
ORIGINAL RESEARCH
published: 12 December 2018
doi: 10.3389/fnins.2018.00941

Frontiers in Neuroscience | www.frontiersin.org 1 December 2018 | Volume 12 | Article 941

Edited by:

Gert Cauwenberghs,

University of California, San Diego,

United States

Reviewed by:

Oliver Rhodes,

University of Manchester,

United Kingdom

Jeffrey L. Krichmar,

University of California, Irvine,

United States

*Correspondence:

James C. Knight

J.C.Knight@sussex.ac.uk

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 27 September 2018

Accepted: 29 November 2018

Published: 12 December 2018

Citation:

Knight JC and Nowotny T (2018)

GPUs Outperform Current HPC and

Neuromorphic Solutions in Terms of

Speed and Energy When Simulating a

Highly-Connected Cortical Model.

Front. Neurosci. 12:941.

doi: 10.3389/fnins.2018.00941

GPUs Outperform Current HPC and
Neuromorphic Solutions in Terms of
Speed and Energy When Simulating a
Highly-Connected Cortical Model
James C. Knight* and Thomas Nowotny

Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton,

United Kingdom

While neuromorphic systems may be the ultimate platform for deploying spiking

neural networks (SNNs), their distributed nature and optimization for specific types

of models makes them unwieldy tools for developing them. Instead, SNN models

tend to be developed and simulated on computers or clusters of computers with

standard von Neumann CPU architectures. Over the last decade, as well as becoming a

common fixture in many workstations, NVIDIA GPU accelerators have entered the High

Performance Computing field and are now used in 50% of the Top 10 super computing

sites worldwide. In this paper we use our GeNN code generator to re-implement two

neo-cortex-inspired, circuit-scale, point neuron network models on GPU hardware. We

verify the correctness of our GPU simulations against prior results obtained with NEST

running on traditional HPC hardware and compare the performance with respect to

speed and energy consumption against published data from CPU-based HPC and

neuromorphic hardware. A full-scale model of a cortical column can be simulated at

speeds approaching 0.5× real-time using a single NVIDIA Tesla V100 accelerator—faster

than is currently possible using a CPU based cluster or the SpiNNaker neuromorphic

system. In addition, we find that, across a range of GPU systems, the energy to solution

as well as the energy per synaptic event of the microcircuit simulation is as much as

14× lower than either on SpiNNaker or in CPU-based simulations. Besides performance

in terms of speed and energy consumption of the simulation, efficient initialization of

models is also a crucial concern, particularly in a research context where repeated runs

and parameter-space exploration are required. Therefore, we also introduce in this paper

some of the novel parallel initializationmethods implemented in the latest version of GeNN

and demonstrate how they can enable further speed and energy advantages.

Keywords: GPU, high-performance computing, parallel computing, accuracy of simulation, energy to solution,

benchmarking, computational neuroscience, spiking neural networks

1. INTRODUCTION

Currently, the most common way to accelerate large-scale spiking neural network (SNN)
simulations is to use CPU-based HPC clusters running software simulators such as NEST (Gewaltig
and Diesmann, 2007) or parallel Neuron (Carnevale and Hines, 2006). However, CPU-based
systems are not well-suited to exploiting the large amounts of fine-grained parallelism present in

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00941
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00941&domain=pdf&date_stamp=2018-12-12
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:J.C.Knight@sussex.ac.uk
https://doi.org/10.3389/fnins.2018.00941
https://www.frontiersin.org/articles/10.3389/fnins.2018.00941/full
http://loop.frontiersin.org/people/215376/overview
http://loop.frontiersin.org/people/28940/overview

Knight and Nowotny GPUs Outperform Current SNN Simulators

SNN simulations. Furthermore, in order to reduce simulation
times, models must be spread across large numbers of compute
nodes meaning that performance is ultimately constrained by the
latency of the MPI interconnect.

Neuromorphic systems use dedicated hardware, inspired by
aspects of the brain, to address the problems of parallelism and
efficient spike communication. The SpiNNaker system (Furber
et al., 2014), developed as part of the Human Brain project (HBP)
in Manchester, is a neuromorphic computer consisting of up to
a million ARM cores, connected with an interconnect topology
optimized for spike-like communication. The BrainScaleS system
developed within HBP at Heidelberg (Schemmel et al., 2017),
uses analog circuit elements rather than digital processors
to emulate the dynamics of point neurons. Spikes then
propagate between these circuit elements through a digital
interconnect network. Other neuromorphic systems based on
various combinations of digital and analog hardware include
the Loihi chip (Davies et al., 2018) developed by Intel, the
TrueNorth chip (Merolla et al., 2014) built by IBM and the
Dynapse system (Qiao et al., 2015) developed at University of
Zurich.

While neuromorphic systems offer significant theoretical
advantages in terms of power efficiency and simulation speed,
this often comes at the expense of flexibility. In systems where
physical circuit elements are used to model individual neurons
and synapses, the most obvious restriction is that the physical
circuits dictate what neuron and synapse models are supported.
Furthermore, in neuromorphic systems of this type, these circuits
are instantiated in a fixed ratio (for example 64 k synapses
to 256 neurons) meaning that Liebig’s law dictates that their
scalability is limited by the availability of the scarcest of these
circuits. Even fully-programmable systems such as SpiNNaker
suffer from this issue as, for example, handling high incoming
spike rates consumes a large number of CPU cycles, reducing
the number of neurons that can be simulated on each core.
Some of these issues are illustrated in a recent publication
by van Albada et al. (2018) who investigated the comparative
performance of simulations of a micro-column model (Potjans
and Diesmann, 2014) in NEST-based simulations on an HPC
cluster and an implementation on the SpiNNaker neuromorphic
system. This model required smaller simulation timesteps and
denser connectivity than SpiNNaker was designed for, meaning
that, although SpiNNaker achieved the same accuracy as the
HPC system, it had to be run 20× slower than realtime with
only a small number of neurons simulated on each core.
Running the model this slowly meant that the theoretical energy
and performance advantages of using the SpiNNaker system—
which had been previously demonstrated using models more
specifically tuned to its characteristics (Sharp et al., 2012, 2014;
Knight et al., 2016)—were lost and the model not only ran faster
on the HPC system but also consumed less energy.

Besides measuring the performance in terms of simulation
speed, (van Albada et al., 2018) also identified that efficiently
initializing and loading large-scale models onto neuromorphic
systems remains a computational challenge. For example, the
cortical microcircuit model developed by Potjans and Diesmann
(2014) took 10 h to initialize and load onto SpiNNaker. This

confirms earlier observations (Diamond et al., 2016) that
prototype neuromorphic systems are not efficient at accelerating
their initialization: Both SpiNNaker and a previous generation of
the BrainScaleS system spent a significant amount of time and
energy initializing network models on a host machine.

These factors suggest that when developing SNNs, more
flexible accelerators which can accelerate the construction,
initialization and simulation of large-scale SNNs are required.
Field-Programmable Gate Arrays (FPGAs) are devices consisting
of a large number of lookup-table based logic blocks, connected
using a programmable fabric. FPGAs have been used to build
various “hard-wired” SNN accelerators (Moore et al., 2012;Wang
and van Schaik, 2018), but Naylor et al. (2013) showed that
they can also be used to develop more flexible, programmable
accelerators with comparable performance. However, although
systems of this sort could theoretically be used to accelerate
the construction and initialization of SNNs as well as their
simulation, FPGAs are not yet commonplace in workstations and
their lack of hardware support for floating point arithmeticmakes
them ill-suited for simulating some common classes of neuron
and synapse models.

Alternatively, GPU architectures are designed for high
throughput applications with large amounts of fine-grained
parallelism. They replace the large coherent caches, relied upon
by modern CPU architectures to improve performance, with
large numbers of floating point arithmetic units connected
to high-bandwidth external memory. Programmable GPUs
were originally developed to accelerate the rendering of 3D
graphics which typically involves applying the same, independent
computations to each pixel—for example to calculate its
illumination. However, GPU acceleration has proven to be also
very useful for accelerating many other tasks, including the
training of deep learning systems, and GPUs are now used
extensively in modern AI systems. The application of GPU
acceleration to SNN simulations is also promising and there
are a number of active SNN simulator projects which target
GPUs. CARLsim (Chou et al., 2018) is a C++ based simulator
using NVIDIA CUDA (Compute Unified Device Architecture)
but, as CARLsim is not based on code generation, it is difficult
for users without CUDA expertise to add new neuron and
synapse models. EDLUT (Garrido et al., 2011) was initially an
event-driven CPU based simulator for SNNs, but has evolved
into a hybrid CPU/GPU system with support for both, time-
and event-driven models. ANNarchy (Vitay et al., 2015) is a
code generation based simulator which translates Python model
descriptions into multi-core CPU or GPU code with a focus on
hybrid rate- and spiking models. Other simulators that have seen
less development in the last 2–4 years include NCS6 (Hoang et al.,
2013), Myriad (Rittner and Cleland, 2016), and NeMo (Fidjeland
et al., 2009) (see Brette and Goodman (2012) for a review).
GeNN (Yavuz et al., 2016) is a code-generation library aimed
at facilitating accelerated SNN simulations on GPU hardware.
It has been designed to strike a balance between flexibility—
allowing users to define their ownmodel neurons and synapses—
and efficiency in generating optimized CUDA code for the less
obviously parallelisable phases of parallel SNN simulations such
as spike propagation.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 1 | Simplified illustration of an example GPU hardware architecture with 3 streaming multiprocessors.

In this paper we introduce novel methods for parallel
initialization of SNNs in the GeNN simulator and investigate
the performance of a GPU based simulation of the micro-
column network model (Potjans and Diesmann, 2014) using
GeNN as well as a model using STDP in a highly connected
network (Morrison et al., 2007).We then compare to other recent
benchmarks (van Albada et al., 2018) and critically discuss the
current state of the art for SNN simulations.

2. MATERIAL AND METHODS

2.1. GPU Architectures
In this section we will briefly discuss GPU hardware architectures
and the Single Instruction Multiple Thread (SIMT) paradigm
typically used to program them. All GPU manufacturers
(confusingly) use their own terminology but because in this
paper we use NVIDIA hardware, we will refer to concepts
using NVIDIA’s terminology. GPUs built by other manufacturers
are relatively similar so that our description below applies to
other GPUs after appropriate translation. For example, a “Stream
Processor” on an AMD GPU is equivalent to a “CUDA core” on
an NVIDIA GPU. Similarily, we will discuss SIMT programming
in the context of CUDA because GeNN is implemented using
CUDA, but OpenCL is conceptually quite similar.

Figure 1 shows a simplified diagram of the hardware
architecture of a typical GPU. As discussed in the introduction,
GPUs are designed primarily for high throughput computation
and therefore the majority of their die area is used for arithmetic
logic units (ALUs) known as CUDA cores. Depending on the
particular GPU, different CUDA cores might be dedicated to
integer, single or double-precision floating point operations.

While each CUDA core is independent, they have no capacity for
directly executing instructions. Instead they are contained within
Streaming multiprocessors (SMs) which schedule sequences of
Single Instruction Multiple Data (SIMD) instructions known as
warps to run on the CUDA cores using a piece of hardware
known as a warp scheduler. The context associated with each
active warp is stored in a large register file (64 kB on the Volta
architecture) allowing the warp scheduler to very rapidly switch
between active warps while they wait for data to be delivered
from external memory or for CUDA cores to become available.
Therefore, providing that there is sufficient computation to
perform, GPUs can effectively hide memory latency by rapidly
switching between warps.

In all recent GPU architectures, SMs access the GPU’s DRAM
through an L2 cache. While modern CPUs typically have 64 bit
memory interfaces, modern GPUs have much wider memory
interfaces (4096 bit on the Volta architecture). In order to
use these wide memory interfaces efficiently, GPU memory
controllers aim to combine DRAM accesses made by SMs to
adjacent memory addresses into single transactions—a processed
known as coalescing. Within each SM there is also a small
amount (128 kB on the Volta architectures) of much faster local
memory which can typically be partitioned by the programmer
into software-controlled cache known as shared memory and
read-only hardware controlled L1 cache.

Efficiently programming SIMD architectures such as SSE or
AVX often involves manually inserting intrinisics into serial
code to process data in parallel. However, not only is this
difficult but, if the underlying architecture and thus the intrinsics
which drive it change, applications need to be re-written.
NVIDIA CUDA solves this problem by instead presenting the

Frontiers in Neuroscience | www.frontiersin.org 3 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

programmer with a more abstract SIMT programming model
where programmers write serial code to be executed in parallel
across many virtual threads. Threads are grouped into thread
blocks which are scheduled so that they can share data via the
shared memory and the thread blocks are grouped into grids
which represent all the threads required to solve the entire
problem. The CUDA compiler and GPU hardware take care of
converting this representation into warps of SIMD instructions,
scheduling these appropriately and enabling and disabling SIMD
lanes within each warp when conditional control flow requires
it. For example, adding two vectors x and y of length n could be
implemented as follows using CUDA:

__global__ void addVec (i n t n , cons t f l o a t ∗x , f l o a t ∗y)
{

cons t i n t i = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;
i f (i < n) {
y [i] += x [i] ;

}
}

Aside from the __global__ function decorator which instructs the
compiler to hand this function off to CUDA and the blockIdx,
blockDim, and threadIdx variables which allow the position of the
current thread within the block and grid to be queried, the code
is very similar to standard serial C code.

2.2. GeNN
As described by Yavuz et al. (2016), GeNN is a code-generation
based system that generates model- and platform-optimized
CUDA code for GPU accelerated SNN simulations. In doing
so, it abstracts the hardware and model dependent code choices
mentioned above away from its users. GeNN neuron models
are defined by writing a C++ class which defines the model
parameters and snippets of C-like code that describe how it
should be simulated. For example the following LIF class describes
a leaky integrate-and-fire neuron with normalized units, solved
algebraically:

c l a s s LIF : pub l i c NeuronModels : : Base
{
pub l i c :
DECLARE_MODEL (LIF , 1 , 1) ;
SET_SIM_CODE (" $ (V)= ($ (I s yn)∗ $ (TauM)∗ (1 .0− $ (ExpTC))) + ($ (ExpTC)∗
$ (V)) ; \ n ") ;
SET_THRESHOLD_CONDITION_CODE (" $ (V) >=1 .0 ") ;
SET_RESET_CODE (" $ (V) = 0 . 0 ; ") ;
SET_PARAM_NAMES ({ "TauM" }) ;
SET_DERIVED_PARAMS ({

{ " ExpTC " , [] (cons t vector<double > &pars , double dt)
{ r e turn exp(−dt /pars [0]) ; } } }) ;

SET_VARS ({ { "V" , " s c a l a r " } }) ;
} ;
IMPLEMENT_MODEL (LIF) ;

The DECLARE_MODEL and IMPLEMENT_MODEL macros insert boilerplate
code used subsequently for defining parameters and initial
model states in a type-safe manner. The SET_SIM_CODE,
SET_THRESHOLD_CONDITION_CODE, and SET_RESET_CODE macros specify the
snippets of code used, respectively, to update the simulation state,
check whether a spike should be emitted and to reset the neuron
after a spike. The names of model parameters (constant across
the entire population) are specified using the SET_PARAM_NAMES

macro and any “pre-processing” logic to be applied to these
is specified with SET_DERIVED_PARAMS—in this case converting an
exponential decay time constant to a multiplier to be applied
every simulation timestep. Finally, the SET_VARS macro specifies

the names and types of the per-neuron state variables. These
macros provide some “syntactic sugar” but are entirely optional
– users can instead override the underlying virtual functions
themselves. In GeNN, synapse models are defined using very
similar classes with the option to define code snippets for
time-driven and event-driven updates. Event-driven updates can
be triggered by pre or postsynaptic spikes as well as by custom
events, for example the pre or postsynaptic neuron’s membrane
voltages crossing a threshold. Once the required models have
been defined, the values of parameters and initial state variables
can be set and populations of neurons can be added to a network:

InitVarSnippet : : Uniform : : ParamValues vDist (0 . 0 , 1 . 0) ;
LIF : : ParamValues params (2 0 . 0) ;
LIF : : VarValues initState (initVar<InitVarSnippet : : Uniform>(vDist)) ;
network . addNeuronPopulation<LIF>(" pop " , 1 000 ,params , initState) ;

This listing also illustrates how, in the latest version of GeNN, the
approach used for defining models can also be used to configure
how variables are initialized. In the listing the membrane voltage
V of our 1,000 LIF neurons is sampled from the uniform
distribution using one of GeNN’s built in variable initialization
snippets. These are definied in a similar manner to the neuron
model presented earlier in this section and, by using this
mechanism, GeNN can offload network initialization to the GPU
using the same parallelization strategies it employs for simulating
models. This approach is advantageous as it removes the need to
transfer the model state from the CPU to the GPU and allows
the GPU to be used to accelerate potentially costly initialization
operations such as sampling random numbers.

Once network models have been defined using the C++
interface, GeNN will generate a neuron CUDA kernel for
updating the neuronal state, a synapse kernel for simulating
the propagation of spikes through synaptic connections and,
for models with synaptic plasticity, a postsynaptic learning
kernel. GeNN also generates functions for allocating memory
(allocateMem), launching the initialization kernel (initialize) and
launching each simulation kernel required to advance the
simulation state (stepTimeGPU). The generated code can then be
linked against a simulation loop provided by the user:

in c lude "model_CODE / d e f i n i t i o n s . h "

i n t main ()
{
allocateMem () ;
initialize () ;
whi l e (t < 100 . 0f) {

stepTimeGPU () ;
}
r e turn 0 ;

}

While this approach allows a lot of flexibility and means
that visualization tools and closed-loop robotics can be tightly
coupled to GeNN simulations, when combined with the use
of C++ for model definition, this does make using GeNN a
somewhat daunting prospect for users more used to Python-
based simulators such as Brian (Stimberg et al., 2014) or
PyNN (Davison et al., 2008) or graphical tools such as
SpineCreator (Cope et al., 2017). For these users, GeNN can be
used as a backend for other simulators. Brian2GeNN (Stimberg
et al., 2018) allows models defined in Brian 2 to be translated,
using code generation, into a valid GeNN simulation. Using Brian
2’s backend device design, using GeNN through Brian2GeNN is

Frontiers in Neuroscience | www.frontiersin.org 4 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

as simple as issuing the command set_device("brian2genn") within a
standard Brian 2 script. A similar interface exist for SpineCreator
and an interface to PyNN (Davison et al., 2008) is currently under
development.

2.3. Cortical Microcircuit Model
This model of 1mm3 of early-sensory cortex was developed by
Potjans and Diesmann (2014) and consists of 77,169 neurons,
divided into separate populations representing cortical layers
2/3, 4, 5, and 6. Each layer is modeled by an excitatory
and an inhibitory neuron population as shown in Figure 2.
Neurons in each population are connected randomly with
population-specific densities derived from an extensive review
of the anatomical literature resulting in a total of approximately
0.3·109 synapses. Beside this structured connectivity, all synaptic
strengths and transmission delays are normally distributed. The
membrane voltage (Vj) of each neuron is modeled as a leaky
integrate-and-fire (LIF) unit:

τm
dVj

dt
=(Vj − Vrest)+ RmIinj (1)

where τm and Rm represent the time constant and resistance
of the neuron’s cell membrane, Vrest defines the membrane

voltage the neuron returns to if it receives no synaptic input
and Iinj represents the input current to the neuron. When the
membrane voltage crosses a threshold (Vthresh) a spike is emitted,
the membrane voltage is reset back to Vrest and a countdown
timer is started which, while running, disables the integration
of further input thus providing a simulated refractory period.
Incoming spikes induce an exponentially-shaped input current
in Iinj :

τsyn
dIinj

dt
=− Iinj + Ipj +

n
∑

i=0

wij

∑

t
f
i

δ(t − t
f
i) (2)

where τsyn represents the time constant with which any spikes
(modeled as Dirac delta functions δ) from n presynaptic input
neurons occuring at time t are integrated. In addition to
its synaptic input, each neuron in the network also receives
an independent Poisson input current Ipj (also exponentially
shaped by Equation 2) which represents input from adjacent
cortical regions. Finally, wij represents the peak synaptic input
current of the synapse between the presynaptic neuron i and
the postsynaptic neuron j. For a full description of the model

FIGURE 2 | Illustration of the microcircuit model. Blue triangles represent excitatory populations, red circles represent inhibitory populations and the numbers beneath

each symbol shows the number of neurons in each population. Connection probabilities are shown in small bold numbers at the appropriate point in the connection

matrix. All excitatory synaptic weights are normally distributed with a mean of 0.0878 nA (unless otherwise indicated in green) and a standard deviation of 0.008 78 nA.

All inhibitory synaptic weights are normally distributed with a mean of 0.3512 nA and a standard deviation of 0.035 12 nA.

Frontiers in Neuroscience | www.frontiersin.org 5 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 3 | GPU parallelization of sparse synaptic matrix processing across two thread blocks each with 4 threads. i0, . . . , i3 contain the indices of presynaptic

spikes. li0 , . . . , li3 contain the lengths of the corresponding matrix rows. j contains the indices of the postsynaptic target neurons. Snaking lines indicate CUDA

threads. Hatching indicates padding entries.

parameters please refer to Potjans and Diesmann (2014, Tables
4, 5). In the remainder of this section we will concentrate on
describing the strategies used to parallelize the initialization and
subsequent simulation of this network.

Although the equations describing the neuron dynamics
(Equations 1, 2) are coupled, in our GeNNmodel, the continuous
terms of the two equations are solved separately so that the
synaptic input current Iinj entering into Equation (1) is effectively
treated as a constant during each simulation timestep. As
Rotter and Diesmann (1999) explain, this approach leads to
a delay of one simulation timestep compared to the exact
solution. However, by separating the solving of these equations,
populations of neurons whose input synapse have different
dynamics can be trivially supported. For example, while a
single exponential may be a good approximation of some
inhibitory synapses, for other types of synapse the rise time
of the post synaptic potential may be vital (Van Vreeswijk
et al., 1994). Additionally, from a software engineering point-of-
view, separating the solving of these equations allows for better
encapsulation of neurons and synapses.

Simulating a homogeneous population of neurons is an ideal
task for a SIMD or SIMT device such as a GPU: the neurons
do not communicate with each other within a timestep and,
aside from the relatively rare times that they spike, each neuron
will be simulated using exactly the same code path. Therefore,
neural simulation can be trivially parallelized by simulating each
neuron on a single thread that fetches the neuron’s state variables
from global memory into registers at the start of each timestep,
advances the simulation state and writes back the state variables.
As long as the state variables are laid out correctly in memory, the
required memory operations can be coalesced so that a 4 B state
variable can be read for 32 neurons in a single 128 B transaction—
the most efficient way to access the global memory. The Poisson
input current (Ipj) is calculated by generating a Poisson deviate
every simulation timestep, using the technique described by
Devroye (2013, p504), and multiplying this by a population-
specific weight. When a neuron’s spiking threshold condition is

met, the thread simulating the neuron writes the index of the
neuron within the population to a shared memory array. After
all the neurons in a population have been updated, the shared
memory arrays containing the indices of the neurons in each
thread block which spiked are combined into a global memory
array—forming a record of all the neurons in the population
which have spiked in the current simulation timestep.

Simulating the spikes propagating between two populations of
neurons through sparsely connected synapses is, at first glance,
less suitable for GPU parallelism. However, on modern GPU
hardware, this can also be implemented in an efficient manner
using the data structures shown in Figure 3. These structures
consist of multiple 2D arrays with rows representing the synapses
coming from individual presynaptic neurons and with enough
columns to contain the largest number of postsynaptic targets any
presynaptic neuron connects to. One of these 2D arrays contains
the indices of the postsynaptic neurons (j) and additional arrays
are allocated for any individual synaptic state variables such as the
synaptic weight (wij) or dendritic delay (dij). In order to simulate
dendritic delays, GeNN also allocates a delay ring-buffer between
each pair of connected populations consisting of a Dmax × Npost

2D array whereDmax is the maximum dendritic delay andNpost is
the number of postsynaptic neurons. Each block of Nblock CUDA
threads (in Figure 3 Nblock = 4) is responsible for processing
Nblock columns of the matrix. Processing begins by using the
Nblock threads to fetch the indices of Nblock presynaptic spikes
written to global memory by the presynaptic population’s neuron
kernel (i0, . . . , iNblock−1) and the lengths of the corresponding
rows of the matrix (li0 , . . . , liNblock−1) into shared memory (so that

these will be accessable to all threads in the block during the
next phase). Threads are then synchronized and loop through
the Nblock rows with each thread processing the synapse in their
column. In the case of the simple static synapses described by
Equation (2), this processing simply consists of reading the index
of the postsynaptic target neuron along with the weight wij and
delay dij associated with the connection and using an atomic add
operation to add the weight to row (i + dij) mod Dmax of the

Frontiers in Neuroscience | www.frontiersin.org 6 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

dendritic delay ring-buffer. Postsynaptic neurons then read their

synaptic input (the
∑n

i=0 wij
∑

t
f
i

δ(t − t
f
i) term in Equation 2)

from row i mod Dmax of the dendritic delay ring buffer.
This process is repeated until all incoming spikes are

processed. While this parallelism strategy may seem counter-
intuitive, it typically performs much better than the naïve
approach of using one thread per incoming spike as it not only
exposes much more parallelism, but also results in perfectly
coalesced memory read operations. For example, in a simulation
with a 0.1ms timestep, a population of 10,000 neurons firing at
an average rate of 10Hz will only, on average, emit 10 spikes
in a single timestep. However, if this population is connected
to another population of same size with a 10% connection
probability, the connection matrix will have over 1,000 columns
resulting in 2 orders of magnitude more parallelism being
exposed. Using the data structures described in this section, a
GeNN simulation of the cortical microcircuit model requires
3.1GB of device memory.

An additional advantage of the data structure shown in
Figure 3 is that, as long as we know the maximum length
of any row, memory can be allocated by the host without
having to perform any further calculations, meaning that the
connectivity itself can be initialized on the GPU. In this model
the density of the synaptic connections between a pair of
neuronal populations is specified in terms of a total number of
random synapses (Nsyn) (a FixedNumberTotal connector in PyNN).
The maximum row length when connecting a presynaptic
population with Npre neurons to a postsynaptic population
with Npost neurons using this connectivity can be obtained by
evaluating the inverse cumulative distribution function (CDF)

of Binom[Nsyn,
Npost

Npost∗Npre
] with a suitably high probability (we

use P = 0.9999
1

Npre). Once memory is allocated for the data
structure, the first stage in initializing the connectivity is to
determine how many of the total synapses Nsyn end up in each
row by sampling from the multinomial distribution Mult[Npre ∗
Npost, {Prow, Prow, . . . , Prow}] where Prow = Npost

Nsyn
. This operation

cannot be efficiently parallelized so must be performed on
the host but, once the length of each row is determined, the
postsynaptic targets of the synapses can be initialized in parallel
by sampling from the discrete uniform distribution Unif[0,Npost]
using Npre CUDA threads. While this works mathematically,
in order to improve the locality of memory accesses, synapses
should be sorted into ascending order. This would be trivial to
implement in CPU code but, without enough shared memory
for each CUDA thread to store a copy of its corresponding row,
an in-place sort in global memory would be very slow. It would
be possible to use a more complex parallel sorting algorithm
such as that proposed by Awan and Saeed (2016) but, as
GPU architectures typically have very high floating point maths
throughput, we instead take an alternative approach. Rather
than sampling directly from Unif[0,Npost] we sample from its
1st order statistic – Beta[1,Npost] – essentially the next smallest
value. In general, the Beta distribution cannot be sampled from
in constant time. However, if X ∼ Beta[1,Npost], 1 − X ∼
Beta[Npost, 1] and therefore −ln(1 − X) ∼ Exponential[Npost] –

FIGURE 4 | Illustration of the balanced random network model. The blue

triangle represents the excitatory population, the red circle represents the

inhibitory population, and the numbers beneath each symbol show the

number of neurons in each population. Connection probabilities are shown in

small bold numbers at the appropriate point in the connection matrix. All

excitatory synaptic weights are initialized to 0.045 61 nA and all inhibitory

synaptic weights are initialized to 0.228 05 nA.

a much simpler problem as the exponential distribution can be
sampled in constant time using the inversion method (Devroye,
2013, p. 29).

2.4. Balanced Random Network With
Spike-Timing Dependent Plasticity
This model, as illustrated in Figure 4, consists of an exitatory
neuron population with 90,000 excitatory neurons and an
inhibitory population containing 22,500 inhibitory neurons. This
scale is necessary to achieve a realistic number of incoming
connections per neuron of ≈ 10, 000 (Braitenberg and Schüz,
2013) with a biologically plausible connection probability of
≈ 0.1.

Similar to the microcircuit model described in the previous
section, this model uses LIF neurons with current inputs.
However, rather than filtering the input current (Iinj) using
a single exponential, this model uses slightly more complex
alpha synapses (Rall, 1967) which provide a closer match to the
dynamics of biological synapses,

τsyn
dIinj

dt
=xj − Iinj (3)

τsyn
dxj

dt
=− xj + Ipj +

n
∑

i=0

wij

∑

t
f
i

δ(t − t
f
i) (4)

where xj represents a second state variable and all other
terms maintain the same meanings they had in Equation (2).
Nonetheless, Equations (3, 4) have trivial algebraic solutions
meaning they can be simulated using the same scheme described
in the previous section.

The synapses in this model are plastic, i.e., the weights
wij are changing over time according to an STDP rule. Even
leaving aside synaptic plasticity rules which use postsynaptic
membrane voltage (Brader et al., 2007; Clopath et al., 2010) rather
than postsynaptic spike times or include “third factors” such
as dopamine (Izhikevich, 2007), there is a plethora of different
STDP formalizations (seeMorrison et al. (2008) for a review). For
the model described in this section, Morrison et al. (2007) chose

Frontiers in Neuroscience | www.frontiersin.org 7 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

to use a rule that modifies the synaptic weight (wij) between a pre
and postsynaptic neuron based solely on the relative timing of
pre (tpre) and postsynaptic (tpost) spikes (1t = tpost − tpre):

1wij =

{

λw
1−µ
0 w

µ

ij e
− |1t|

τ if 1t > 0

−λαwije
− |1t|

τ if 1t ≤ 0
(5)

where λ represents the learning rate, w0 defines a reference
weight and µ allows the potentiation term to be set as entirely
multiplicative (µ = 1), entirely additive (µ = 0) or somewhere
in between. As discussed by Morrison et al. (2007), in the
model presented in this section, µ is set to 0.4 so as to match
the data recorded by Bi and Poo (1998). Finally τ defines the
time constant of the STDP kernel and α controls the relative
strength of potentiation and depression. Morrison et al. use this
rule with an all-to-all spike-pairing scheme meaning that each
of the pairs formed by a presynaptic spike and all preceding
postsynaptic spikes (and vice-versa) should be considered. For
the full description of the model parameters, please refer to
Morrison et al. (2007, sections 3 and 4.1). In the remainder
of this section we will concentrate on describing the additional
steps required to parallelize models with synaptic plasticity using
GeNN.

In order to implement the all-to-all spike pairing required for
the model, rather than repeatedly evaluating Equation (5), we
calculate updates based on per-neuron spike traces (Song et al.,
2000; Morrison et al., 2007) with the following dynamics:

dsi

dt
= −

si

τ
+

∑

t
f
i

δ(t − t
f
i) (6)

The value of these traces can be thought of as representing
the sums of the exponential terms from Equation (5) if they
were calculated for every pair of spikes. Therefore, the
potentiation (1w+

ij) induced by the spike pairs formed by a

postsynaptic spike occuring at t
f
j and all preceding presynaptic

spikes can be calculated using the following single update:

1w+
ij (t

f
j) = λw

1−µ
0 w

µ
ij si(t

f
j) (7)

Similarily, the depression (1w−
ij) induced by the spike pairs

formed by a presynaptic spike occurring at t
f
i and all preceding

postsynaptic spikes can be calculated using the following single
update:

1w−
ij (t

f
i) = −λαwijsj(t

f
i) (8)

In GeNN, if a neuron has fired in the current timestep, its
trace variables are updated in the neuron kernel by evaluating
Equation (6). Synaptic depression is calculated by applying
Equation (8) to each synaptic weight processed in the synapse
kernel described in the previous section. Similarly, calculating
synaptic potentiation involves applying Equation (7) to each
synapse targetting a spiking postsynaptic neuron. However this

is tricky as while the data structure shown in Figure 3 supports
efficient row-wise access to the synapses associated with a
presynaptic neuron, like many sparse matrix data structures, it
does not support efficient column-wise accesses to the synapses
associated with a postsynaptic neuron. This is a problem
shared by all SNN simulators that support STDP (Brette and
Goodman, 2012). Some small-scale neuromorphic systems have
solved this problem in hardware using custom SRAM memories
which allow both column and row-wise accesses (Seo et al.,
2011). However, custom SRAMs are expensive in terms of
silicon area, so many neuromorphic systems avoid the problem
entirely by implementing synaptic plasticity rules which use the
membrane voltage of the postsynaptic neuron rather than its
spike times – meaning that no updates triggered by postsynaptic
spikes are required (Qiao et al., 2015; Frenkel et al., 2018). Intel’s
Loihi system (Davies et al., 2018) and the SpiNNaker software
developed by Galluppi et al. (2014) take an alternative approach
and defer all STDP updates until the end of a “learning epoch”
after which time they are processed sequentially row by row.
NEST (Morrison et al., 2007) and the more recent SpiNNaker
software (Knight et al., 2016) both buffer postsynaptic spikes
until the next presynaptic spike occurs—allowing weight updates
triggered by pre and postsynaptic spikes to be applied in order
without having to make any column-wise accesses to the synaptic
matrix. However, buffering postsynaptic spikes makes access to
other postsynaptic variables difficult as they would also need
to be buffered for an unbounded length of time until the next
presynaptic spike occurs.

Deferring STDP updates ideally requires a dynamic memory
structure to store postsynaptic events, which, when combined
with the need to search through this data structure for events
to apply, means that this approach does not appear to be
well-suited for GPU implementation. Furthermore, GeNN aims
to support a wide range of synaptic plasticity rules with full
access to pre and postsynaptic neuron variables. Therefore,
GeNN builds an additional column-major sparse matrix using
the same data structure as shown in Figure 3, containing
indices into the original row-wise arrays containing synaptic
weights. This has the downside of doubling the memory
requirements of connections when STDP is required and, as
Yavuz et al. (2016) demonstrated, the resultant non-coalesced
accesses to the synaptic matrix reduce performance on lower-
end GPUs. However, the approaches involving buffering of
events and variables described above come with their own
challenges in terms of memory management and minimizing the
divergence of execution between CUDA threads. Furthermore,
the performance reductions due to non-coalesced memory
accesses are much less severe on modern GPUs due to the
ever-increasing size of their L2 cache.

In the balanced random network model, the synaptic weights
of the non-plastic connections are initialized to a constant value
so the GeNN code generator can compile these constants directly
into the synapse kernels. While this results in significant memory
savings, it is not enough to fit the model onto GPUs with 12GB of
memory using either of GeNN’s standard sparse matrix formats.
We, therefore, use the alternative bitmask data structure shown
in Figure 5 to store the non-plastic connections on these GPUs.

Frontiers in Neuroscience | www.frontiersin.org 8 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 5 | GPU parallelization of the processing of 4 postsynaptic neurons’

synaptic input using a bitmask synaptic matrix and one thread blocks with 4

threads. i0, . . . , i3 contain the indices of presynaptic spikes. Snaking lines

indicate CUDA threads. 0s and 1s indicate individual bitmask bits.

When using the bitmask data structure, the connections between
a presynaptic population with Npre neurons and a postsynaptic
population with Npost neurons are stored using a Npre × Npost

bit bitfield (rounded up to the nearest 32 bit word). For example,
the connections between the excitatory (90,000 neurons) and
inhibitory populations (22,500 neurons) in the balanced random
network model can be stored in 241MiB using a bitmask rather
than 867MiB when using the data structure described in the
previous section. Using the bitmask approach reduces the total
amount of device memory required to simulate this model
in GeNN from 11.5 to 10.2GB. The bitmask data structure is
processed using a CUDA thread to accumulate each postsynaptic
neuron’s input into a register every simulation timestep. Each of
these threads loops through the incoming spikes stored in the
shared memory data structure described in the previous section
and, if the corresponding bit in the bitmask is set, adds the
synaptic weight to the register.

Similarly to the data structure shown in Figure 3, the
amount of memory required to store synapses in the bitmask
data structure can be be calculated without any knowledge
of the connectivity within, meaning that synapses stored in
this format can also be initialized on the GPU. In this
model, the density of the synaptic connections is described
using a probability of connection P (a FixedProbabilityConnector

connector in PyNN). Therefore, whether a synapse exists between
a pair of pre and postsynaptic neurons can be described
using a Bernoulli distribution Bern[Pconn]. While the Bernoulli
distribution can be sampled by repeatedly drawing from the
uniform distribution Unif[0, 1] and comparing each sample
to P, this is innefficient for sparse connectivity. Instead we
sample from the geometric distribution Geom[Pconn] which
describes how the number of Bernoulli trials required to get a
success (i.e., a synapse) is distributed. The geometric distribution
can be sampled in constant time by inverting the cumulative
density function (CDF) of the equivalent continuous distribution

(the exponential distribution) to obtain log(Unif[0,1])
log(1−Pconn)

(Devroye,

2013, p. 499). Using this approach, generating fixed probability
connectivity can be performed entirely in parallel by initializing
each row of connectivity using an independent CUDA thread.

3. RESULTS

We implemented and tested two established computational
neuroscience models. The first model is a model of a cortical
microcircuit developed by Potjans and Diesmann (2014). It
consists of eight populations of neurons, representing the
excitatory and inhibitory populations of neurons in cortical layers
2/3, 4, 5, and 6 of a micro-column. Neurons are connected
with random connectivity of densities that follow experimental
observations. The model has been shown to reproduce firing
characteristics observed in the cortex (Potjans and Diesmann,
2014).

The second model is a balanced random network with spike-
timing dependent plasticity (Morrison et al., 2007). Synaptic
plasticity is a family of mechanisms responsible for changing
the strength of synaptic connections in response to neural
activity and has been shown to be fundamental to biological
learning (Nabavi et al., 2014). In particular, Spike Timing
Dependent Plasticity (STDP) (Markram, 1997; Bi and Poo, 1998)
is a popular theory which postulates that these changes are
driven by the difference in timing between presynaptic spikes
arriving at a synapse and the times at which the postsynaptic
neuron itself spikes. In excitatory cortical (Markram, 1997)
and Hippocampal (Bi and Poo, 1998) neurons, synapses at
which a presynaptic spike is closely followed by a postsynaptic
spike are strengthened, whereas those at which a postsynaptic
spike precedes a presynaptic spike are weakened, so introducing
a causal learning rule. Adding STDP to SNN simulations,
however, typically increases the computational cost of simulating
them significantly. Morrison et al. (2007) reported that adding
plasticity to their simulations slowed them down by “a factor
of less than 10” and Knight and Furber (2016) found that, in
the best case, simple STDP plasticity reduced the performance
of the SpiNNaker neuromorphic system by approximately 6×.
Furthermore, the dynamics of neural systems with plasticity
operating on biologically-plausible time scales take several orders
of magnitude more time to stabilize meaning that longer
simulations are required and, as Morrison et al. argue, it is
vital to perform experiments on STDP in models with full-scale
connectivity to avoid synchronization artifacts.

Balanced random networks such as this have been shown to
reproduce some of the dynamics seen in the neocortex (Brunel
and Hakim, 1999; Brunel, 2000). Morrison et al. showed that
adding STDP to their model did not disrupt its dynamics and,
as long as a suitable STDP rule is used, the synaptic weights will
settle into a stable unimodal distribution.

3.1. Correctness
In this section we will focus on confirming the correctness of our
simulations of the microcircuit model (Potjans and Diesmann,
2014) described in section 2.3 using the methodology described

Frontiers in Neuroscience | www.frontiersin.org 9 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 6 | Spiking output of cortical microcircuit model with Poisson input. All measures are calculated over the last 9 s of the simulation and histogram bin widths

are determined using the Freedman-Diaconis rule. (A) Raster plot showing spike times (dots) of neurons from each population. The spikes of 5% of neurons (vertical)

are shown. (B) Single-neuron firing rates of all neurons. (C) CV ISI, a measure of irregularity of all neurons. (D) Correlation coefficients between binned spike trains for

200 neurons in each population.

by van Albada et al. (2018). Additionally we will compare the
results of simulations of the balanced random network model
described in section 2.4 to those reported by Morrison et al.
(2007).

3.1.1. Cortical Microcircuit Model

van Albada et al. (2018) performed an in-depth analysis of
the correctness of simulations of the microcircuit model—
running both on NEST and on the SpiNNaker neuromorphic
system—using NEST running in “precise” mode as a ground-
truth. In “precise” mode, rather than constraining spike events
to simulation time steps, NEST communicates the exact time
at which neurons’ membrane voltages cross the threshold
between the nodes simulating the model (Hanuschkin et al.,
2010).

In order to assess correctness, we simulated 10 s biological
time of the model. As van Albada et al. describe, the first
1 s of spike data from each 10 s simulation was discarded in
order to remove any transients. We then calculated the average
firing rates and the covariance of interspike intervals (CV ISI)
for each neuron in the model over the remaining 9 s of the
simulation using the Elephant (Yegenoglu et al., 2018) package.
We also picked 200 (this was a trade-off between accuracy
and analysis time chosen by van Albada et al.) active neurons
from each population, binned their spike trains into 2ms bins
(corresponding to the refractory time of the neurons) and
calculated the Pearson correlation coefficient matrix between
each disjoint pair of neurons.

The same measures were calculated for GeNN and for a
NEST simulation run in “precise” mode and histograms of all

three measures were produced for both simulations using bins
calculated from the NEST data using the Freedman-Diaconis
rule (Freedman and Diaconis, 1981). The histograms were
smoothed with Gaussian kernel density estimation performed
using the scipy.stats.gaussian_kde function with bandwidths of
0.3 s−1, 0.04 and 0.002 for the average firing rates, CV ISI and
correlation respectively.

Figure 6 shows the results of this analysis. Visually it is
clear that the per-population distributions are highly similar
and, to quantify this, we calculated the Kullback-Leibler (KL)
divergences using the “precise” NEST data as the reference.
Figure 7 shows the KL divergences calculated from our GeNN
simulation as well as those reported by van Albada et al.
(2018) for their grid-aligned NEST and SpiNNaker simulations
and between two “precise” NEST simulations with different
random number generator seeds. Similarly to those calculated
from the SpiNNaker and grid-aligned NEST simulations, the KL
divergences from our GeNN simulation are comparable in size to
those caused by changing the random number generator seed.

3.1.2. Balanced Random Network

To assess the correctness of our implementation of the balanced
random network model described in section 2.4, we simulated
the network for 2,000s of biological time and compared the
final weight distribution and the statistics of the last 50 s of
spiking activity with those reported by Morrison et al. (2007).
The calculated statistics are listed in Table 1 and the final weight
distribution is shown in Figure 8. To quantify the network
dynamics resulting from these synaptic weights, we calculate the
mean firing rate and CV ISI of all the excitatory neurons in the

Frontiers in Neuroscience | www.frontiersin.org 10 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 7 | Comparison of per-population distributions of dynamical

properties shown in Figure 6. Comparisons calculated using the

Kullback-Leibler (KL) divergence with NEST running in “precise” mode as a

reference. For comparison, KL divergences for NEST running in “grid-aligned”

mode and SpiNNaker are read off figure presented by van Albada et al..

(A) Single-neuron firing rates. (B) CV ISI. (C) Correlation coefficients.

TABLE 1 | Comparison of statistics reported by Morrison et al. (2007) with those

obtained from our GeNN simulations.

Statistic Value reported by Value obtained from

Morrison et al. (2007) GeNN simulation

Mean weight (pA) 45.65 46.25

Weight standard deviation (pA) 3.99 4.07

Mean spike rate (Hz) 8.8 8.8

Covariance of interspike interval 0.88 0.86

Fano factor 8.5 8.3

network using the Elephant (Yegenoglu et al., 2018) package.
The mean firing rate and CV ISI values listed in Table 1 suggest
that our model had settled into a very similar asynchronous-
irregular regime to that reported by Morrison et al. (2007). Our
model exhibited fast oscillations throughout the simulation and,
to quantify the resultant variation in spike rate, we calculated a
histogram with 3ms bins from the output spike trains of 1,000
excitatory neurons. By dividing the variance of each bin’s spike
count by its mean we calculated a Fano factor which, again,
was very simular to that reported by Morrison et al. (2007).
As Pauli et al. (2018) thoroughly demonstrate, reproducing
results from SNN models on different simulators can be difficult,
especially with models of this age where the original code is not
publicly available. Therefore, we believe that the remaining small
differences in results are likely to be due either to numerical

FIGURE 8 | Histogram of the synaptic weight distribution obtained after

2,000s of simulation. The solid red line shows the gaussian distribution with

µw = 46.25 and σw = 4.07.

differences caused by single-precision floating point and our use
of CUDA’s approximate exponential and power functions; or to
subtle differences in the order of operations between GeNN and
NEST.

3.2. Performance
To assess the performance of our GPU simulations we chose
a selection of GPUs listed in Table 2—covering a range of
financial and power budgets. CUDA abstracts away the degree
of parallelism exposed by the application from the amount
of hardware parallelism available so we can run a model that
uses 80,000 threads on a GPU with many fewer CUDA cores.
However, memory is a harder constraint so, while all of the GPUs
listed in Table 2 can run the microcircuit model described in
section 2.3, due to the increased memory requirements of STDP
connections, only the two “Tesla” GPUs have enough memory to
run the balanced randomnetworkmodel described in section 2.4.

We measured the performance of both models by querying
the std::chrono::high_resolution_clock around the simulation loop
to obtain a total simulation time. In order to analyse how
time was spent in the different GPU kernels we also used
CUDA’s own event timing system (NVIDIA Corporation, 2018a,
Section 3.2.5.6.2) to record the time taken by the neuron and
synapse simulation kernels as well as the postsynaptic learning
kernel in the balanced random network model. By dividing the
simulation time by the length of the simulation in biological
time, we can then obtain an estimate of the average simulation
performance relative to real-time.

Frontiers in Neuroscience | www.frontiersin.org 11 December 2018 | Volume 12 | Article 941

Knight and Nowotny GPUs Outperform Current SNN Simulators

TABLE 2 | GPU devices.

Model Thermal design Architecture Num. Memory Memory Max single-precision

power (TDP) CUDA capacity bandwidth performance

[W] cores [GB] [GB s−1] [GFLOPS]

GeForce 1050 Ti 75 Pascal 768 4 112 2,100

Jetson TX2 15 Pascal 256 8a 58.4 750

Tesla K40c 235 Kepler 2,880 12 288 4,290

Tesla V100 250 Volta 5,120 16 900 14000

aMemory is shared between CPU and GPU.

FIGURE 9 | (A) Simulation times of the microcircuit model running on various GPU hardware for 10 s of biological time. SpiNNaker and fastest HPC simulation times

(12 nodes) presented by van Albada et al. (2018) included for comparison. “Overhead” in GPU simulations refers to time spent in simulation loop but not within CUDA

kernels. The dotted horizontal line indicates realtime performance. (B) Initialization times of the microcircuit model running on various GPU hardware. SpiNNaker and

fastest HPC simulation times (32 nodes) presented by van Albada et al. (2018) included for comparison.

3.2.1. Cortical Microcircuit Model

Figure 9A shows the simulation times of the microcircuit
model running on each GPU for 10 s of biological time,
including the times taken by neuron and synapse simulation
kernels. Compared to the smaller point neuron benchmark
presented by Yavuz et al. (2016), even though each neuron in
our model receives up to 10× as many synaptic inputs, the
simulation time is more evenly split between the simulation of
neurons and synapses. This is partly because our simulations
are running with a smaller 0.1ms timestep meaning that less
presynaptic spikes are processed each timestep. Additionally,
in the newer version of GeNN used in this paper, the
generation of Poisson noise takes place in the neuron kernel
rather than in the separate kernel used by Yavuz et al.
(2016).

In general, as one would expect, the two Tesla GPUs perform
best with the newer Tesla V100 system achieving a faster
simulation speed than was possible on the CPU-based HPC
cluster (van Albada et al., 2018). However even the GeForce
1050ti—which is a low-end gaming GPU—can simulate the
model faster than the SpiNNaker system.

As discussed in section 2.2, as well as parallelizing
neuron and synapse simulation code, the latest version
of GeNN also parallelizes the initialization of model state
variables and connectivity using the GPU. Figure 9B

shows the initialization time of the microcircuit simulation
when initialization is performed on the CPU compared
to the GPU. Even on the two Tesla systems which have
Intel Xeon CPUs with high single-threaded performance,
using the GPU for initialization, results in a speedup of
around 20× and on the Jetson TX2, with its much slower
ARM A57 CPU, GPU initialization is more than 150×
faster.

Figure 9B also includes the initialization times for SpiNNaker
and the fastest HPC configuration presented by van Albada et al.
(2018) The scaling plot for HPC initialization presented
by van Albada et al confirms the trivially parallelisable
nature of network initialization compared to simulation –
performance continued to increase up to 32 nodes rather
than just 12 in the simulation. However, all three desktop
GPU systems still perform network initialization in a
shorter time than the HPC system. Diamond et al. (2016)

Frontiers in Neuroscience | www.frontiersin.org 12 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 10 | Simulation times of the microcircuit model running for 10 s of

biological time at different scales on various GPU hardware. Downscaling rules

described by van Albada et al. (2015) are employed to maintain spiking

statistics at all scales. The dotted horizontal line indicates realtime

performance.

concluded that initialization and loading time was a big
problem for neuromorphic systems and SpiNNaker clearly
still has issues in this area as initializing and loading the
microcircuit network onto the SpiNNaker system takes
approximately 10 h. This is approximately 50× slower than
the Jetson TX2 when only one of its ARM cores is used for
initialization.

To illustrate how the run-time of GPU simulations varies
with model size, we also simulated scaled down versions of the
microcircuit model on all four GPU devices. Scaling is performed
by using the downscaling rules described by van Albada et al.
(2015) to produce versions of the microcircuit model with a total
of Nt neurons using a scaling factor K = Nt

77169 . The size of
each population of neurons and the total number of connections
between them are scaled down by K. The firing rate of the
Poisson background input provided to each population is also
scaled down by K and partially replaced by a DC input current
scaled by (1 −

√
K) (meaning that it is not present in the full-

scale model). Finally the mean synaptic weights are multiplied by√
K. The effect of these scaling rules is to preserve the spiking

statistics at all model scales. Figure 10 shows the results of
these simulations and suggests that, because at the tested scales
there are always many more neurons than CUDA cores and the
activity remains constant, simulation times scale approximately
linearly with the number of neurons and synapses. For a more
in depth analysis of the scaling properties of GeNN simulations
we refer the reader to Yavuz et al. (2016) and Stimberg et al.
(2018).

FIGURE 11 | Simulation times of the balanced random network model running

on various GPU hardware for 200 s of biological time. “Overhead” in GPU

simulations refers to time spent in simulation loop but not within CUDA kernels.

“Standard” and “Bitmask” refer to the data structure used for representing the

model’s non-plastic connections—the standard synaptic matrix data structure

described in section 2.3 or the bitmask data structure described in section 2.4

respectively. The dotted horizontal line indicates realtime performance.

3.2.2. Balanced Random Network

Figure 11 shows the runtime of simulations of the balanced
random network model described in section 2.4. The Tesla V100
has enough memory (16GB) to represent the model’s non-plastic
connections using the standard synaptic matrix data structure
described in section 2.3 as well as the bitmask data structure
described in section 2.4. However, Figure 11 shows that this has
a negligible impact on the simulation time, suggesting that both
data structures are equally efficient for large-scale models. While
Morrison et al. (2007) report that their simulations of this model
took 60 h to run for 1,000s of biological time on their HPC
cluster—which is around 4× slower than our simulations run
on the Tesla K40c—we have not included this in Figure 11 as a
comparison with decade-old CPU hardware would not be a fair
one.

3.3. Power and Energy
As well as recording the runtimes of the microcircuit benchmark
described in the previous section, we also recorded the power
usage of the systems being benchmarked using a consumer power
measurement device at the mains socket. The screen of the
powermeasurement device was recorded using a webcam, optical
character recognition was performed using “Seven Segment
Optical Character Recognition” developed by Auerswald and
Fontana (2018) and the resultant power measurements were
tagged with a time and written to disk. Figure 12 shows the

Frontiers in Neuroscience | www.frontiersin.org 13 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

FIGURE 12 | Power consumption during 10 s microcircuit simulation. Power

was measured using consumer power measurement device with minimum

resolution of 0.1W at mains socket. (A) Tesla K40c in a workstation with a Intel

Xeon E5-1620 v2 processor running Ubuntu 16.04 LTS. (B) GeForce 1050Ti in

a desktop PC with an Intel Core i5 750 processor running Windows 7.

(C) NVIDIA Jetson TX2 development kit running Ubuntu 16.04 LTS and

JetPack 3.2.1 in maximum performance mode.

TABLE 3 | Energy cost of simulations.

Model Energy to

solution

Simulation

energy

Energy per

synaptic event

[kW h] [kW h] [µJ]

GeForce 1050 Ti 0.0053 0.0051 2.0

Jetson TX2 0.00080 0.00078 0.30

Tesla K40c 0.0030 0.0028 1.08

SpiNNaker – 0.017 5.9a

NEST (lowest

energy)

– 0.012 4.4

Energy to solution and simulation energy of GPU are calculated using the numpy.trapz

function and the simulation energy is divided by the total number of synaptic events

processed to obtain the energy per synaptic event. For comparison, simulation energies

and energies per synaptic event for SpiNNaker and the NEST simulation with the lowest

simulation energy (2 nodes) are read off the figure presented by van Albada et al. (2018).
aThis energy per synaptic event is calculated after the “idle” power of the SpiNNaker

system has been taken into account.

power usage over time for simulations of the microcircuit model
running for 10 s of biological time on each of the devices listed in
Table 2 except for the Tesla V100 to which we do not have local
access.

By integrating the power time series using the numpy.trapz

function we calculated the energy to solution for each device
as well as the energy per synaptic event—a common measure
for comparing the energy efficiency of neuromorphic systems.

These energy costs are listed in Table 3 alongside the energy
costs presented by van Albada et al. (2018) for simulations
running on SpiNNaker and a CPU-based cluster. Whilst we
were unable to measure the energy of the Tesla V100 system
directly, Tesla GPUs have built in powermonitoring which shows
that the Tesla V100 drew a maximum of 88W compared to
107W for the Tesla K40c. As the workstation containing the
Tesla K40c drew 218W while simulating the model, compared
to an idle power draw of 84W, we can estimate that the
single CPU core being used by the simulation was drawing
27W more than when the system was idle. Therefore we
can estimate that, if a Tesla V100 was attached to the same
workstation, the maximum power draw would be reduced
to 199W suggesting that, based on the reduced simulation
time of 22 s, the simulation energy for such a system would
be 0.0012 kWh and the energy per synaptic event would be
0.47 µJ.

From Figure 12 we can see that even an idling workstation
draws on the order of 100W and, as van Albada et al. (2018)
discuss, a single Infiniband switch has a thermal design power
of over 200W. Therefore it is somewhat unsurprising that any
accelerator that allows equivalent simulations to be run on fewer
nodes would significantly improve energy usage.

4. DISCUSSION

4.1. Suitability of GPU Architectures for
SNN Simulations
The 3.5× increase in peak performance and the 3.1× increase in
memory bandwidth between the Tesla K40c (released in 2013)
and the Tesla V100 (released in 2017) listed in Table 2 illustrate
just how much GPUs have taken advantage of Moore’s law
scaling. This scaling is reflected in the runtime of our simulations
where the cortical microcircuit model ran approximately twice
as fast on the newer Tesla V100 GPU. However, the simulations
of the plastic model ran more than 10× faster on the Tesla
V100, suggesting that recent architectural changes have further
improved the suitability of GPUs for SNN simulations. Figure 11
shows that the improved performance of the Tesla V100 is almost
entirely due to the reduction of time spent in the postsynaptic
learning kernel. This kernel is where synaptic potentiation is
applied using the approach outlined in section 2.4 in which
an additional column-major sparse matrix structure is used to
select weights to update in response to postsynaptic spikes. We
believe that two new features of the Volta architecture (NVIDIA
Corporation, 2017) used by the V100 GPU are playing a crucial
role in accelerating this kernel. Firstly, Volta GPUs have 6144KiB
of L2 cache compared to only 1536KiB in the older Kepler
architecture used by the Tesla K40c, which helps to mediate the
cost of non-coalesced accesses to synaptic weights. Additionally,
Volta GPUs can now simultaneously execute integer and floating
point operations, meaning that the pointer arithmetic required
to calculate the indices into the synaptic weight matrix can be
performed simultaneously with the learning rule update itself.

In our simulations of both models, we copy all spikes from
the GPU to the host computer at the end of each simulation

Frontiers in Neuroscience | www.frontiersin.org 14 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

timestep. Along with the overhead involved in launching CUDA
kernels every simulation timestep, the copying of spikes accounts
for the majority of the “overhead” shown in Figures 9A, 11.
Furthermore, because the microcircuit model has four times as
many neuronal populations as the balanced random network
model, copying its spiking output requires more interactions
with the GPU driver, resulting in the higher overhead seen in
the simulations of this model. The overhead is particularly high
on the GeForce 1050ti system which we believe is due to a
combination of the slower PCI express bus in this machine (PCIe
Gen 2 rather than Gen 3) and issues using CUDA on display
devices under Windows. When simulating the microcircuit at
smaller scales this problem is exacerbated so, at the smallest scale
shown in Figure 10 (19,292 neurons), these overheads account
for between 65 and 90% of the simulation time on the three
desktopGPUs. However, CUDA allows formemory operations to
be performed asynchronously and overlapped with computation,
which should allow some of this overhead to be minimized in
future versions of GeNN. Because the Jetson TX2 is a system-on-
chip in which the CPU and GPU cores share the same physical
memory, no copying of data over the PCI Express bus is required
and the overhead of the simulations running on this system are
significantly lower than on any of the discrete GPUs. In fact,
when we simulated the microcircuit model at the smallest scale,
Figure 10 shows that the Jetson TX2 simulations actually ran
faster than those run on the GeForce 1050ti.

In sections 2.2, 2.3, and 2.4 we discuss how GeNN uses the
GPU to parallelize network initialization and, in section 3.2.1, we
show how this benefits overall simulation run-times. A similar
approach could be used for the analysis of simulation results,
for example to reduce the 810×106 plastic synaptic weights in
the balanced random network model to the histogram shown
in Figure 8, before downloading them to the host. Because of
the low-level flexible nature of GeNN, this could already be
implemented in a CUDA kernel provided by the user. However,
downloading the plastic weights of the balanced random network
model from the GPU to the host computer only takes around
300ms, making it more practical to simply write these weights to
disk and analyse them offline using one of the many CPU-based
analysis tools available.

Unlike the simulations typically run on CPU-based systems,
the GPU simulations presented in this paper use single rather
than double-precision floating point and therefore have the
potential for more numerical instability. Additionally, the non-
associative nature of floating point operations means that, if
the results from a large number of parallel threads are summed
together in a non-deterministic order, results can differ between
runs due to rounding errors. Villa et al. (2009) demonstrated
that the result of summing 28,000 double-precision floating point
numbers across 16,000 threads of a CRAY XMT system (which,
in this context, has similar properties to a GPU) varied by up
to 24.64%. However, in this experiment, more numbers were
summed than would occur when using any of the parallelization
schemes used in our simulations and it is unclear what absolute
errors the reported relative errors correspond to. Furthermore,
based on the analysis we presented in section 3.1, this potential
source of error did not appear to affect our simulations suggesting

that using single-precision floating point and summing inputs in
a non-deterministic order has a minimal effect on the dynamics
of the microcircuit model.

As we discussed in the introduction, the computational
requirements of training Artificial Neural Networks (ANNs)
of ever-increasing size and complexity has been a major
driver in the development of GPU hardware (Schmidhuber,
2015). These applications and the growing need to deploy
ready-trained ANNs to perform inference in real time on
low-power “edge computing” devices mean that available
memory bandwidth is beginning to limit performance. Although
upcoming technologies such as third generation High Bandwidth
Memory (HBM3) are likely to offer increases in memory
bandwidth in the future, alternative strategies are still going to
be required to better utilize current GPUs for SNN simulation
as well as to increase the size of models that can be simulated
using embedded GPUs such as the Jetson TX2. One solution,
used successfully in ANN inference and training, has been to
use lower precision 16 bit floating point and even fixed point
integer representations for weights (Micikevicius et al., 2018).
Using smaller data types not only saves memory and memory
bandwidth but, on some newer GPU hardware including the
Jetson TX2, each CUDA thread can perform four 8 bit or two
16 bit operations simultaneously – significantly increasing peak
performance. While lower precision types are unlikely to provide
enough numerical stability for storing neuron state variables,
as discussed by van Albada et al. (2018), the 16 bit fixed-point
synaptic weights used by SpiNNaker provide sufficient accuracy
for the microcircuit model described in section 2.3. While
GeNN does not currently support these lower-precision types,
we plan on extending the algorithms described in section 2 to
support 16 bit floating point synaptic weights which should offer
a significant performance improvement while not sacrificing the
convenience of floating point programming.

In this paper we have only considered single-GPU simulations
of circuit-scale SNN models. However, using supercomputer
systems, models with up to a billion neurons can now be
simulated (Jordan et al., 2018) and computational neuroscientists
are beginning to use this capability to investigate the interactions
between multiple circuit-scale models. For example, Schmidt
et al. (2015) developed a model of the Macaque visual
cortex consisting of 32 cortical areas, each modeled as a
customized version of the model described in section 2.3.
Even if such a model were implemented using half-precision
floating point weights, a single GPU would not have enough
memory to simulate it. However, systems such as the NVIDIA
DGX-2 (NVIDIA Corporation, 2018c) are now available which
contain several Tesla V100 GPUs, connected through a crossbar
with a 900GB s−1 bisection bandwidth. While GeNN does
not currently target such multi-GPU systems, because all of
their GPUs are connected to a single host system and are
all mapped into its memory space, they maintain many of
the advantages of the single-GPU simulations discussed in
this paper. Beyond this scale, further parallelism could be
achieved by usingMPI to distribute GPU-accelerated simulations
across multiple HPC nodes. While using MPI would lead to
simulation becoming communication bound, as is currently the

Frontiers in Neuroscience | www.frontiersin.org 15 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

case with CPU simulations, fewer more powerful GPU-equipped
nodes should reduce this problem as well as reducing power
usage. Additionally, communication overheads could be reduced
by using NVIDIA’s GPUDirect (NVIDIA Corporation, 2018b)
technology, allowing data to be transferred directly between
remote GPUs via compatible network cards.

4.2. Comparison to Neuromorphic Systems
In section 3.3, we showed that our GPU simulations of the
microcircuit model required less energy than those run on
SpiNNaker. As van Albada et al. (2018) discuss, this poor energy
efficiency comes from slowing SpiNNaker simulations down
by a factor of 20 and only simulating 80 neurons on each
core. However, because SpiNNaker is a software-programmable
system, these limitations are not set in stone and Knight
and Furber (2016) present some potential solutions to the
underlying problems. Knight and Furber (2016) showed how
models can be distributed more efficiently across a SpiNNaker
machine and how Poisson background input could be directly
injected into neurons to reduce the cost of incoming spike
processing. Additionally, other software techniques we present
in the context of GeNN such as the bitmask connectivity format
and the parallel connectivity initialization would be potentially
applicable to software-programmable neuromorphic systems
such as SpiNNaker. Therefore, it seems possible that, purely
through software improvements, SpiNNaker could simulate the
microcircuit model with a much lower energy cost – perhaps
closer to the 0.11 µJ per synaptic event measured by Sharp
et al. (2012). Furthermore, by using more advanced power
management techniques as well as reducing the manufacturing
process size from 130 to 22 nm, the next generation SpiNNaker
system aims to improve energy efficiency by a factor of
10 (Hoppner et al., 2017). Neuromorphic systems based on
custom circuits rather than programmable CPUs still require
much less energy. Digital system such as Intel’s Loihi (Davies
et al., 2018) or IBM’s TrueNorth (Merolla et al., 2014) only
require around 20 pJ per-synaptic event and analog systems such
as Dynapse (Qiao et al., 2015) only require around 100 fJ per
synaptic event. However, beside from SpiNNaker, only the Intel
Loihi supports the degree of connectivity required to implement
the microcircuit model.

Simulating the balanced random network model described
in section 2.4 would be an even greater challenge for a
neuromorphic system as, again, only SpiNNaker and Loihi would
be able to support its high degree of connectivity. Additionally,
while Loihi has a relatively flexible microcode-based “learning
engine,” it does not directly support the operations required
to calculate the wijµ term in Equation (7). While several
relatively complex synaptic plasticity rules have previously
been implemented on SpiNNaker (Knight et al., 2016; Mikaitis
et al., 2018b), these only required exponential decays and
logarithms which could be implement using lookup tables,
whereas, evaluating wijµ would be likely to require a series
expansion. Moise (2012) implemented several transcendental
functions on SpiNNaker using series expansions and showed that
they typically required in the order of 100 CPU cycles. Knight
and Furber (2016) analyzed the performance of STDP processing

on SpiNNaker and found that performing an additive weight
update in response to a postsynaptic spike took around 31 CPU
cycles. Therefore, adding the 100 extra CPU cycles required to
evaluatewijµ to this update, would be likely to severely reduce the
STDP processing performance of SpiNNaker to the point that it
would be unable to efficiently simulate this model. However, the
next generation SpiNNaker system is likely to include bespoke
accelerators to provide acceleration for exp(x) and ln(x) (Partzsch
et al., 2017; Mikaitis et al., 2018a) which could be used to
implement wijµ as exp(µ · log(wij)).

4.3. Neurorobotics
Neurorobotics involves the development of robots with
controllers inspired by the brain, allowing neural function
to be studied in an embodied context. Neuro robots have
been developed with controllers inspired by the mammalian
Hippocampus (Krichmar et al., 2005) as well as the honey
bee (Cope et al., 2016) and other insects (Blanchard et al., 2000).
However, computational constraints have meant that these
systems had to be operated either in simulation or their brain-
inspired controllers had to be simulated externally to the robot.
While using an external controller removes any constraints
on the power and weight of the controller, it also introduces
latency, meaning robots must operate slower. Additionally,
communicating with an external controller typically means that
a robot has to be “tethered” to a WiFi base station, restricting
where it can operate.

The low power requirements and real-time performance
of neuromorphic systems make them obvious candidates for
building on-board neurorobotics controllers. However, in order
to interface with the robots’ hardware and convert sensor data
into spike trains, these systems typically need to be accompanied
by a standard CPU. For example, Kreiser et al. (2018) developed
a path integration model on the Dynapse (Qiao et al., 2015)
neuromorphic system which used a Parallela (Olofsson et al.,
2015) board to interface with the robot and Hwu et al. (2017)
developed a self-driving robot using a spiking convolutional
neural network running on a TrueNorth NS1e development
board which includes a Zynq SoC (Xilinx Inc, 2018). While both
the Dynapse and TrueNorth systems have a negligible power
consumption, the NS1e development board draws between 2W
to 3W (Sawada et al., 2016) and the Parallela 5W, somewhat
out-weighing their theoretical advantages over embedded GPUs
such as the Jetson TX2 which draws a maximum of 15W
(although Figure 12C suggests that, when simulating spiking
neuron networks, the Jetson TX2 draws significantly less power).

Because SpiNNaker is built from programmable ARM cores,
these can be repurposed for interfacing with robot hardware
directly, for example using the interface board developed by
Denk et al. (2013) which supports a variety of robots developed
at the Technical University of Munich. However, the 48 chip
SpiNNaker board used on the robot developed by Conradt et al.
(2015) is around 10× larger than a Jetson TX2, restricting its use
to large ground-based robots whereas the Jetson TX2 is small and
light enough to be used on both ground and aerial robots. GeNN
allows the development of SNN-based controllers that run on
embedded GPUs such as the Jetson TX2 allowing them to control

Frontiers in Neuroscience | www.frontiersin.org 16 December 2018 | Volume 12 | Article 941

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

mobile robots of comparably small form factors with simulated
brain circuits. While the simulations presented in this paper are
too complex and are simulated on too small a simulation timestep
for this to be possible, GPUs can simulate suitable models fast
enough that, on average, simulation timesteps will complete in
real-time. Although this does not guarantee that every simulation
timestep will complete on time, neurorobotic controllers typically
perform some form of low-pass filtering to convert spike trains
to motor commands, meaning that some variability in the time
taken to simulate each timestep is often acceptable. For example,
the neurorobotic controller used by Kreiser et al. (2018) calculates
motor commands from the number of spikes emitted in a 50ms
window (Milde et al., 2017).

This offers a very competitive alternative approach for
neurorobotics research. For example, the “Brains on Board”
project (www.brainsonboard.co.uk) is using GeNN on Jetson
TX1 and TX2 GPUs to develop autonomous flying robots with
navigational and learning abilities inspired by honeybees.

4.4. Interactive Simulation
As discussed in the introduction, one of the major uses of SNN
simulations in computational neuroscience is for characterizing
and exploring the subset of models’ parameter spaces left under-
constrained by experimental data.

In common withmany other application areas, computational
neuroscience simulations are typically performed in a non-
interactive “batch” mode in which a simulation is started (either
on a remote HPC system or locally) and some time later
results are returned. The results of such simulations are then
analyzed offline to determine whether a particular combination
of parameters has resulted in a successful emulation of a brain
circuit. However, it is difficult to determine what data will be
required for this analysis ahead of time. Recording too much data
requires large amounts of disk space and potentially slows down
both, simulation and analysis. Computational steering (Parker
et al., 1997) could be one solution to this problem—a technology
that allows researchers to change the parameters of a running
simulation as well as which state variables are being visualized.

With the development of large-scale models such as those
discussed in the previous section, the need for approaches
such as computational steering in computational neuroscience
is becoming apparant. Nowke et al. (2018) developed a
computational steering system for visualizing and steering NEST
simulations. However, when running this system across a CPU-
based HPC system, Nowke et al. found that its scalability was
dictated by the amount of data that had to be transferred across

the network at each simulation timestep. The next generation of
supercomputer systems are being designed specifically to address
these issues (Lippert and Orth, 2014). However, as discussed in
section 4.3, GPUs are a more natural fit for this type of tight
interaction between visualization and simulation as they exist
within the host system’s memory space, allowing data to be
exchanged at the speed of the PCI express bus, rather than of
an external network. Additionally, because CUDA can interact
directly with graphics APIs such as OpenGL, some simple
visualizations could be rendered without any interaction with the
host computer’s CPU at all.

AUTHOR CONTRIBUTIONS

JK and TN wrote the paper. TN is the original developer of
GeNN. JK is currently the primary GeNN developer and was
responsible for extending the code generation approach to the
parallel initialization of networks. JK performed the experiments
and the analysis of the results that are presented in this work.

DATA AVAILABILITY STATEMENT

All models, data and analysis scripts used for this study can
be found in https://github.com/BrainsOnBoard/frontiers_genn_
paper.

FUNDING

This work was funded by the EPSRC (Brains on Board project,
grant number EP/P006094/1).

ACKNOWLEDGMENTS

We would like to thank Andrew Webb for his thoughts on
efficient parallel connectivity generation. We would also like
to thank Sacha van Albada for providing the data from her
NEST simulations and clarifying some parts of the accuracy
analysis—without these contributions section 3.1 would not
have been possible. Additionally we gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time through the
John von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).
Finally we would like to thank our reviewers for their helpful and
valuable feedback.

REFERENCES

Auerswald, E., and Fontana, C. (2018). Seven Segment Optical Character

Recognition. Available online at: https://www.unix-ag.uni-kl.de/~auerswal/
ssocr/

Awan, M. G., and Saeed, F. (2016). GPU-arraysort: a parallel, in-place
algorithm for sorting large number of arrays. Proceedings of the International
Conference on Parallel Processing Workshops (Philadelphia, PA), 78–87.
doi: 10.1109/ICPPW.2016.27

Bi, G. Q., and Poo, M. M. (1998). Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.
doi: 10.1523/JNEUROSCI.18-24-10464.1998

Blanchard, M., Rind, F. C., and Verschure, P. F. M. J. (2000).
Collision avoidance using a model of the locust LGMD neuron.
Robot. Auton. Syst. 30, 17–38. doi: 10.1016/S0921-8890(99)
00063-9

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.
doi: 10.1162/neco.2007.19.11.2881

Braitenberg, V. and Schüz, A. (2013). Cortex: Statistics and Geometry of Neuronal

Connectivity. Berlin: Springer Science & Business Media.

Frontiers in Neuroscience | www.frontiersin.org 17 December 2018 | Volume 12 | Article 941

www.brainsonboard.co.uk
https://github.com/BrainsOnBoard/frontiers_genn_paper
https://github.com/BrainsOnBoard/frontiers_genn_paper
www.gauss-centre.eu
https://www.unix-ag.uni-kl.de/{~}auerswal/ssocr/
https://www.unix-ag.uni-kl.de/{~}auerswal/ssocr/
https://doi.org/10.1109/ICPPW.2016.27
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/S0921-8890(99)00063-9
https://doi.org/10.1162/neco.2007.19.11.2881
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

Brette, R., and Goodman, D. F. (2012). Simulating spiking neural
networks on GPU. Netw. Comput. Neural Syst. 23, 167–182.
doi: 10.3109/0954898X.2012.730170

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208.
doi: 10.1023/A:1008925309027

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-
and-fire neurons with Low firing rates. Neural Comput. 11, 1621–1671.
doi: 10.1162/089976699300016179

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge:
Cambridge University Press. doi: 10.1017/CBO9780511541612

Chou, T.-s., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M.,
et al. (2018). “CARLsim 4 : an open source library for large scale , biologically
detailed spiking neural network simulation using heterogeneous clusters,” in
IEEE International Joint Conference on Neural Networks (IJCNN) (Rio de
Janeiro), 1158–1165.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects
coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13,
344–352. doi: 10.1038/nn.2479

Conradt, J., Galluppi, F., and Stewart, T. C. (2015). Trainable sensorimotor
mapping in a neuromorphic robot. Robot. Auton. Syst. 71, 60–68.
doi: 10.1016/j.robot.2014.11.004

Cope, A. J., Richmond, P., James, S. S., Gurney, K., and Allerton, D. J. (2017).
SpineCreator: a graphical user interface for the creation of layered neural
models. Neuroinformatics 15, 25–40. doi: 10.1007/s12021-016-9311-z

Cope, A. J., Sabo, C., Gurney, K., Vasilaki, E., and Marshall, J. A. R. (2016). A
model for an angular velocity-tuned motion detector accounting for deviations
in the corridor-centering response of the bee. PLoS Comput. Biol. 12:e1004887.
doi: 10.1371/journal.pcbi.1004887

Davies, M., Srinivasa, N., Lin, T.-h., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi : a neuromorphic manycore processor with on-chip learning. IEEE Micro

30, 82–99. doi: 10.1109/MM.2018.112130359
Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al.

(2008). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L. A., Furber, S., and Conradt,
J. (2013). “Real-time interface board for closed-loop robotic tasks on the
SpiNNaker neural computing system,” in Artificial Neural Networks and

Machine Learning–ICANN 2013. ICANN 2013. Lecture Notes in Computer
Science, eds V. Mladenov, P. Koprinkova-Hristova, G. Palm, A. E. P. Villa, B.
Appollini, and N. Kasabov (Berlin; Heidelberg: Springer), 467–474.

Devroye, L. (2013). Non-uniform Random Variate Generation. New York, NY:
Springer-Verlag.

Diamond, A., Nowotny, T., and Schmuker, M. (2016). Comparing neuromorphic
solutions in action: implementing a bio-inspired solution to a benchmark
classification task on three parallel-computing platforms. Front. Neurosci.

9:491. doi: 10.3389/fnins.2015.00491
Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). “NeMo: a

platform for neural modelling of spiking neurons using GPUs,” Proceedings of
the International Conference on Application-Specific Systems, Architectures and

Processors (Boston, MA), 137–144. doi: 10.1109/ASAP.2009.24
Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator:

L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 57,
453–476. doi: 10.1007/BF01025868

Frenkel, C., Legat, J.-d., and Bol, D. (2018). A 0.086-mm2 12.7-pJ/SOP 64k-synapse
256-neuron online-learning digital spiking neuromorphic processor in 28nm
CMOS. IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2018.2880425.
[Epub ahead of print].

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
Project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al.
(2014). A framework for plasticity implementation on the SpiNNaker neural
architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). “Event and
time driven hybrid simulation of spiking neural networks,” in Advances in

Computational Intelligence. IWANN 2011. Lecture Notes in Computer Science,
eds J. Cabestany, I. Rojas, and G. Joya (Berlin; Heidelberg: Springer), 554–561.

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.
(2010). A general and efficient method for incorporating precise spike
times in globally time-driven simulations. Front. Neuroinform. 4:113.
doi: 10.3389/fninf.2010.00113

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013).
A novel CPU/GPU simulation environment for large-scale biologically realistic
neural modeling. Front. Neuroinform. 7:19. doi: 10.3389/fninf.2013.00019

Hoppner, S., Yan, Y., Vogginger, B., Dixius, A., Partzsch, J., Neumarker, F.,
et al. (2017). “Dynamic voltage and frequency scaling for neuromorphic
many-core systems,” in 2017 IEEE International Symposium on Circuits and

Systems (ISCAS) (Baltimore, MD: IEEE), 1–4. doi: 10.1109/ISCAS.2017.80
50656

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). A self-driving robot using
deep convolutional neural networks on neuromorphic hardware. 2017

International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK),
635–641. doi: 10.1109/IJCNN.2017.7965912

Izhikevich, E. M. (2007). Solving the distal reward problem through
linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443–2452.
doi: 10.1093/cercor/bhl152

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to
exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Knight, J. C. and Furber, S. B. (2016). Synapse-centric mapping of cortical
models to the SpiNNaker neuromorphic architecture. Front. Neurosci. 10:420.
doi: 10.3389/fnins.2016.00420

Knight, J. C., Tully, P. J., Kaplan, B. A., Lansner, A., and Furber, S. B. (2016). Large-
scale simulations of plastic neural networks on neuromorphic hardware. Front.
Neuroanat. 10:37. doi: 10.3389/fnana.2016.00037

Kreiser, R., Cartiglia, M., Martel, J. N., Conradt, J., and Sandamirskaya, Y. (2018).
A neuromorphic approach to path integration: a head-direction spiking neural
network with vision-driven reset. In 2018 IEEE International Symposium on

Circuits and Systems (ISCAS) (IEEE), 1–5.
Krichmar, J. L., Seth, A. K., Nitz, D. A., Fleischer, J. G., and Edelman,

G. M. (2005). Spatial navigation and causal analysis in a brain-based device
modeling cortical-hippocampal interactions. Neuroinformatics 3, 197–222.
doi: 10.1385/NI:3:3:197

Lippert, T., and Orth, B. (2014). “Supercomputing infrastructure for simulations
of the human brain,” in IET Computers & Digital Techniques (Cham), 198–212.

Markram, H. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic
APs and EPSPs. Science 275, 213–215. doi: 10.1126/science.275.5297.213

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,
Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345, 668–673.
doi: 10.1126/science.1254642

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., et al.
(2018). “Mixed precision training,” in Proceedings of the 6th International

Conference on Learning Representations (Vancouver, BC).
Mikaitis, M., Lester, D. R., Shang, D., Furber, S., Liu, G., Garside, J., et al. (2018a).

“Approximate fixed-point elementary function accelerator for the SpiNNaker-
2 Neuromorphic Chip,” in 2018 IEEE 25th Symposium on Computer Arithmetic

(ARITH) (Amherst, MA: IEEE), 37–44.
Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B. (2018b).

Neuromodulated synaptic plasticity on the SpiNNaker neuromorphic system.
Front. Neurosci. 12:105. doi: 10.3389/fnins.2018.00105

Milde, M. B., Blum, H., Dietmüller, A., Sumislawska, D., Conradt, J.,
Indiveri, G., et al. (2017). Obstacle avoidance and target acquisition
for robot navigation using a mixed signal analog/digital neuromorphic
processing system. Front. Neurorobot. 11:28. doi: 10.3389/fnbot.2017.
00028

Moise, M. (2012). A Fixed Point Arithmetic Library for SpiNNaker. Masters, The
University of Manchester.

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, a. T., and Mujumdar, A. (2012).
“Bluehive - a field-programable custom computing machine for extreme-
scale real-time neural network simulation,” in 2012 IEEE 20th International

Symposium on Field-Programmable Custom Computing Machines (Toronto,
ON), 133–140.

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Comput. 19, 1437–1467.
doi: 10.1162/neco.2007.19.6.1437

Frontiers in Neuroscience | www.frontiersin.org 18 December 2018 | Volume 12 | Article 941

https://doi.org/10.3109/0954898X.2012.730170
https://doi.org/10.1023/A:1008925309027
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1017/CBO9780511541612
https://doi.org/10.1038/nn.2479
https://doi.org/10.1016/j.robot.2014.11.004
https://doi.org/10.1007/s12021-016-9311-z
https://doi.org/10.1371/journal.pcbi.1004887
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/fnins.2015.00491
https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1007/BF01025868
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2014.00429
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/fninf.2010.00113
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.1109/ISCAS.2017.8050656
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1093/cercor/bhl152
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fnins.2016.00420
https://doi.org/10.3389/fnana.2016.00037
https://doi.org/10.1385/NI:3:3:197
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00105
https://doi.org/10.3389/fnbot.2017.00028
https://doi.org/10.1162/neco.2007.19.6.1437
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Knight and Nowotny GPUs Outperform Current SNN Simulators

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models
of synaptic plasticity based on spike timing. Biol. Cybernet. 98, 459–478.
doi: 10.1007/s00422-008-0233-1

Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., and Malinow, R.
(2014). Engineering a memory with LTD and LTP. Nature. 511, 348–352.
doi: 10.1038/nature13294

Naylor, M., Fox, P. J., Markettos, A. T., and Moore, S. W. (2013). “Managing the
FPGA memory wall: Custom computing or vector processing?” in 2013 23rd

International Conference on Field Programmable Logic and Applications, FPL

2013 - Proceedings (Porto).
Nowke, C., Diaz-Pier, S., Weyers, B., Hentschel, B., Morrison, A.,

Kuhlen, T. W., et al. (2018). Toward rigorous parameterization of
underconstrained neural network models through interactive visualization
and steering of connectivitygeneration. Front. Neuroinform. 12:32.
doi: 10.3389/fninf.2018.00032

NVIDIA Corporation (2017). NVIDIA Tesla V100 GPU Architecture. White

Paper.
NVIDIA Corporation (2018a). CUDA C Programming Guide.
NVIDIA Corporation (2018b).Developing a Linux Kernel Module Using RDMA for

GPUDirect.
NVIDIA Corporation (2018c). DGX-2.
Olofsson, A., Nordström, T., and Ul-Abdin, Z. (2015). “Kickstarting high-

performance energy-efficient manycore architectures with Epiphany,”
Conference Record - Asilomar Conference on Signals, Systems and Computers

(Pacific Grove, CA), 1719–1726.
Parker, S. G., Johnson, C. R., and Beazley, D. (1997). Computational

steering software systems and strategies. IEEE Comput. Sci. Eng. 4, 50–59.
doi: 10.1109/99.641609

Partzsch, J., Hoppner, S., Eberlein, M., Schuffny, R., Mayr, C., Lester, D. R.,
and Furber, S. (2017). “A fixed point exponential function accelerator
for a neuromorphic many-core system,” in Proceedings-IEEE International

Symposium on Circuits and Systems (Baltimore, MD).
Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing

polychronization: a guide to maximizing the reproducibility of spiking
network models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.
00046

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical
microcircuit: relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska,
D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses. Front. Neurosci. 9:141.
doi: 10.3389/fnins.2015.00141

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for
different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30,
1138–1168. doi: 10.1152/jn.1967.30.5.1138

Rittner, P., and Cleland, T. A. (2016). “Model definition and benchmarks for the
Myriad parallel simulator,” in in Society for Neuroscience (Abstract) (San Diago,
CA).

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybernet. 81,
381–402. doi: 10.1007/s004220050570

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., and Datta, P.
(2016). “TrueNorth ecosystem for brain-inspired computing : scalable systems,
software, and applications,” in International Conference for High Performance

Computing, Networking, Storage and Analysis, SC 16 (Salt Lake City, UT).
Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). “An accelerated

analog neuromorphic hardware system emulating NMDA- and calcium-based
non-linear dendrites,” Proceedings of the International Joint Conference on

Neural Networks (Anchorage, AK), 2217–2226.
Schmidhuber, J. (2015). Deep Learning in neural networks: an overview. Neural

Netw. 61, 85–117. doi: 10.1016/j.neunet.2014.09.003

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.-C., Diesmann, M.,
and van Albada, S. J. (2015). Full-density multi-scale account of structure
and dynamics of macaque visual cortex. arXiv:1511.09364. Available online at:
https://arxiv.org/abs/1511.09364

Seo, J.-S., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., et al.
(2011). “A 45nm CMOS neuromorphic chip with a scalable architecture for
learning in networks of spiking neurons,” in 2011 IEEE Custom Integrated

Circuits Conference (CICC) (San Jose, CA), 1–4.
Sharp, T., Galluppi, F., Rast, A., and Furber, S. B. (2012). Power-efficient simulation

of detailed cortical microcircuits on SpiNNaker. J. Neurosci. Methods 210,
110–118. doi: 10.1016/j.jneumeth.2012.03.001

Sharp, T., Petersen, R., and Furber, S. B. (2014). Real-time million-
synapse simulation of rat barrel cortex. Front. Neurosci. 8:131.
doi: 10.3389/fnins.2014.00131

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-
oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006
Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2018). Brian2genn: a

system for accelerating a large variety of spiking neural networks with graphics
hardware. bioRxiv. doi: 10.1101/448050

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of
asynchronous networks is limited by one-to-one mapping between
effective connectivity and correlations. PLoS Comput. Biol. 11:e1004490.
doi: 10.1371/journal.pcbi.1004490

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., et al. (2018). Performance comparison of the digital neuromorphic
hardware SpiNNaker and the neural network simulation software NEST
for a full-scale cortical microcircuit Model. Front. Neurosci. 12:291.
doi: 10.3389/fnins.2018.00291

Van Vreeswijk, C., Abbott, L. F., and Bard Ermentrout, G. (1994). When inhibition
not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321.
doi: 10.1007/BF00961879

Villa, O., Chavarria-Miranda, D., Gurumoorthi, V., Márquez, A., and
Krishnamoorthy, S. (2009). “Effects of floating-point non-associativity on
numerical computations on massively multithreaded systems,” in Proceedings

of Cray User Group Meeting (CUG) (Atlanta, GA).
Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code

generation approach to neural simulations on parallel hardware. Front.

Neuroinform. 9:19. doi: 10.3389/fninf.2015.00019
Wang, R. and van Schaik, A. (2018). Breaking Liebig ’ s law : an

advanced multipurpose neuromorphic engine. Front. Neurosci. 12:593.
doi: 10.3389/fnins.2018.00593

Xilinx Inc (2018). Zynq-7000 SoC.
Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854
Yegenoglu, A., Davison, A., Holstein, D., Muller, E., Torre, E., Hagen, E., et al.

(2018). Elephant. Available online at: https://github.com/NeuralEnsemble/
elephant/releases/tag/v0.5.0

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Knight and Nowotny. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 19 December 2018 | Volume 12 | Article 941

https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1038/nature13294
https://doi.org/10.3389/fninf.2018.00032
https://doi.org/10.1109/99.641609
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fnins.2015.00141
https://doi.org/10.1152/jn.1967.30.5.1138
https://doi.org/10.1007/s004220050570
https://doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/abs/1511.09364
https://doi.org/10.1016/j.jneumeth.2012.03.001
https://doi.org/10.3389/fnins.2014.00131
https://doi.org/10.1038/78829
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1101/448050
https://doi.org/10.1371/journal.pcbi.1004490
https://doi.org/10.3389/fnins.2018.00291
https://doi.org/10.1007/BF00961879
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.3389/fnins.2018.00593
https://doi.org/10.1038/srep18854
https://github.com/NeuralEnsemble/elephant/releases/tag/v0.5.0
https://github.com/NeuralEnsemble/elephant/releases/tag/v0.5.0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model
	1. Introduction
	2. Material and Methods
	2.1. GPU Architectures
	2.2. GeNN
	2.3. Cortical Microcircuit Model
	2.4. Balanced Random Network With Spike-Timing Dependent Plasticity

	3. Results
	3.1. Correctness
	3.1.1. Cortical Microcircuit Model
	3.1.2. Balanced Random Network

	3.2. Performance
	3.2.1. Cortical Microcircuit Model
	3.2.2. Balanced Random Network

	3.3. Power and Energy

	4. Discussion
	4.1. Suitability of GPU Architectures for SNN Simulations
	4.2. Comparison to Neuromorphic Systems
	4.3. Neurorobotics
	4.4. Interactive Simulation

	Author Contributions
	Data Availability Statement
	Funding
	Acknowledgments
	References

