptic spike) when the membrane potential passes a
threshold, after which the membrane potential is reset and enters
a refractory period. Events, i.e., spike counts, are sent to the axon
array together with the addresses of the originatingminicolumns,
the number of connections, and axonal delay values for each
connection (between two minicolumns).

Axon Array
The axon array propagates the events from the minicolumn
array or from the external interface to the synapse array, using
programmable axonal delays. To implement this function on

FIGURE 8 | Photograph of a BrainScaleS wafer module with part of the

communication boards removed to show the main PCB. The wafer is located

beneath the copper heat sink visible in the center.

hardware, a two-phase scheme comprising a TX-phase and
an RX-phase is used. In the TX-phase, the events are written
into different regions of the DDR memories according to their
programmable axonal delay values. In the RX-phase, for each
desired axonal delay value, the events are read out from the
corresponding region of the DDR memories stochastically, such
that their expected delay values are approximately equal to the
desired ones.

Synapse Array
The synapse array emulates the function of biological synaptic
connections: it modulates the incoming events from the
axon array with synaptic weights and generates destination
minicolumn addresses for them. These events are then sent
to the TM minicolumns. The synapse array only performs the
linear accumulation of synaptic weights of the incoming events,
whereas the exponential decay is emulated by the PSC generator
in the neuron.

Master
The Master plays a vital role in the cortex emulator: it has
complete control over all modules in the neural engine such that
it can manage the progress of the simulation. This mechanism
effectively guarantees no event loss or deadlock during the
simulation. The Master slows down the simulation by pausing
the modules that are running quicker than other modules.
The Master has two components (Figure 6): a memory bus
controller and an external interface. The memory bus controller
has two functions: (i) interfacing the off-chipmemory with Altera
IPs, and (ii) managing the memory bus sharing between the
minicolumn array and the axon array.

The external interface module controls the flow of the input
and output of events and parameters. The main input to this
system is events, which are sent to the minicolumn array via
the axon array. This module also performs instruction decoding
such that the parameter LUT and the system registers can
be configured. The outputs of the emulator are individual
spikes (100 bits, one per neuron) and events generated by the
minicolumns.

Programming API
Along with the hardware platform, a simple application
programming interface (API) was developed in Python that is
similar to the PyNN programming interface (Davison et al.,
2008). This API is very similar to the high-level object-oriented
interface that has been defined in the PyNN specification:
it allows users to specify the parameters of neurons and
connections, as well as the network structure using Python.
This will enable the rapid modeling of different topologies
and configurations using the cortex emulator. This API allows
monitoring of the generated spikes in different hypercolumns. As
future work, the plan is to provide full support for PyNN scripts
and incorporate interactive visualization features on the cortex
emulator.
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Application
This emulator will be useful for computational neuroscientists to
run large-scale spiking neural networks with millions of neurons
in real time. In one of the applications, it is being used to emulate
the auditory cortex in real time (Wang et al., 2018).

BRAINSCALES

The BrainScaleS neuromorphic system has been developed
at the University of Heidelberg in collaboration with the
Technical University Dresden and the Fraunhofer IZM in Berlin.
The BrainScaleS neuromorphic system is based on the direct
emulation of model equations describing the temporal evolution
of neuron and synapse variables. The electronic neuron and
synapse circuits act as physical models for these equations.
Their measurable electrical quantities represent the variables
of the model equations, thereby implicitly solving the related
differential equations.

The current first generation BrainScaleS system implements
the Adaptive Exponential Integrate-and-Fire Model (Gerstner
and Brette, 2009). All parameters are linearly scaled to match the
operating conditions of the electronic circuits. The membrane
voltage range between hyperpolarization, i.e., the reset voltage in
the model, and depolarization (firing threshold) is approximately
500mV. Time, being a model variable as well, can also be scaled
in a physical model. In BrainScaleS, this is used to accelerate

the model in comparison to biological wall time. It uses a
target acceleration factor of 104. This acceleration factor has
a strong influence on most of the design decisions, since the
communication rate between the neurons scales directly with

the acceleration factor, i.e., all firing rates are also 104 higher
than those in biological systems. The rationale behind the whole

communication scheme within the BrainScaleS system is based
on these high effective firing rates.

In the BrainScaleS system, the whole neuron, including
all its synapses, is implemented as a continuous-time
analog circuit. Therefore, it consumes a substantial silicon
area. To be able to implement networks larger than a few
hundred neurons, a multichip implementation is necessary.
Due to the high acceleration factor, this requires very
high communication bandwidth between the individual
Application Specific Integrated Circuits (ASICs) of such a
multichip system. BrainScaleS uses wafer-scale integration
to solve this problem. Figure 8 shows a photograph of a
BrainScaleS wafer module integrating an uncut silicon wafer
with 384 neuromorphic chips. Its neuromorphic components
will be described in the remainder of this section, which is
organized as follows: sections HICANN ASIC Explains the Basic
Neural Network Circuits, and Communication Infrastructure
details the wafer-scale communication infrastructure. Finally,
the wafer-scale integration is described in section Wafer
Module.

FIGURE 9 | Photograph of a single HICANN die. The enlargement shows a block diagram of the analog network core located in the center of the die.
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HICANN ASIC
At the center of the BrainScaleS neuromorphic hardware system
is the High-Input Count Analog Neuronal Network Chip
(HICANN) ASIC. Figure 9 shows a micro-photograph of a
single HICANN die. The center section contains the symmetrical
analog network core: two arrays with synapse circuits enclose
the neuron blocks in the center. Each neuron block has
an associated analog parameter storage. The communication
network surrounding the analog network core is described
in section Communication Infrastructure. The first HICANN
prototype is described in Schemmel et al. (2010). The current
BrainScaleS system is built upon the third version of the
HICANN chip, which is mostly a bug-fix version. A second-
generation BrainScaleS system based on a smaller manufacturing
process feature size is currently under development. It shrinks
the design geometries from 180 to 65 nm and improves part of
the neuron circuit (Aamir et al., 2016), adds hybrid plasticity
(Friedmann et al., 2016), and integrates a high-speed Analog-
to-Digital Converter (ADC) for membrane voltage readout. This
paper refers to the latest version of the first generation HICANN
chip as it is currently used in the BrainScaleS system.

Figure 10 shows the main components of the HICANN
chip. The analog network core contains the actual analog
neuron and synapse circuits. The network core communicates by
generating and receiving digital event signals, which correspond
to biological action potentials. One major goal of HICANN is
a fan-in per neuron of more than 10 k pre-synaptic neurons.
To limit the input ports of the analog core to a manageable
number, time-multiplexing is used for event communication:
each communication channel is shared by 64 neurons. Each
neuronal event therefore transmits a 6-bit number while time is
coded by itself, i.e., event communication happens in real-time
related to the emulated network model. This communication
model is subsequently called Layer 1 (L1).

Layer 2 (L2) encoding is used to communicate neural events
in-between the wafer and the host compute cluster. Due to
the latencies involved with long-range communication, it is not
feasible to use a real-time communication scheme. A latency of
100 ns would translate to a 1ms delay in biological wall time
using an acceleration factor of 104. Therefore, a protocol based
on packet-switching and embedded digitized time information is
used for the L2 host communication.

The gray areas labeled “digital core logic” and “STDP
top/bottom” are based on synthesized standard-cell logic. These
are not visible in Figure 9, because the L1 communication
lines are located on top of the standard cell areas (section
Communication Infrastructure). They occupy the whole area
surrounding the analog network core. The core itself uses a
full-custom mixed-signal implementation, as do the repeaters,
Serializer/De-Serializer (SERDES) and Phase-Locked Loop (PLL)
circuits. The only purely analog components are two output
amplifiers. They allow direct monitoring of two selectable analog
signals.

The RX- and TX-circuits implement a full-duplex high-speed
serial link to communicate with the wafer module. The thick
red arrows represent the physical L1 lanes. Together with the
vertical repeater circuits and the synapse and vertical-horizontal
crossbars, they form the L1 network (Section Communication
Infrastructure).

Neuron Circuits
The HICANN neuron circuits are based on the AdEx model
(Naud et al., 2008). Details of the circuit implementation of this
model and measurement results of the silicon neuron can be
found in Millner et al. (2010) and Millner (2012). Figure 11
shows the basic elements of a membrane circuit. A row of
256 membrane circuits is located adjacent to each of the two
synapse arrays. Within the two-dimensional synapse arrays, each

FIGURE 10 | Block diagram of the HICANN chip.
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FIGURE 11 | Block diagram of a HICANN membrane circuit. The model neurons are formed by interconnecting groups of membrane circuits.

membrane circuit has one column of 220 synapses associated
with it. To allow for neurons with more than 220 inputs, up to
64 membrane circuits can be combined to one effective neuron.

The circuit named “neuron builder” in Figure 9 is
responsible for interconnecting the membrane capacitances
of the membrane circuits that will operate together as one
model neuron. Each membrane circuit contains a block called
“Spiking/Connection,” which generates a spike if the membrane
crosses its threshold voltage. This spike generation circuit
can be individually enabled for each membrane circuit. In
neurons built by interconnecting a multitude of membrane
circuits, only one spike generation circuit is enabled. The
output of the spike generation circuit is a digital pulse
lasting for a few nanoseconds. It is fed into the digital event
generation circuit located below each neuron row as shown in
Figure 9.

Additionally, each membrane circuit sends the spike signal
back into its synapse array column, where it is used as the
post-synaptic signal in the temporal correlation measurement
between pre- and post-synaptic events. Within a group
of connected membrane circuits, their spike signals are
connected as well. Thereby, the spike signal from the single
enabled spike generation circuit is reflected in all connected
membrane circuits and driven as post-synaptic signal in
all synaptic columns belonging to the connected membrane
circuits. The neuron uses 23 analog parameters for calibration.
They are split in 12 voltage parameters, like the reversal
potentials or the threshold voltage of the neuron, and 11
bias currents. These parameters are stored adjacent to the
neurons in an array of analog memory cells. The memory
cells are implemented using single-poly floating-gate (FG)
technology.

Each membrane circuit is connected to 220 synapses by
means of two individual synaptic input circuits. Each row of
synapses can be configured to use either of them, but not
both simultaneously. Usually they are configured to model the
excitatory and inhibitory inputs of the neuron.

The synaptic input uses a current-mode implementation.
An operational amplifier (OP) acts as an integrator located
at the input (see Figure 12). It keeps the voltage level of
the input constant at Vsyn. Each time a synapse receives
a pre-synaptic signal, it sinks a certain amount of current
for a fixed time interval of nominal 4 ns. To restore
the input voltage level to Vsyn, the integrator must source
the corresponding amount of charge through its feedback
capacitor.

The second amplifier is an Operational Transconductance
Amplifier (OTA) that converts the voltage over the feedback
capacitor Cint into a current that is subsequently used to
control a current-controlled resistor connecting the reversal
potential to the membrane. The exponential decay of the synaptic
conductance is generated by the adjustable resistor Rtc in parallel
toCint . The rise-time of the synaptic conductance is controlled by
the bias current Iint of the integrator. The bias current of theOTA,
Iconv, sets the ratio between the conductance and the synaptic
current.

Synapse Array and Drivers
Figure 13 shows the different components of the synapse.
The control signals from the synapse drivers run horizontally
through the synapse array, orthogonal to the neuron dendritic
current inputs (synaptic input). The input select signal statically
determines which current input of the membrane circuits the
synapses use. It can be set individually for each row of synapses.

A synapse is selected when the 4-bit pre-synaptic address
matches the 4-bit address stored in the address memory while
the pre-synaptic enable signal is active. The synaptic weight of the
synapse is realized by a 4-bit Digital-to-Analog Converter (DAC)
and a 4-bit weight memory. The output current of the DAC can
be scaled with the row-wise bias gmax. During the active period of
the pre-synaptic enable signal, the synapse sinks the current set
by the weight and gmax.

By modulating the length of the pre-synaptic enable signal,
the total charge sunk by the synapse can be adjusted for each
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pre-synaptic spike. The synapse drivers use this to implement
short-time plasticity.

Each synapse contains in addition to the current sink, a
correlation measurement circuit to implement Spike Timing
Dependent Plasticity (STDP) (Friedmann, 2009). The pre-
synaptic signals are generated within the synapse drivers, located
to the left and right side of the synapse array in Figure 9. Each
synapse driver controls two adjacent rows of synapses.

Communication Infrastructure
The analog network core described in the previous section
implements a total of 220 synapse driver circuits. Each synapse
driver receives one L1 signal.

The physical L1 connections use the topmost metal layer
(metal 6) for vertical lines and the metal layer beneath for
horizontal lines. Since the synapse array uses all metal layers, the

FIGURE 12 | Simplified circuit diagram of the synaptic input of the neuron.

only physical space for L1 connections in HICANN is the area
surrounding the analog network core and the center of the analog
network core, above the digital event generation and neuron
builder circuits shown in Figure 10.

There are 64 horizontal lines in the center and 128 to the
left and to the right of the analog network core. Due to the
differential signaling scheme used, each line needs two wires;
the total number of wires used is 640, each wire pair using a
maximum signal bandwidth of 2 Gbits−1. This adds up to a total
bandwidth of 640 Gbits−1.

Wafer-Scale Integration
To increase the size of an emulated network beyond the number
of neurons and synapses of a single HICANN chip, chip-to-
chip interconnect is necessary. Any 3D integration technique (Ko
and Chen, 2010) will allow to stack only a few chips reliably.
Therefore, on its own, 3D stacking is not the solution to scale
HICANN to large network sizes.

Packaging the HICANN chips for flip-chip PCB mounting
and soldering them to carrier boards would be a well-established
option. Driving the additional capacity and inductance of two
packages and a PCB trace would make the simple asynchronous
differential transmission scheme unfeasible. Therefore, the area
and power used by the communication circuits would most
likely increase. To solve the interconnection and packaging
problems a different solution was chosen: wafer-scale integration.
Wafer-scale integration, i.e., the usage of a whole production
wafer instead of dicing it into individual reticles, is usually
not supported by the semiconductor manufacturing processes
available for university projects. Everything is optimized for
mass-market production, where chip sizes rarely reach the reticle
limit. Stitching individual reticles together on the top metal
layer was therefore not available for HICANN. In the 180 nm
manufacturing process used, eight HICANN dies fit on one
reticle. So, two problems had to be solved: how to interconnect

FIGURE 13 | Block diagram of the synapse.
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FIGURE 14 | L1 post processing. Main picture: Photograph of a post-processed wafer. Enlargements: bottom right: top-left corner of a reticle. The large stripes

connect the wafer to the main PCB. Bottom left: the L1 connections crossing the reticle border. Top left: 4-µm wide individual metal traces of the L1 connections

terminating at the pad-windows of the top reticle.

the individual reticles on the wafer and how to connect the whole
wafer to the system.

Within a reticle, the connections between the L1 lines of
neighboring HICANN chips are made directly by top layer metal.
With stitching available, interconnects on top layer metal would
allow to continue the L1 lines across reticle boundaries. But,
the problem of the wafer to PCB connection would remain.
The solution employed in BrainScaleS solves both connection
problems and can be used with any silicon wafer manufactured
in a standard CMOS process. It is based on the post-processing of
the manufactured wafers. A multi-layer wafer-scale metalization
scheme has been developed by the Fraunhofer IZM in Berlin. It
uses a wafer-scale maskset with µm resolution.

After some initial research, a minimum pad window size
of 5 × 5 µm2 was chosen. 15 × 15 µm2 copper areas have
proven to connect reliably to these pad windows. In Figure 14,
a photograph with all post-processing layers applied to a wafer
of HICANN chips is shown. The cut-out with the maximum
enlargement in the top left corner shows the dense interconnects
linking the L1 lines of two HICANN chips in adjacent reticles.
They use a pitch of 8.4 µm1. Due to the larger size of the
post-processing to wafer contacts, some staggering is necessary.

A second, much thicker post-processing layer is used to create
the large pads visible in the eight columns in the inner area
of the reticle. They solve the second problem related to wafer-
scale integration: the wafer to PCB connection. Since the L1
connections are only needed at the edge of the reticle, the whole
inner area is free to redistribute the HICANN IO and power lines

1The post-processing process has proven to be reliable down to a pitch of 6µm.

Since this density was not necessary, the pitch was relaxed a bit.

FIGURE 15 | Dynap-SEL with hierarchical routers. Each Dynap-SEL

comprises four TCAM-based non-plastic cores and one plastic core. The

hierarchical routing scheme is implemented on three levels for intra-core (R1),

inter-core (R2), and inter-chip (R3) communication.

and connect them to the regular contact stripes visible in the
photograph.

Wafer Module
A photograph of a partial assembled wafer module is shown in
Figure 9. The visible components are the main PCB with the
wafer in the center, beneath the copper heat-sink. There are 48
connectors for the Communication Subgroup (CS) surrounding
the wafer. Each CS provides the Low-Voltage Differential
Signaling (LVDS) and Joint Test Action Group (JTAG) signals
for one reticle2. Each wafer module uses 481 Gbit/s Ethernet links

2The CS was developed by Technical University Dresden.
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to communicate with the host compute cluster via an industrial
standard Ethernet switch hierarchy.

The links are provided by four IO boards mounted on top
of the CSs. In Figure 9, only one of them is in place to avoid
blocking the view on the CSs. Twelve RJ45 Ethernet Connectors
(RJ45s) can be seen in the upper right corner of the IO board. The
remaining connectors visible are for future direct wafer-to-wafer
networking.

Wafer-PCB Connection
As shown in Figure 14, the HICANN wafer is connected to
the main PCB by a contact array formed by the wafer post-
processing. The stripes visible in the figure have a width of
1.2mm and a pitch of 400µm. Amirror image of theses stripes is
placed on the main PCB.

The connection between both stripe patterns is then formed
by Elastomeric Connectors3 with a width of 1mm and a density
of five conducting stripes per mm. Therefore, they do not have
to be precisely aligned to the PCB or the wafer, only the wafer
and the PCB have to be aligned to each other with about 50µm
accuracy. This is achieved by placing the wafer in an aluminum
bracket, which is fastened to an aluminum frame located on the
opposite side of the main PCB by eight precision screws.

To place the Elastomic Connectors at the correct positions,
they are held by a thin, slotted FR4 mask which is screwed to
the main PCB. A special alignment tool has been developed to
optically inspect and correct the wafer-to-PCB alignment during
the fastening of the screws. The optimum pressure is achieved by
monitoring the electrical resistance of a selected set of wafer-to-
PCB contacts during the alignment and fastening process. After
the wafer is correctly in place, the bracket is filled with nitrogen
and sealed.

Application
By compressing the model timescale by several orders of
magnitude, the system allows to model processes like learning
and development in seconds instead of hours. It will make
parameter searches and statistical analysis possible in all kind
of models. Some results of accelerated analog neuromorphic
hardware are reported in Petrovici et al. (2016, 2017a,b) and
Schmitt et al. (2016).

DYNAP-SEL: A MULTI-CORE SPIKING
CHIP FOR MODELS OF CORTICAL
COMPUTATION

Novel mixed-signal multi-core neuromorphic processors that
combine the advantages of analog computation and digital
asynchronous communication and routing have been recently
designed and fabricated in both standard 0.18µm CMOS
processes (Moradi et al., 2018) and advanced 28 nm Fully-
Depleted Silicon on Insulator (FDSOI) processes (Qiao and
Indiveri, 2016) in the lab of Giacomo Indiveri at the
University of Zurich, Switzerland. The analog circuits used to
implement neural processing functions have been presented

3The connectors used are from Fujipoly, Datasheet Nr. FPDS 01-34 V6.

and characterized in Chicca et al. (2014). Here, the routing
and communication architecture of the 28 nm “Dynamic
Neuromorphic Asynchronous Processor with Scalable and
Learning” (Dynap-SEL) device is described, highlighting both its
run-time network re-configurability properties and its on-line
learning features.

The Dynap-SEL Neuromorphic Processor
The Dynap-SEL chip is a mixed-signal multi-core neuromorphic
processor that comprises four neural processing cores, each with
16 × 16 analog neurons and 64 4-bit programmable synapses
per neuron, and a fifth core with 1 × 64 analog neuron circuits,
64 × 128 plastic synapses with on-chip learning circuits, and 64
× 64 programmable synapses. All synaptic inputs in all cores
are triggered by incoming Address Events (AEs), which are
routed among cores and across chips by asynchronous Address-
Event Representation (AER) digital router circuits. Neurons
integrate synaptic input currents and eventually produce output
spikes, which are translated into AEs and routed to the desired
destination via the AER routing circuits.

Dynap-SEL Routing Architecture
The Dynap-SEL routing architecture is shown in Figure 15. It is
composed of a hierarchy of routers at three different levels that
use both source-address and destination-address routing. The
memory structures distributed within the architecture to support
the heterogeneous routing methods employ both Static Random
Access Memory (SRAM) and Ternary Content Addressable
Memory (TCAM) memory elements (see Moradi et al., 2018
for a detailed description of the routing schemes adopted). To
minimize memory requirements, latency, and bandwidth usage,
the routers follow a mixed-mode approach that combines the
advantages of mesh routing (low bandwidth usage, but high
latency), with those of hierarchical routing (low latency, but high
bandwidth usage) (Benjamin et al., 2014). The asynchronous
digital circuits in Dynap-SEL route spikes among neurons both
within a core, across cores, and across chip boundaries. Output
events generated by the neurons can be routed to the same
core, via a Level-1 router R1; to other cores on the same chip,
via a Level-2 router R2; or to cores on different chips, via a
Level-3 router R3. The R1 routers use source-address routing
to broadcast the address of the sender node to the whole core
and rely on the TCAM cells programmed with appropriate
tags to accept and receive the AE being transmitted. The R2
routers use absolute destination-address routing in a 2D tree to
target the desired destination core address. The R3 routers use
relative destination address-routing to target a destination chip at
position (1x,1y). The memory used by the routers to store post-
synaptic destination addresses is implemented using 8.5 k 16-bit
SRAM blocks distributed among the Level-1, -2, and -3 router
circuits.

In each non-plastic core, 256 analog neurons and 16 k
asynchronous TCAM-based synapses are distributed in a 2D
array. Each neuron in this array comprises 64 synapses with
programmable weights and source-address tags. Thanks to the
features of the TCAM circuits, there are 211 potential input
sources per synapse. Synaptic input events are integrated over
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time by a Differential Pair Integrator (DPI) linear integrator
circuit (Bartolozzi and Indiveri, 2007) that exhibits dynamics
with biologically realistic time constants (e.g., of the order of tens
of milliseconds). Thanks to its modularity, scalability, and on-
chip programmable routers, the Dynap-SEL can be integrated in
a chip array of up to 16× 16 chips, allowing all-to-all connectivity
among all neurons in the array. This enables the implementation
of a wide range of connections schemes, without requiring any
additional external mapping, memory, or computing support. By
following the parallel AER protocol, it is possible to establish
direct communications between Dynap-SEL chips and other
AER sensors and computing devices, enabling the construction
of large-scale sensory processing systems.

The TCAM and SRAM circuits are subdivided into small
memory blocks and embedded within the neuron and synapse
arrays. Given that memory and computation are co-localized,
each memory access operation is extremely efficient in terms
of power consumption, compared to the classical scheme of
accessing large TCAM/SRAM blocks placed at longer distances.
As there are only local and sparse memory access operations,
the requirement of memory bandwidth is also much lower than
in the traditional von Neumann architecture. In addition to the
power and bandwidth benefits, this distributed heterogeneous
memory architecture lends itself well to the exploitation of
emerging memory technologies, e.g., by replacing the CMOS
Content Addressable Memory (CAM) or SRAM cells with
nano-scale Resistive Random Access Memories (ReRAMs) or
memristors (Vianello et al., 2014; Chen et al., 2017). By careful
design of the analog circuits, an extremely compact layout can be
achieved. This allowed the implementation of multiple physical
analog neurons for true parallel computing, rather than using
time-multiplexing to share the computing resources of digital
neural processing blocks (e.g., as it is done inMerolla et al., 2014).
In the 28 nm process used, the analog neurons occupy around 5%
of whole chip area.

The Plastic Core
This core in the Dynap-SEL device comprises 64 analog neurons.
Each neuron has 128 mixed-signal plastic synapses, 64 mixed-
signal non-plastic synapses, and 4 linear synapse circuits. The
plastic and non-plastic synapses have synaptic weight parameters
with 4-bit resolution, while the linear synapse circuits have
four independent sets of parameters that can be set by 12-bit
programmable bias-generators. These parameters can be used
to change the synaptic weights, time constants, or type of
excitatory/inhibitory synapse. Furthermore, each of the linear
synapses can be time-multiplexed to represent many different
synaptic inputs that have the sameweight and temporal dynamics
(e.g., a 1 KHz input spike train could represent 1,000 1Hz
synaptic inputs). The block diagram of the plastic core is shown
in Figure 16.

The weight update mechanism of the plastic synapses is
governed by a 4-bit up/down counter, which is used to implement
the spike-driven learning rule proposed in Brader et al. (2007)
(see also Qiao et al., 2015 for a detailed description of the learning
circuits involved). Local digital latches are placed in each synapse

to set the synapse type (excitatory/inhibitory), to impose a user-
specified weight value, to enable/disable local weight monitor
circuits, to enable/disable the learning, or to enable/disable the
access to the input broadcast line. Non-plastic synapse circuits
are a simplified version of the plastic ones, which do not have
the on-line learning mechanism, but share all other features.
A local pulse-to-current converter is placed in each synapse to
convert the fast AER input events into longer current pulses with
tunable pulse width, to provide an additional degree of control
over the synaptic weight amplitude range. The long weighted
current pulses are then summed and integrated by DPI filter
circuits (Bartolozzi and Indiveri, 2007) located at the side of the
synapse array. The filtered output of the weighted sum of currents
is then fed into their corresponding neuron circuit. A synapse
demultiplexer allows the user to assign more synapse rows to
targeted neurons, to increase the size of the input space/neuron
(at the cost of decreasing the number of active neurons). It is
possible to merge at most eight rows of synapses to achieve a fan-
in of 1 k plastic synapses and 512 non-plastic ones per neuron, for
a network of eight usable neurons.

The spikes generated by the neurons get encoded into AEs by
the 1D arbiter. The LUT is used to append a destination chip and
core address to each AE. There can be up to eight different copies
of anAEwith eight different destination addresses, to increase the
fan-out of each neuron and allow it to target up to eight different
chips and maximum 32 cores. The local R1 router then routes
the AEs to the corresponding destinations. Once an AE reaches
its destination core, the address gets broadcast to the whole core
(which comprises 256 neurons). So, in principle it is possible to
achieve a maximum fan-out of 8 k destinations.

Features of the Dynap-SEL System
Thanks to the flexibility of the memory-optimized routing
system adopted, the system is highly scalable (Moradi et al.,
2015). Resources from different chips can be easily combined
and merged. Plastic cores from up to 4 × 4 chips can be
merged together to build a larger core. For example, by merging
plastic cores from 16 chips, a plastic core with 128 × 1 k
plastic synapses and 1 k neurons, or a plastic core with 1 k
× 128 plastic synapses and 128 neurons can be configured.
The implementation of asynchronous memory control allows
the on-line re-configuration of the routing tables. This in turn
allows the implementation of structural plasticity or evolutionary
algorithms.

By using multiple physical circuits to carry out parallel
computation, and by implementing many small and distributed
memory structures embedded within the mixed-signal neural
processing fabric, this architecture eliminates, by design, the
von Neumann bottleneck problem at the source. Memory and
computation are co-localized at all levels of the hierarchy
(Figure 17). In the current design, most of the silicon real-estate
is occupied by the digital SRAM and TCAM memory cells. The
use of emergingmemory technologies, such as ReRAM, will allow
to dramatically reduce the size of the design, and to integrate on
the same area larger numbers of synapses and neurons.
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FIGURE 16 | Plastic core architecture. It comprises a 64 × 128 array of plastic synapses, a 64 × 64 array of non-plastic synapses, a 64 × 4 array of time-multiplexed

linear synapses, a synapse row de-multiplexer, and 64 adaptive I&F neurons. Each synapse has digital memory and configuration logic circuits. In addition, there are

AER input Row/Column decoders, a 1D AER output arbiter, a local router R1, and a corresponding LUT for routing.

Application
The chip can find applications in various domains such as
bio-signal processing for auditory keyword recognition, body
signal processing like ECG anomaly detection based on reservoir
computing, vision processing applications for face detection and
object tracking and obstacle avoidance with robotics systems.

THE 2DIFWTA CHIP: A 2D ARRAY OF
INTEGRATE-AND-FIRE NEURONS FOR
IMPLEMENTING
COOPERATIVE-COMPETITIVE NETWORKS

The 2DIFWTA (2D Integrate-and-Fire Winner-Take-All) chip
was developed in the lab of Elisabetta Chicca at the Cluster
of Excellence in Cognitive Interaction Technology CITEC
and Bielefeld University, Germany. In this chip, cooperative-
competitive networks typically consist of a population of
neurons with recurrent excitatory and inhibitory connections.
The inhibitory connections mediate competition among neurons
receiving different input stimuli, while recurrent excitation
support cooperation among neurons with similar response
properties (e.g., close receptive field or stimulus preference).
The group of neurons with the highest response suppresses
all other neurons and wins the competition. Cooperative-
competitive networks perform complex non-linear operations
as well as common linear operations. Representative examples
of linear operations are analog gain (i.e., linear amplification
of the feed-forward input, mediated by the recurrent excitation
and/or the common mode input) and locus invariance (Koch
and Segev, 1998). The non-linear operations include non-linear
selection or soft winner-take-all (WTA) behavior (Amari and
Arbib, 1982; Hahnloser et al., 2000; Dayan and Abbott, 2001),
signal restoration (Douglas et al., 1994; Dayan and Abbott,
2001), and multi-stability (Amari and Arbib, 1982; Hahnloser

et al., 2000; Dayan and Abbott, 2001). These operations are
believed to be widespread in the nervous system, and the WTA
architecture has been proposed as a computational primitive
of the canonical microcircuit of the custom VLSI chip with a
dedicated architecture for implementing a single 2D cooperative-
competitive network neocortex.

A full-custom VLSI chip with a dedicated architecture for
implementing a single 2D cooperative-competitive network
or multiple 1D cooperative-competitive networks has been
implemented. The 2DIFWTA chip was explicitly designed to
provide a tool for the exploration of cooperative-competitive
network dynamics and computational properties in both the
mean rate and time domain. Recurrent connections are internally
hard-wired and do not need to be routed through the AER
bus. Similar architectures lacking these internal connections
would easily experience an AER bus overload, resulting in
prohibitive latencies, when configured to realize the same density
of recurrent connections.

The neurons and synapses embedded in the chip are sub-
threshold analog circuits for real-time emulation of the chosen
models. The system is fully parallel, therefore large-scale versions
can be designed without affecting the real-time operation of
the system. Nevertheless, suitable modular structures must be
identified to guarantee low traffic on the AER bus.

Chip Description
The 2DIFWTA chip was implemented using a standard 0.35-
µm four-metal CMOS technology (Figure 18). It comprises a
two-dimensional array of 32 × 64 (2,048) I&F neurons. Each
neuron (Figure 19) receives inputs from AER synapses (two
excitatory and one inhibitory) and local excitatory synapses. The
local connections implement recurrent cooperation for either
a two-dimensional or 32 mono-dimensional WTA networks.
Cooperation in 2D involves first-neighbor connections,
while cooperation in 1D involves first- and second-neighbor
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FIGURE 17 | Dynap-SEL chip, fabricated using a 28 nm FDSOI process. It occupies an area of 7.28 mm2 and comprises four non-plastic cores and one plastic core.

Each non-plastic core has 256 analog I&F neurons and 64k TCAM-based synapses arranged in 2D array (each synapse address is identified by an 11-bit TCAM, and

each synapse type and weight areidentified by a 5-bit SRAM). Each plastic core has 64 analog I&F neurons, 8k digital plastic synapses, 4k digital non-plastic

synapses, and 256 virtual synapses.

connections. Competition has to be implemented through the
AER communication protocol, and it is therefore flexible in
terms of connectivity pattern.

Neuron (I&F) Model
The circuit diagram of the I&F neuron implemented on the
2DIFWTA chip is shown in Figure 20. This circuit implements
a leaky I&F model similar to the design proposed in Culurciello
et al. (2001). Several biologically realistic features are also
implemented: refractory period, spike-frequency adaptation, and
threshold voltage modulation. All circuit parameters are tunable,
thanks to external bias voltages. A detailed description of the
circuit operation can be found in Indiveri et al. (2006).

Synapses
The synaptic circuit implemented in this chip is the one proposed
by Bartolozzi and Indiveri (2007) and referred to as the DPI

synapse. The primary motivation for choosing this synaptic
circuit for the 2DIFWTA chip relates to its linear filtering
properties. The two-dimensional structure of this chip implies
strong limitation on the space available for synaptic circuits
provided the goal of integrating a large number of neurons. The
linearity of the synaptic circuit allows multiplexing of different
spiking sources, so that a single synaptic circuit can virtually act
as multiple synapses. This property is used in the 2DIFWTA chip
both for the input AER connections and the local connections,
whenever a single time constant can be accepted.

Full Neuron and Local Connectivity
The full neuron comprises several blocks, as depicted in
Figure 19. The two AER excitatory synapses labeled “EXC1” and
“EXC2” have independent bias settings and are intended for
providing external stimuli or implementing arbitrary recurrent
connections. The AER inhibitory synapse (“INH”) can be
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used to transmit global inhibition signals in a cooperative-
competitive network configuration, but it is also suitable for
providing any external and recurrent inhibitory input. The
local input block comprises an “LOC” circuit for summing
up all contributions from local cooperative (e.g., excitatory)
connections and integrating them through a DPI synapse (see
section Synapses). The “SELF” block implements self-excitation.
The “I&F” circuit is described in section Neuron (I&F) model.
The local output generates contributions for neighbor neurons

FIGURE 18 | 2DIFWTA chip layout and photograph. The 2DIFWTA chip was

implemented using a standard 0.35-µm four-metal CMOS technology and

covers an area of about 15 mm2.

(to be integrated in the respective “LOC” block). The connectivity
scheme for the recurrent excitation (as depicted in the bottom
part of Figure 19) has been designed to provide two kinds
of cooperative-competitive networks. The “LAT” and “VERT1”
connections can be activated simultaneously to implement
local cooperation in a 2D network. Otherwise, the “VERT1”
and “VERT2” connections can be activated simultaneously for
implementing 32 1D networks of 64 neurons with first- and
second-neighbor excitatory recurrent connections. All synaptic
circuits included in the “AER INPUT,” “LOCAL INPUT,” and
“LOCAL OUTPUT” blocks can be independently activated or
de-activated, therefore providing full flexibility for the effective
connectivity matrix of the 2,048 neurons.

Application
Despite the very specific motivation of designing the 2DIFWTA
chip for implementing cooperative-competitive networks, its
architecture is such that the chip can be treated as a general-
purpose, large-scale pool of neurons. Therefore, it has been
possible to use this chip to address a broad range of research
questions, as demonstrated by the number of publications
making use of this hardware.

The 2DIFWTA chip was used to evaluate the role of global
inhibition in a hardware model of olfactory processing in
insects (Beyeler et al., 2010). Function approximation (Corneil
et al., 2012a) and inference (Corneil et al., 2012b) were
implemented on neuromorphic hardware by making use of
multiple 1D cooperative-competitive networks available on the
2DIFWTA chip. Both first- (“VERT1”) and second-neighbor

FIGURE 19 | Neuron diagram (top) and local connectivity (bottom). Each neuron comprises the following blocks: AER input, local input, soma and local output. The

AER input consists of three AER synaptic circuits: two excitatory and one inhibitory. The local input comprises a diff-pair circuit to integrate all the local excitatory input

(see local connectivity diagram below) and an excitatory synapse to implement self-excitation. The soma is an I&F neuron circuit that integrates the sum of all currents

generated by the AER input and local input blocks. The local output block generates pulse currents for the local input blocks of the neighbors’ neurons. The pattern of

recurrent local connectivity is represented in the bottom diagram. Local cooperation of the 2D network is implemented by activating the lateral (“LAT”) and vertical to

first neighbors’ (“VERT1”) local connections. Several 1D networks with first- and second-neighbor cooperation are implemented by activating the vertical to first

neighbors’ (“VERT1”) and vertical to second neighbors’ (“VERT2”) recurrent excitatory connections.

Frontiers in Neuroscience | www.frontiersin.org 21 December 2018 | Volume 12 | Article 891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thakur et al. Neuromorphic Spiking Array Processors

FIGURE 20 | Circuit diagram of the I&F neuron. The neuron’s membrane capacitor Cmem integrates the input current Iinj into the membrane voltage Vmem.

WhenVmemreaches the spiking threshold Vspk the occurrence of a spike is signaled by the output voltage Vspk , which quickly switches for zero to the power supply

rail. The reset current Ireset is activated by Vo2 and discharges the membrane capacitor. The input current can be integrated again after the refractory period, which

duration is set by the bias voltage Vrfr (low Vrfrvalues lead to long refractory period durations). A source follower circuit (M1 and M2) is used to modulate the spiking

threshold. A firing rate dependent current Iadap is subtracted to the input current to implement spike frequency adaptation (M15-19). The amplitude of this current

increases with each output spike (the increase rate is set by the bias voltage Vadap) and decreases exponentially with time. Power consumption is drastically reduced

owing to a positive feedback module (M3, M6-7) that reduces the duration of the transition period in which the inverters switch polarity. The circuit’s bias voltages (Vlk ,

Vadap, Valk , Vsf , and Vrf ) are set to operate the transistors in the sub-threshold region and they determine the neuron’s properties.

(“VERT2”) recurrent excitatory connections were activated for
these experiments.

In Sheik et al. (2012a), the chip was used as a large pool of
neurons (with no recurrent connections) configured to maximize
mismatch in the generation of the action potential in response
to a single input pulse, therefore producing a distribution of
axonal delays in the range of milliseconds. This result was
instrumental in the later implementation of a neuromorphic
system for unsupervised learning of simple auditory features
(Sheik et al., 2012b).

Probably the most advanced application of this chip was
presented in Neftci et al. (2013), where a real-time neuromorphic
agent able to perform a context-dependent visual task was
demonstrated. The paper presented a systematic method for
configuring reliable Finite State Machine (FSM) computation on
spiking neural arrays implemented on neuromorphic hardware.

The 2DIFTWA was later used to explore models of auditory
perception in crickets (Rost et al., 2013) and to study latency code
processing in weakly electric fish (Engelmann et al., 2016).

PARCA: PARALLEL ARCHITECTURE WITH
RESISTIVE CROSSPOINT ARRAY

The parallel architecture with resistive crosspoint array (PARCA)
(Seo et al., 2015), developed in the lab of Yu Cao at the

Arizona State University, employs read-and-write circuits on the
periphery (Figure 21A). Integration of resistive synaptic devices
into crossbar array architecture can efficiently implement the
weighted sum or the matrix-vector multiplication (read mode)
as well as the update of synapse weight (write mode) in a
parallel manner. PARCA replaces the sequential row-by-row
operations in the CMOS ASIC SRAM with a massively parallel
read-and-write operation using resistive-RAM (RRAM) cells for
image/speech recognition applications. Using resistive devices
for the synapses/weights in neural networks could substantially
reduce the memory area and benefit additional speed-up due to
further parallelization. Employing special read-and-write circuits
on the periphery of the array, matrix-vector multiplications
can be performed fully in parallel on an RRAM array by a
combination of current-summing and time/voltage modulation
on the periphery.

PARCA Operations and Test Chip
Implementation
To compute the weighted sum, the RRAM array is operated in
the read mode. Given an input vector x, a small read voltage
Vrow,i is applied simultaneously for every non-zero binary bit
of x (Figure 21B). Vrow,i is multiplied with the conductance
Gij at each crosspoint, and the weighted sum results in the
output current at each column end. As shown in Figure 21D,

Frontiers in Neuroscience | www.frontiersin.org 22 December 2018 | Volume 12 | Article 891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thakur et al. Neuromorphic Spiking Array Processors

FIGURE 21 | Parallel architecture with resistive crosspoint array (PARCA). (A) Parallel architecture of resistive crosspoint array (PARCA) is shown. (B) Row read/write

circuit modulates the number of pulses over time. (c) Column write circuit generates the duty cycle window where write is effective. (D) Column read circuit converts

analog output current (weighted sum) into digital values. Adapted from (Seo et al., 2015).

the column read circuit integrates this analog current and
converts to spikes or digital output values (i.e., current-to-
digital converter) with a non-linear activation function (e.g.,
thresholding), which mimics the integrate-and-fire functionality
of spiking neurons in our brain. Note that the proposed
architecture performs analog computing only in the core of
the crossbar array, and the communication between arrays is
still in a digital fashion. Compared to conventional memories
that require row-by-row read operation; this approach reads the
entire RRAM array in parallel, thereby accelerating the weighted
sum.

To update the resistive synapse weights, the RRAM array
is operated in the write mode, with local programming
voltage generated at local row and column peripheries
(Figures 21C,D). This approach can implement the stochastic
gradient descent (SGD) or spike-based learning algorithm
where the intended synapse weight change is mapped to the
conductance value change of RRAM devices. The column
write circuit (Figure 21C) generates a programming pulse
with a duty cycle proportional to column neuron value. The
row write circuit (Figure 21B) generates a number of pulses
proportional to the row neuron value, where the pulse width
is fixed and the pulses are evenly distributed across a constant
write period to minimize the quantization error. During the
write period, the conductance of RRAM cells is changed by
the aggregate overlap time of the column write window (yj)
and pulses on the row side (xi), which effectively represents
xiyj.

So far, there have been a few experimental implementations
of simple algorithms on small-scale crossbars: 40 × 40 Ag:a-Si
crossbar (loading weights without learning) (Kim et al., 2012),
12× 12 TiOx/Al2O3 crossbar (simple perceptron algorithm with
software neurons) (Prezioso et al., 2015), IBM’s 500 × 661 PCM
1T1R array (multi-layer perceptron with software neurons) (Burr
et al., 2014), and IBM’s 256× 256 PCM 1T1R array (with on-chip
integrate-and-fire neurons) (Kim et al., 2015). Recently, a 64× 64
neurosynaptic core with RRAM 1T1R synaptic array and CMOS
neuron circuits at the periphery was designed and fabricated,
as shown in Figure 22. The RRAM is monolithically integrated
between M4 and M5 in a 130 nm CMOS process. In this design,
the RRAM is a conventional binary device, suitable for binary
neural networks. The CMOS neurons at column peripheries have
been time-multiplexed to minimize neuron area and sequentially
read out different columns.

Mitigating Non-ideal Effects of Resistive
Synaptic Devices
Today’s resistive synaptic devices with multilevel states could
emulate the analog weights in the neural network and the
crossbar array could efficiently implement the weighted sum
and weight update operations. However, non-ideal device effects
exist when mapping the weights in the algorithms into the
conductance of the devices, including: (1) precision (or number
of levels) in the synaptic devices is limited as opposed to the 64-
bit floating-point in software; (2) weight update (conductance
vs. # pulse) in today’s devices is nonlinear and asymmetric [see
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representative examples of PCMO (Park et al., 2013), Ag:a-Si
(Jo et al., 2010), and TiO2/TaOx (Gao et al., 2015) devices in
literature]; (3) weight on/off ratio is finite as opposed to the
infinity in software, as the off-state conductance is not perfectly
zero in realistic devices; (4) device variation, including the
spatial variation from device to device and the temporal variation
from pulse to pulse, is remarkable; (5) at array-level, the IR
drop along interconnect resistance distorts the weighted sum.
To evaluate the impact of non-ideal effects of synaptic devices
and array parasitics on the learning accuracy at the system-
level, it is necessary to formulate a methodology to abstract the
device’s behavioral model and incorporate it into key operation
steps in the algorithm. Pioneering works (Chen et al., 2015a,b)
have been performed to study the non-ideal device effects using
sparse coding algorithm as a case study. Sparse coding is an
unsupervised learning algorithm for efficient feature extraction
and it is bio-plausible: neurons in the visual cortex can form
a sparse representation of natural scenes (Olshausen and Field,
1996). The device-algorithm co-simulation flow is shown in
Figure 23A. TheMNIST handwritten digits dataset (LeCun et al.,

FIGURE 22 | Crossbar macro die.

1998) was used for benchmarking. Figure 23B shows the learning
accuracy with different precisions by truncation of the bits of
the neuron vector (Z) and weight matrix (D) in the algorithm.
At least 6-bit D and 4-bit Z are needed for high learning
accuracy. This translates to 64 levels of conductance in synaptic
devices, which is available in today’s devices. However, with a
naïve implementation of today’s realistic synaptic devices, it only
achieves a poor recognition accuracy (∼65%) of the MNIST
handwritten digits compared to that with ideal sparse coding
algorithm (∼97%), as shown Figure 23C. The impact of the non-
ideal effects is evaluated one by one, and it is summarized in
Table 4.

To mitigate these non-ideal device effects, strategies at circuit-
and architecture-level were proposed (Chen et al., 2015a,b), and
are also summarized in Table 4. These include a pacifier column
to eliminate the off-state current, smart programming schemes to
improve the linearity of weight update, the use of multiple cells
as one-weight bit to statistically average out device variations,
and relaxing the wire width for reducing the IR drop. With
the proposed strategies applied, the recognition accuracy can
increase back to∼95%. These mitigation strategies are associated
with penalty of area, power, and latency, etc.

Application
The system targets image and speech processing applications.
For example, image/digit recognition (Seo et al., 2015; Sun
et al., 2018) and language modeling have been demonstrated
by employing a number of multiple arrays of this chip, where
the inter-array communication/computation are performed in
digital signals.

TRANSISTOR-CHANNEL-BASED
PROGRAMMABLE AND CONFIGURABLE
NEURAL SYSTEMS

This section discusses the neural system design and potential of
transistor-channel modeling. Modeling of biological dynamics
in physical implementation results in practical applications,
consistent with Mead’s original vision (e.g., Mead, 1989a).
One does not require choosing modeling neurobiology or

FIGURE 23 | Device-algorithm co-simulation flow. (A) Flow of sparse coding with non-ideal effects modeled in the algorithm. (B) Recognition accuracy as a function

of precision of bits of the neuron vector (Z) and weight matrix (D). (C) Recognition accuracy with realistic device behaviors and the improvement by the proposed

mitigation strategies. Adapted from (Chen et al., 2015a,b).
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TABLE 4 | Summary of non-ideal effects and mitigation strategies (Adapted from Chen et al., 2015a,b).

Non-ideal effects Impact on learning accuracy Mitigation strategies

Limited weight precision Significant when <32 levels Need >64 levels by device engineering

Non-linear weight update 5% drop is non-linearity is large (when ∼1/3 number

of pulses is enough to increase the weight from 0 to

90% full)

Smart programming scheme

Limited on/off ratio ∼20% drop when on/off ratio <15 Pacifier column and differential read-out

Device spatial variation Not significant even when variation is 30% Multiple cells as one-bit to average out variation by

redundancy

Device temporal variation ∼20% drop when variation is 30%

IR drop on the array wire >7% drop is wire width<50 nm for 900 * 300 array Relax the wire width

building practical applications. Neurobiology seems optimized
for energy-efficient computation, something engineers explicitly
want for embedded applications. Long-term memory elements
enable computation as well as robustness from mismatch.
These approaches can become the basis for building models
of the human cortex as well as having impact for commercial
applications (Hasler and Marr, 2013).

Transistor-Channel Models of Neural
Systems
Transistor-channel models of neural systems were developed in
the lab of Jennifer Hasler at the Georgia Institute of Technology.
The base components are based on transistor-channel models
of biological channel populations (Farquhar and Hasler, 2005)
(Figure 24). The physical principles governing ion flow in
biological neurons share similarities to electron flow through
MOSFET channels, and exploiting these similarities results in
dense circuits that effectively model biological soma behavior.
The energy band diagram (source to drain) looking through
the channel of the MOSFET is similar to the energy band
diagram (inside to outside) looking through a biological channel.
Because the similarities between biological and silicon channels
are utilized, the voltage difference between the channel resting
potentials on the silicon implementation is similar to that in the
biological power supplies. The resulting spiking action potential
circuit requires six transistors (Figure 24), which is the same
number of transistors and just a few more capacitors (transistor-
size capacitors) than in the basic integrate-and-fire neuron
approach (Mead, 1989a).

Long-Term Analog Memories: Dense
Silicon Synapse Models
Long-term memory enables computation, including physical
computation, which encompasses analog and neuromorphic
computation. A FG device is employed that can be used to
store a weight in a non-volatile manner, compute a biological
excitatory post-synaptic potential (EPSP), and demonstrate
biological learning rules (Figure 25) (Hasler et al., 1994; Gordon
et al., 2004; Ramakrishnan et al., 2011).

Synapses represent the connection between axon signals and
the resulting dendrite of a particular neuron. The connection
starts as an electrical event arriving into the pre-synaptic

cell, releasing chemicals that reach and modulate the channels
at the post-synaptic cell, resulting in a response in the
dendritic structure. Figure 25 shows single transistor learning
synapse using a triangle waveform modeling the pre-synaptic
computation, a MOSFET transistor modeling the post-synaptic
channel behavior, and anFG to model the strength of the
resulting connection. A MOSFET transistor in sub-threshold has
an exponential relationship between gate voltage and channel
current, therefore achieving the resulting gate voltage to get
the desired synapse current, which has the shape of a triangle
waveform. These learning synapses have storage capabilities to
enable them to retain 100s of quantization levels (7–10 bits),
limited by electron resolution, even for scaled down FG devices
(i.e., 10 nm process).

Biological synapses adapt to their environment of event inputs
and outputs, where typical programming rules include long-term
potentiation (LTP), long-term depression (LTD), and spike-time-
dependent plasticity (STDP). A single FG device has enabled both
the long-term storage and PSP generation, but also has allowed
a family of LTP-, LTD-, and STDP-type learning approaches
through the same device (Gordon et al., 2004). The weight
increases when the post-synaptic spikes follow the pre-synaptic
spikes and decreases when the order is reversed. The learning
circuitry is again placed at the edges of the array at the end of
the rows, included in the soma blocks, therefore not limiting the
area of the synaptic matrix/interconnection fabric.

Neuromorphic IC of Somas and Learning
Synapses
Figure 26 shows an IC implementation of biological model
circuits for synapses, soma (channel model), and input and
output spikes efficiently into the system (Brink et al., 2013).
A mesh architecture (or crossbar, as originally described
in Hasler et al., 1994) enables the highest synapse array
density interconnecting configurable, channel-neuron model
components. The soma has the capability of multiple channels,
infrastructure for communicating action potential events to other
structures, as well as circuits to build local WTA feedback
between the soma membrane voltages. This configurable array
is a specialized large-scale Field Programmable Analog Array
(FPAA) (e.g., George et al., 2016). The array of synapses compute
through a memory that is similar to an array of EEPROM
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FIGURE 24 | An overview of MOSFET channel modeling of biological channels. This approach is possible given the similar (although not identical) physics between

MOSFET and biological channels, both modulated by a gating potential. The physical structure of a biological channel consists of an insulating phosphor-lipid bilayer

and a protein that stretches across the barrier. The protein is the channel in this case. The physical structure of a MOSFET consists of polysilicon, silicon dioxide, and

doped n-type silicon. A channel is formed between the source and the drain. The band diagram of silicon has a similar shape to the classical model of membrane

permeability. This approach yields an updated model for modeling biological channels that also empowers dense MOSFET implementation of these approaches. The

primary design constraint is modeling the gating function with other transistor devices; such an approach is shown to model the classic Hodgkin–Huxley squid axon

data, resulting in a close model to the event, as well as voltage clamp experiments.

devices; any off-synapsememory-based scheme will only bemore
complex and expensive system design. The chip uses AER, with
the digital computation synthesized from Verilog using standard
digital cells. The synapses were enabled for STDP learning
operation and initial learning experiments performed (Nease
et al., 2013).

Figure 26 shows an example of a synfire chain of neurons.
These neurons were programmed with some mismatch
compensation, although the channel models were not
programmed using mismatch compensation. Additional
neurons can be used for additional computations, including
showing an artificial pattern from spikes.

Figure 26C shows a WTA topology composed of multiple (5)
excitatory neurons that all synapse (excitatory synapses) onto a
single neuron, which provides inhibitory feedback connection to
all of the original neuron elements. The strength of the excitatory
connection between each excitatory neuron and the center
inhibitory neuron is programmed identical for all excitatory
neurons. The strength of the inhibitory connection between
the center inhibitory neuron and each excitatory neuron is
programmed to identical values, although the strength and time
duration of the inhibition time was stronger than the excitatory
inputs.

Application
This IC was used to demonstrate optimal path planning based
on realistic neurons (Koziol et al., 2014). Others (e.g., Krichmar,
2016) have built on these approaches. Figure 27 shows how a
maze environment is modeled using the neuron IC. A wave front
was initiated at the goal (Node 77) and propagated throughout
the neuron grid. Figure 27 shows a raster plot of the solution
nodes. Neuron 77 causes neuron 76 to fire, which causes
neuron 75 to fire, and so forth. Theoretical and experimental
results show 100% correct and optimal performance for a large

FIGURE 25 | A single transistor synapse device is presented;the architecture

uses non-volatile storage, generates biological post-synaptic potential (PSP)

outputs, can easily be arrayed in a mesh architecture, and demonstrates

biological synapse learning rules such as long-term potentiation (LTP),

long-term depression (LTD), and spike time dependent plasticity (STDP).

number of randomizedmaze environment scenarios. The neuron
structure allows one to develop sophisticated graphs with varied
edge weights between nodes of the grid. Neuron IC’s planner
analytical time and space complexitymetrics were verified against
experimental data.

Reconfigurable Neuromorphic ICs of
Dendrites, Learning Synapses, and Somas
Figure 28 shows a further neuromorphic IC design now
including dendritic computation, as well as FPAA re-
configurability, into the resulting architecture. In manymodeling
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FIGURE 26 | Neuron IC built from transistor-channel-modeled components. (A) The IC uses a mesh-type structure of synapses, an array of configurable elements to

compile the desired soma dynamics, and AER blocks that output action potentials into the synapse fabric as well as AER blocks that that input action potentials from

soma blocks, 10,000 STDP excitatory learning enabled synapses connected in recurrent connections, 10,000 STDP excitatory learning enabled synapses connected

from AER, and 10,000 programmable (fixed-weight) excitatory or inhibitory synapses connected from AER. (B) Measured synfire neuron chain activating other

programmed neurons. (C) Diagram and experimental measurements of a spiking Winner-Take-All (WTA) network drawn as a ring topology. The network is a

combination of input neurons on the outside part of the ring, and an interneuron, which provides the negative feedback through inhibitory neurons, for the WTA

computation. This work labels the particular neurons used for this experiment, and all synapses used are programmable synapses, whether excitatory or inhibitory.

and implementation approaches, the dendrite is approximated to
be a wire, greatly simplifying the resulting network and enabling
a system that is tractable by a range of computational principles.
Using channel model approaches, one can successfully build
dense dendritic compartments and configurable structures
(Farquhar et al., 2004) that compare well to classical models of
dendrites (Nease et al., 2012).

Figure 28 shows the architecture from a large-scale IC
enabling dendritic modeling in its computation. Adding
dendritic elements changes the neural architecture away from
a neat crossbar device alignment. Utilizing concepts from
FPAA devices (e.g., George et al., 2016), a single neuron
is implemented as a single component in the routing.
Events can be routed to and from the resulting block as
typical in FPAA devices. This approach allows for sparse
as well as densely connected neuron infrastructures. The
dendritic tree has active and passive channels as well as
a reconfigurable soma described in the last subsection. The
architecture allows high synapse density in a working neural

array; learning algorithms can be localized to a given block.
Signal lines can be routed to AE senders and receivers (one-
dimensional) to interface with off-chip devices; most (discussed
further in Hasler and Marr, 2013) neurons have only local
connections.

The resulting computation from dendritic elements is
often debated, and in most computational models is ignored
because of the huge increase in computational complexity. The
computational efficiency of dendritic computation (Figure 29)
has been demonstrated to be 1000s of times more efficient
than that of most analog signal processing algorithms (George
et al., 2013; Hasler and Marr, 2013). Dendritic structures can
perform word-spotting, roughly approximating Hidden-Markov
Model (HMM) classifier structures (George et al., 2013). This
computation is critical in several engineering applications and
typically is seen as too expensive to directly use. With as energy
constrained as the cortex would be, as well as the need in
embedded electronics for energy-efficient computation, these
opportunities cannot be ignored.
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FIGURE 27 | Optimal path planning originally demonstrated on the IC in Figure 26. (A) Grid environment example that the neuron IC solved. The device is located at

Node 22, and the goal is at Node 77. A wavefront in initiated at the goal (Node 77) and propagated throughout the neuron grid. (B) Raster plot of the solution nodes.

Neuron 77 causes neuron 76 to fire, which causes neuron 75 to fire, etc.

FIGURE 28 | Neuron IC embedded in a typical FPAA/FPGA routing fabric. (A) The Neuron I/O interface with the routing at the C-Blocks through programmable

floating-gate switches. The tracks are segmented for allowing faster event transmission and maximizing utilization. The tracks are routed at the S-Blocks, where each

node consists of six switches. The neuron cell has synaptic inputs, programmable dendrites with active channels that aggregate inputs into the soma block. (B)

Depiction of the neuron cell structure, with arbitrary dendritic structure capability. Dendrites are also interspersed with active channels to model the nonlinear behavior

observed in biology. An 8-tap dendritic line programmed on the neuron is shown in blue color.

Potential Directions of Channel Model
Computation
Carver Mead hypothesized that physical (e.g., analog)
computation would be at least 1,000× lower energy compared

to digital computation based on transistor counting arguments,
an argument experimentally shown multiple times (e.g., George

et al., 2016). The potential opportunity has started serious

discussions of the capability of physical computing (e.g., Mead,
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FIGURE 29 | Dendritic computation using the framework in Figure 28. (A) Dendritic trees with increasing diameters have similar function to Hidden-Markov Model

(HMM) trees used for acoustic classification. A YES-NO HMM classifier was built using dendritic lines to model linear HMM trees with a WTA terminating block. (B)

Experimental demonstration of temporal classification using dendrite-enabled neurons to perform temporal classification (word spotting) similar to HMM classifier

techniques. In the first case, YES is detected and then NO is detected, whereas in the second case, NO is detected and then YES is detected.

1990) building the computing framework, which up to now, has
only been developed for digital computing.

Application
The opportunities for neuromorphic computing to impact
applications open up another level of energy-efficient computing.
Figure 30 shows the possible opportunities in computing,
enabling both analog as well as neuromorphic computing.
Computation, classification, and learning systems that do not
show sensor-to-output result capability give a myopic view of
their results. These approaches enable opportunities toward

building cortical structures (Hasler andMarr, 2013; Hasler, 2016)
as well as enabling many new waves of computing opportunities.

OTHER STATE-OF-THE-ART NEURAL
EMULATORS

In this section, we briefly describe some of the well-known neural
emulators. These emulators are already discussed in detail in
Furber (2016), Benjamin et al. (2014), Merolla et al. (2011),
Furber et al. (2014), and Davies et al. (2018) but we describe the
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FIGURE 30 | Typical signal processing chain using configurable analog approaches and neural-based classifiers.

main features of these emulators to provide a complete picture
with respect to this review paper.

Neurogrid
Neurogrid is a mixed-mode multichip system primarily used
for large-scale neural simulations and visualization (Benjamin
et al., 2014). The neuron circuits used in Neurogrid are closely
correlated to the physical characteristics of neurons in the
brain. It models the soma, dendritic trees, synapses, and axonal
arbors. It consists of 16 neurocores/chips each with 65 k neurons
(totalling 1M neurons) implemented in sub-threshold analog
circuits. A single neurocore is fabricated on an 11.9 × 13.9mm
die. A board of 16 neurocores is of size 6.5′′ × 7.5′′ and
the complete board consumes roughly 3W of power (a single
neurocore consumes∼150 mW).

TrueNorth
IBMs TrueNorth neuromorphic chip consists of 1 million
digital neurons capable of various spiking behaviors (Merolla
et al., 2011). Each die holds 4,096 cores, each core holding
256 digital neurons and 256 synapses per neuron. A
single die consumes 72 mW of power. A board (NS16e)
comprised of 16 TrueNorth chips has been developed;
it consumes 1W of power at 1 KHz speed, making it
ideal for energy-efficient applications. Although digital
in its implementation, low power consumption is due to
fabrication in an aggressive, state-of-the-art 28 nm technology
process.

SpiNNaker
SpiNNaker (Furber et al., 2014), another digital neuromorphic
neural array, was designed for scalability and energy-efficiency
by incorporating brain-inspired communication methods. It can
be used for simulating large neural networks and performing
event-based processing for other applications. Each node is
comprised of 18 ARM968 processor cores, each with 32 Kbytes
of local instruction memory, 64 Kbytes of local data memory,

packet router, and supporting circuitry. A single node consists
of 16,000 digital neurons consuming 1W of power per node.
There exist two SpiNNaker circuit boards, the smaller being
a 4-node (64,000 neurons) board and the larger a 48-node
board (768,000 neurons). The 48-node board consumes 80W of
power.

Loihi
The Loihi (Davies et al., 2018) is a neuromorphic chip introduced
by Intel Labs. It simulates 130K neurons and 130M synapses in
real time. The chip consists of 128 neuromorphic cores that are
capable of on-chip training and inference. The hierarchical mesh
protocol is implemented to support communication between the
neuromorphic cores. Loihi is said to be the first fully integrated
spiking neural network chip that supports sparse network
compression, core-to-core multicast, variable synaptic format,
and population-based hierarchical connectivity. Loihi contains
epoc-based synaptic modification architecture in addition to
pairwise STDP and Triplet STDP. Loihi includes computation
blocks such as stochastic noise, which might be added to a
neuron’s synaptic response current, membrane voltage, and
refractory delay for solving probabilistic inference problems.
Loihi can solve optimization problems such as LASSO, being
over three orders of magnitude better in terms of energy-
delay-product as compared to a CPU-based solver. Further,
the Loihi processor is fabricated in Intel’s 14 nm FinFET
process.

DISCUSSION

The various state-of-the-art neural emulators described in this
paper illustrate the evolution and advancement of neuromorphic
systems and the NE field. The promising specifications and
applications of these systems advance technology in a manner
that further closes the gap between the computational capabilities
and efficiency of the human brain and engineered systems.
Moreover, it should be clearly noted that the aim of this paper

Frontiers in Neuroscience | www.frontiersin.org 30 December 2018 | Volume 12 | Article 891

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Thakur et al. Neuromorphic Spiking Array Processors

is to merely elucidate each neural emulator rather than deem
one inferior to another. However, depending on one’s objectives
and specifications of their system, one neural emulator may be
more suitable than another. To briefly summarize the key points
of each system, the IFAT is a mixed-signal CMOS neural array
that was designed to achieve low power consumption and high
neuron density (more neurons per mm2). The M–N neuron
design allows for producing many different spiking behaviors,
including those with an adaptive threshold. The spiking behavior
of each neuron is a function of its synapses that are dynamically
controlled by only a few parameters. This surpasses arrays
that are limited by only an integrate-and-fire neuron model.
Furthermore, this system consists of a shared synapse, threshold
dynamics, and soma. Given this external circuitry (to the array,
but still on-chip), each neuron consumes minimal area. Such
a design permits low power, high density, and low mismatch
compared to other neural array designs. HiAER-IFAT is designed
by construction to run real-time at biological time scales, with
average spike rates per neuron in the 10Hz range. The HiAER
hierarchical memory organization distributes the computation
and communication across large numbers of cores running in
parallel, where each core serves four quadrants of 16 k neurons
each. The IFAT models two-compartment neurons, each with
two types of conductance-based synapses, and with quadrant-
shared configurable parameters for reversal potentials, leak
and coupling conductances, firing thresholds, reset potentials,
and synaptic time constants. Peak synaptic conductances for
individual synaptic connections are stored in the HiAERmemory
along with the routing information for hierarchical connectivity.
DeepSouth is a cortex emulator implemented on an FPGA board,
and is capable of simulating up to 2.6 billion LIF neurons in
real time; further, running five times slower, it can scale up
to 12.8 billion LIF neuron simulations. In addition, it comes
with the PyNN programming interface that will enable the
rapid modeling of different topologies and configurations using
the cortex emulator. The main advantages of the DeepSouth
is that it uses commercial off-the-shelf FPGAs, while most
of the other platforms use specialized hardware that are not
easily accessible to other researchers. The DeepSouthcan be
linearly scaled up using multiple FPGAs without performance
loss on the back of its modular architecture and hierarchical
communication scheme. The BrainScaleS neuromorphic system
is wafer-scale integration of high-speed and continuous time
analog neurons and synapses. The wafer module integrates an
uncut silicon wafer with 384 neuromorphic chips. It provides
programmable analog parameters to calibrate neurons according
tomodels from computational neuroscience. BrainScaleS is faster
and it allows to model processes like learning and development
in seconds instead of hours. Dynap-SEL is a novel mixed-
signal multi-core neuromorphic processor that combines the
advantages of analog computation and digital asynchronous
communication and routing. It takes the benefits of memory-
optimized routing, which makes the system highly scalable
(Moradi et al., 2015). Resources from different chips can be easily
combined and merged. The 2DIFWTAchip is an implementation
of cooperative-competitive networks and consists of a group
of interacting neurons that compete in response to an input

stimulus. The neurons with the highest response suppress all
other neurons to win the competition. The cooperative and
competitive networks give it power to solve complex non-
linear operations. The PARCA is a parallel architecture with
resistive crosspoint array. Integration of the resistive synaptic
devices into crossbar array architecture can efficiently implement
the weighted sum or the matrix-vector multiplication (read
mode) as well as the update of synapse weight (write mode)
in a parallel manner. Transistor-channel-based programmable
and configurable neural system is a neuron IC built from
transistor-channel-modeled components. The IC uses a mesh-
type structure of synapses, an array of configurable elements to
compile the desired soma dynamics, and AER blocks that output
action potentials into the synapse fabric, as well as AER blocks
that input action potentials from soma blocks. Furthermore,
this neuromorphic IC includes dendritic computation as well
as FPAA re-configurability. The computational efficiency of
dendrite computation has been demonstrated to be 1000s of
times more efficient than that of most analog signal processing
algorithms. Each of these neuroemulators have advantageous
properties that can be utilized depending on one’s objective
and constraints. Although many of these systems model the
dynamics of biological neurons, Neurogrid and the transistor-
channel-based systems more closely resemble biological neurons
in terms of their physical properties. This sub-threshold, analog
representation of neurons is closely related to Carver Mead’s
original vision. However, many of the systems presented are still
capable of emulating several prominent neuron spiking behaviors
aside from integrate-and-fire (e.g., IFAT, BrainScaleS, Transistor-
channel, TrueNorth, and SpiNNaker). DeepSouth, TrueNorth,
and SpiNNaker take a digital approach with their neuron design.
Although this may be a more robust approach, such a digital
design may consume more area and power. TrueNorth has
lowpower consumption even while using digital technology, but
this is due to the state-of-the-art 28 nm feature-size technology
that it uses. If one were constrained by power consumption,
the IFAT, PARCA, or transistor-channel-based systems would be
ideal, as these designs were specifically optimized for low-power
consumption. However, such low-power design approaches may
sacrifice speed and/or accuracy. BrainScaleS and HiAER-IFAT
are ideal for high-speed applications as these systems were
optimized for highspeed even when simulating large networks.
BrainScaleS operates at 10,000× biological real-time speed.
HiAER-IFAT uses a novel hierarchical AER design that allows
for efficient transmitting and receiving of events over long
distances. If one is seeking a system that consists of a well-
developed, user-friendly software interface for programming
and visualization of the network, the Neurogrid, SpiNNaker,
DeepSouth, or TrueNorth might be the appropriate choice.
Finally, one may select a system based on a very specific
application. For example, for a WTA application (i.e., visual
saliency application), one may take advantage of the 2DIFWTA
system. If one is interested in on-chip learning, the Dynap-SEL
may be ideal. The Dynap-SEL consists of circuitry designed for
on-chip learning and further has proven useful as a general-
purpose neuron array. This chip was designed in state-of-
the-art 28 nm FDSOI technology that further makes it more
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TABLE 5 | Comparison of event-based neural processors.

Chip name Technology Process

(nm)

Neurons type No.

neurons

No.

synapse

Area per

neuron

Energy per

event

Synaptic

plasticity

MNIFAT Mixed Signal 500 LIF/ M–N 6,120 – 1,495 µm2 360 pJ Programmable

DeepSouth Digital 28 LIF 200K – – No Plasticity

Dynap-SEL Mixed Signal 28 I&F 1,088 78,080 20 µm2 2.8 pJ STDP

BrainScaleS Mixed Signal 180 AdEx IF 512 100K 1,500 µm2 100 pJ Hebbian

learning, STDP

2DIFWTA Analog 350 I&F 2,048 28,672 – No Plasticity

HiAER-IFAT board with

4 chips

Analog 90 I&F 256K 256M 140 µm2 22 pJ No Plasticity

Transistor-Channel Analog 350 Floating Gate

MOSFET

100 30,000 4 cm2 10 pJ STDP

Neurogrid Mixed signal 180 Adaptive Quad

IF

65K 100M 1,800 µm2 31.2 pJ No Plasticity

TrueNorth Digital 28 Adaptive Exp IF 1M 256M 3,325 µm2 45 pJ STDP

SpiNNaker Digital 130 Programmable 16K 16M – 43 nJ STDP

Loihi Digital 14 Adaptive LIF 130K 130M 0.4 mm2 23.6 pJ Epoch-based,

STDP

advantageous with respect to neuron density and lowpower
consumption.

These emulators are further compared and contrasted in
the following paragraphs with respect to various aspects such
as analog/digital implementations, real-time performance, and
abstraction level of mimicking the brain.

The neuromorphic emulators have been implemented either
with analog or digital design techniques. Each approach has
its own advantages. Analog implementation is more energy-
efficient and consumes less area. It exhibits high susceptibility
to process mismatch in the subthreshold region. In contrast,
digital implementation is immune to process variations, exhibits
inherent noise rejection capacity, and exploits the advantage
of technology scaling. TrueNorth, SpiNNaker, and Loihi are
fully-digital designs, while Neurogrid, Dynap-SEL, BrainScaleS,
HiAER-IFAT, MN-IFAT, and Transistor-channels are mostly
mixed-signal VLSI implementations that include analog for
neural spike computation and digital for routing the spike
transmission, taking advantage of both the technology design
domains. Further, DeepSouth is an FPGA-based implementation
that exploits high-speed digital memories and high-speed digital
communication interconnects for spike transmission and offers
flexibility for rapid prototyping. The common criticism of
analog-based subthreshold operation is the high degree of noise,
which may limit performance and leave little scope for flexibility
as the device parameters are fixed during the fabrication. Analog,
however, allows a higher integration density than digital chips,
although digital chips take advantage of technology scaling and
squeeze more transistors to scale the performance. Most of
the digital neuromorphic implementations have their software
models available, which helps to tune the learning parameters
during training.

TrueNorth, Neurogrid, HiAER-IFAT, and DeepSouth come
with precomputed weights and currently do not offer any on-
chip synaptic plasticity. Further, SpiNNaker and Loihi can be

programmed for the variability of plasticity rules. BrainScaleS
offers Hebbian learning, STDP, and cortical dynamics for online
learning. Dynap-SEL offers Short-term plasticity (STP) plasticity
rules for each synapse and also comes with a large memory chip,
where individual synapses act as both memory elements and
computational blocks (Moradi et al., 2018). Further, the Dynap-
SEL is said to be the only existing neuromorphic system that
features on-chip on-line learning with analog neurons and digital
synapses in a 28 nm technology node. BrainScaleS comes with
an acceleration factor of 10,000 with respect to biological real-
time operations, which can be used to accelerate experimental
studies. PARCA implements SGD for RRAM-based dictionary
update in sparse coding tasks (Seo et al., 2015), but general
spike-based learning rules can also be implemented with the
PARCA system. Transistor-channel system deploys both long-
term storage and PSP generation, but also has allowed a family
of LTP-, LTD-, and STDP-type learning approaches through the
same device (Gordon et al., 2004).

Each emulator employs various routing strategies. Neurogrid
employs tree topologies and linear grids in which AERs are
broadcasted across the chip, which improves the overall
communication channel bandwidth among peer-to-peer
connectivity but sacrifices the flexibility to implement synaptic
plasticity (Park et al., 2017). Wafer-scale integration uses a
whole production wafer instead of dicing it into individual
reticles through metal post-processing. It realizes connectivity
by 2-D grid-based routing. TrueNorth also uses 2-D mesh
architecture to connect neurons. On the other hand, SpiNNaker
implements connectivity via a spanning architecture. HiAER-
IFAT implements multi-tree-based extension on AER synaptic
routing for dynamic reconfigurability and long-term synaptic
connectivity. DeepSouth stores neurons in the minicolumn
and the hypercolumns in a hierarchical fashion instead of
individual peer-to-peer connections. It has been argued
that the hierarchical communication scheme scales with
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the complexity as peer-to-peer communication significantly
increases memory use (Wang et al., 2018). DeepSouth
differs from HiAER-IFAT in two aspects; first, HiAER-IFAT
routes each individual spike generated by neurons, while
DeepSouth routes the spikes generated in one minicolumn;
second, HiAER supports point-to-point connections and uses
external memory to store it in LUTs, each having its own
programmable parameters. A mesh architecture (or crossbar,
as originally described in Hasler et al., 1994) enables the
highest synapse array density, interconnecting configurable,
channel-neuron model components in transistor-channel
implementation.

The diversity of approaches in modeling the brain comes from
different research goals. The cortex has been simulated at varying
levels of scale and abstraction. BrainScaleS and SpiNNaker
emulate ion-channel dynamics, while IBM’s TrueNorth uses
higher abstraction model of a neuron. DeepSouth exploits the
modular structure of the cortex, emulating the neocortex with
billions of neurons with a simple LIF neuron model. MN-
IFAT models M–N neurons, which are a particularly robust
design and produce different a spiking behavior required for
the application (Indiveri et al., 2011). Dynap-SEL emulates
biologically plausible adaptive leaky I&F neuron behaviors and
synaptic dynamics using spike-based computing, using both the
timing and the mean rate of the spikes. The 2DIFWTA models
the WTA architecture of the neocortex. These operations are
believed to be widespread in the nervous system and the WTA
architecture has been proposed as a computational primitive
of the canonical microcircuit of the neocortex (Douglas et al.,
1989). The neuron and read circuit design in PARCA (Seo
et al., 2015) mimics the integrate-and-fire functionality of the
neurons in our brain, where the number of pulses (spikes) that

the neuron generates is proportional to the analog weighted-
sum current from the RRAM array. Transistor-channel IC
implements biological model circuits for dendrites, learning
synapses, soma (channel model).

Each of these systems presents a unique capability that may
contribute to the growth of the NE field. These contributions
collaboratively move us closer to designing the most energy-
efficient, highly dense neural emulator that closely mimics the
biological counterpart it is emulating.

A comparison of all these neural processors is depicted in
Table 5.
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