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The hippocampus is known to play a crucial role in the formation of long-term memory.

For this, fast replays of previously experienced activities during sleep or after reward

experiences are believed to be crucial. But how such replays are generated is still

completely unclear. In this paper we propose a possible mechanism for this: we present

a model that can store experienced trajectories on a behavioral timescale after a single

run, and can subsequently bidirectionally replay such trajectories, thereby omitting any

specifics of the previous behavior like speed, etc, but allowing repetitions of events,

even with different subsequent events. Our solution builds on well-known concepts,

one-shot learning and synfire chains, enhancing them by additional mechanisms using

global inhibition and disinhibition. For replays our approach relies on dendritic spikes

and cholinergic modulation, as supported by experimental data. We also hypothesize a

functional role of disinhibition as a pacemaker during behavioral time.

Keywords: hippocampal replays, synfire chains, one-shot learning, place cells, reverse replays, cholinergic

modulation, disinhibition, dendritic spikes

1. INTRODUCTION

An animal’s ability to acquire and retrieve episodic memories is essential to guide its
decision making and how it interacts with the environment. The hippocampus plays an
important role in episodic memory encoding (Scoville and Milner, 1957; O’Keefe and
Nadel, 1978; Squire and Zola-Morgan, 1991; Eichenbaum and Cohen, 2004), and in episodic
memory relay into neocortex via long-term memory consolidation processes (Squire, 1982;
Eichenbaum, 1993; Rudy and Sutherland, 1995). During active behavior (encoding phase),
hippocampal neurons display asynchronous firing (Vanderwolf, 1969; Buzsáki, 2002), while during
quiescence (sleep or quiet wakefulness), the hippocampus exhibits synchronous bursts of activity
(sharp-wave ripples) (Buzsáki, 1986, 1989, 2015), and previously stored memories are replayed
on a faster timescale (Buzsáki, 1986; Wilson and McNaughton, 1994; Diekelmann and Born,
2010). It is believed that these replays are essential in reorganizing and strengthening memory
traces (Girardeau and Zugaro, 2011;Middleton et al., 2018). Replays in sharp-wave ripples have also
been observed to occur during wakefulness after reward experiences (Wilson and McNaughton,
1994; Lee and Wilson, 2002; Carr et al., 2011; Foster, 2017); in this case, replays are mostly played
in the reverse chronological order (Foster and Wilson, 2006; Csicsvari et al., 2007; Ambrose et al.,
2016; Foster, 2017).
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While there are evidences (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010; Middleton et al., 2018; Schapiro et al.,
2018) suggesting that forward and reverse replays of memories
during sharp-wave ripples play an essential role in memory
consolidation, it is much less clear how such replays can actually
be formed. Memory sequences that happen on the timescale
of behavior (order of minutes) have to be stored in an online
and one-shot fashion in such a way that subsequent replay is
possible on a much faster timescale (order of a couple of hundred
milliseconds). In addition, it is not enough to link each item
in the memory sequence with its successor, as some items may
occur several times in the sequence, but with different successors.
Even further, different memory sequences which share many
items would introduce severe corruptions in memories stored by
linking items with their successors. As the nature of replays is best
understood in the context of navigation, we next illustrate these
challenges in more detail in this context.

It is known that in the hippocampus there are place cells
which fire whenever the animal is at a specific spatial location
in a given environment (O’Keefe and Dostrovsky, 1971; O’Keefe,
1976; Harvey et al., 2009). An animal which navigates in
an environment, will do so varying specifics of its motion,
such as its speed, the stopping locations and the duration of
these stops. Spontaneous replays of such events in sharp-wave
ripples, however, are independent of such speeds, stopping times
or locations of the animal (Wilson and McNaughton, 1994;
Nádasdy et al., 1999; Geisler et al., 2007; Davidson et al., 2009;
Yamamoto and Tonegawa, 2017), as well during sleep (Wilson
and McNaughton, 1994; Lee and Wilson, 2002) as in quiet
wakefulness (Foster and Wilson, 2006; Karlsson and Frank,
2009; Carr et al., 2011; Foster, 2017; Pfeiffer, 2017; Yamamoto
and Tonegawa, 2017). In addition, if the animal goes through
the same location twice, turning left the first time and right
the second time, the hippocampus is still able to activate the
correct order of the place cells during replay (e.g., left first then
right) (Wu and Foster, 2014).

In this work, we propose a possible mechanism that addresses
and resolves all challenges mentioned above. We present a model
that can store experienced trajectories on a behavioral timescale
after a single run, and can subsequently replay (forward and
backwards) such trajectories, thereby omitting any specifics as
speed, stopping times, etc. Our solution builds on two well-
known concepts: (i) one-shot learning (Amit and Fusi, 1994)
and (ii) synfire chains (Abeles, 1982). More specifically, we make
use of the fact that random connectivity is enough to learn
associations between ensembles of cells in a one-shot fashion
using standard forms of Hebbian plasticity. Synfire chains, on
the other hand, are a well known mechanism that activates
neurons in a pre-specified order. Our main contribution is
an enhancement (inspired by biological observations) of the
standard synfire chain approach that allows the network to
alternate between an asynchronous mode, used during encoding
of memories, and a synchronous mode, used during replays. We
term this enhancement a sequence encoding module. Cells in
the sequence encoding modules are called sequence cells. Unlike
place cells, which fire at a particular location, sequence cells fire
in a predefined position of the sequence, independent of the

environment. A sequence ensemble consists of all sequence cells
that fire at, say, the fourth position of the sequence; i.e., that
correspond to the fourth layer of a synfire chain. We explain
in more detail how the sequence encoding modules function
in what follows. See also the video which we provide in the
Supplementary Material.

Before continuing the discussion on sequence cells, we would
like to argue why the recurrent connectivity among place cells
alone can hardly reproduce the observed replay phenomena.
First, replays of trajectories containing loops become inherently
corrupted, as there is no way of locally deciding whether it is
the first or second visit to a particular location in the absence
of a context signal. In particular, Wu and Foster (2014) indicate
that the hippocampal replays are able to correctly decide the
direction in a forked environment, where the animal visits the
same location multiple times. Second, during multiple runs of
the animal, many possible trajectories will be stored for replay.
Even if each stored trajectory contains no loops, together each
location will be visited many times. If replays used solely the
recurrent connectivity among place cells, over time, the produced
replays would resemblemuchmore a randomwalk over the space
than a previous experience. While it has been reported that some
replays do not reflect previously traversed trajectories (Gupta
et al., 2010), the same work reports that a significant fraction of
replays does.

For clarity we present our approach in the context of place
cell replays, even though it can be used to store any form of
spatio-temporal memory sequence. Note that we require no
assumptions on the geometry of the environment and on the
specific trajectory taken (such as whether it contains loops).
The sequence encoding modules operate in two distinct modes:
an encoding mode, corresponding to the asynchronous firing
hippocampal (theta) state observed during navigation and a
replay mode, corresponding to sharp-wave ripples observed
during sleep and quiet wakefulness. In the encoding mode, the
synapses from sequence cells to the corresponding place cells
are learned by standard Hebbian plasticity rules. For this to
work, we do not need any specific (learned) connectivity between
sequence cells and place cells: random connectivity with low
synaptic strength between all sequence cells and place cells is
enough. Associations can be learned in an online and one-shot
manner between coactive cells by standard Hebbian plasticity.
We use a global inhibitory population to ensure that the same
sequence ensemble remains active, regardless of how much time
the animal spends at a particular location. Once the animal
moves to a new location, we postulate that a locomotion signal
activates a second group of inhibitory neurons that temporarily
inhibits the global inhibitory population, thereby allowing the
sequence module to move its active state to the next ensemble.
We note that we do not require any specific connectivity for
the inhibitory neurons (random connectivity to the sequence
cells is enough). The use of disinhibitory input to shape activity
patterns so they match behavioral navigation times is motivated
by the experimental observation that glutamatergic interneurons
in the medial septum effectively control speed-correlated firing of
hippocampal neurons (Fuhrmann et al., 2015; Justus et al., 2017).
The replay mode, unlike the encoding mode, exhibits extremely
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synchronous activity as observed in sharp-wave ripples (Buzsáki,
1986, 2015). This synchrony of activity induces dendritic spikes,
which produce a fast forward and/or reverse replay of the
sequence cells. In replay mode, our sequence ensembles trigger,
due to the learned connectivity between sequence ensembles
and place cells in the encoding phase, a forward and/or reverse
replay of the place cell ensembles in the correct order. Consistent
with previous theoretical work (Jahnke et al., 2015) and
experimental observations (Hasselmo, 1999; Buzsáki, 2015), our
model assumes that replays, dendritic spikes, sharp-wave ripples
and cholinergic modulation are tightly interconnected. See the
section 3 for a more complete discussion on the assumptions
of the model and how they relate to what has been observed in
experiments.

2. RESULTS

2.1. Encoding of Place Cell Sequential
Activity
We demonstrate that the sequence encoding modules can
account for the robust forward and reverse replays observed
in the hippocampus. This is done through the simulation of a
virtual mouse exploring a predefined environment. A spiking
neural network of exponential integrate-and-fire neurons with
physiological parameters, emulating the behavior of place and
sequence cells, is associated to the mouse.

As the mouse walks through the environment, a sequence
of place cells in the spiking neural network will fire, each place
cell corresponding to a particular place in the environment
(in the model, we do not speculate how place cells could
correspond to a particular place in an environment. Instead,
when the mouse is at a certain location, we enforce that the
corresponding place cell ensemble fires at the correct rate,
as is experimentally observed, O’Keefe, 1976). In parallel, the
sequence cells of the spiking neural network also fire, but they
do so along a predefined sequential activity pattern, which is
independent of the environment and the route taken by the
mouse. Crucially, after exploration of the environment by the
mouse, the sequence cell activity is capable of triggering replays
of place cell activity, due to the plasticity of synapses between
sequence and place cells. These sequence cells can be used to
replay many different sequences of place cell activity. We defer
the detailed explanation of the mechanism that allows sequence
cells to produce the desired behavior to the next subsection. For
ease of understanding we first provide some general intuition
relating sequence cell dynamics to the place cell activity.

Consider as an example, a virtual mouse walking on a track, as
depicted in Figure 1A. Each place cell corresponds to a specific
location on the track. The place cells fire with ≈50Hz when
the mouse is at the corresponding location, and are otherwise
silent. As the mouse moves along the track, a sequence of place
cell ensembles is activated. The place cells are also targeted by
sequence cells and plastic synaptic connections will encode the
sequence of place cell activity produced by the motion of the
mouse, as shown in Figure 1B. The sequence cells fire following
a predefined activation pattern that possesses two modes of

operation: the encoding mode and the replay mode. These
correspond to the experimentally observed different modes of
operation at the hippocampus during exploration and slow-wave
sleep (or quiet wakefulness), respectively. In the encoding mode,
the next ensemble in the sequence is only activated when the
mouse moves to another location. The synapses from sequence
cells to the corresponding place cells are learned and, thereafter,
sequence cells can activate the corresponding place cell ensembles
without requiring external input from the environment, as
illustrated in Figure 1C. The applied learning rule is a simple
Hebbian plasticity mechanism (a detailed description of the
applied learning rule is given in the section 4.2.5).

Thus, in the encoding mode, the place cell ensembles are
activated in sequence as the animal moves along the track,
as shown in Figure 1D. In the replay mode, the sequence cell
ensembles are triggered one after the other, in a small time
window. Through the synaptic connections that were learned in
the encoding mode, the sequence cells trigger a forward replay
of the place cells. A raster plot of place cell activity during the
replay mode is shown in Figure 1E. Furthermore, the sequence
cell ensembles can also be activated in the opposite order, and
this produces reverse replay of place cell activities. A raster plot
of a reverse replay of place cell activity is shown in Figure 1F.
It may be noted that both forward and reverse replay are much
faster than the original encoding time, that they are independent
of the animal’s speed, stopping times and locations, and that the
majority of place cells fire in the right order, driven by the activity
of the sequence cells. Moreover, these replays can be produced
after a single traversal of the path by the mouse.

We emphasize that our approach does not require any
particular assumption on the geometry of the environment, the
connectivity among the place cells and particularities of the path
(such as loops). Sequence cells enable our model to produce
replays in such a general setting, and this is discussed in the next
subsection.

2.2. Sequence Encoding Modules of
Sequence Cells
Sequence cells are organized in a specific structure that resembles
a synfire chain. This structure allows the sequence cells to
produce the replays observed in place cells in Figure 1. Sequence
cells might coexist in the CA3 with the place cells (or might be
localized somewhere else in the hippocampus). Figure 2A shows
the general structure of sequence cell connectivity, showing an
example of what we term a sequence encoding module. The
sequence cells can, in principle, composemany suchmodules that
could store many parallel sequences. Each sequence encoding
module consists of ℓ ensembles of neurons B1, . . . ,Bℓ. Forward
connections from Bi to Bi+1 are present. Backward connections,
which allow reverse replays, are also present and are generally
weaker than the forward connections. These ensembles share
two different sources of inhibition: the gating inhibition IG and
the competitive inhibition IC. The rate dynamics of individual
ensembles Bi have two stable fixed points, one at low firing rate
(≈0Hz) and one at high firing rate (≈50Hz). Henceforth, we
term the ensembles Bi bistable units, and refer to Bi as active at
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FIGURE 1 | Robust replay of place cell activity. (A) An animal walks along a path, containing a loop in a 2-dimensional environment. (B) Locations in this path are

associated to specific populations of CA3 place cells which fire at high rates if the animal is at said location. In this particular scenario, each position is associated with

an ensemble of 100 place cells. Concomitantly, the sequence cells fire following a predefined sequential activity pattern that is explained in detail in section 2.2.

Hebbian-like synaptic plasticity connects the sequence cells to the corresponding place cell ensembles. (C) The sequence cell dynamics allow for place cell activity

replay on a much shorter timescale and independent of the animal’s stopping times and locations. (D) 15 s simulation of place cell activity as the animal walks through

the track in (A); a rate plot of the place cell ensembles corresponding to each position the animal walks through is shown; the x axis shows time in seconds, the left y

axis shows the track positions corresponding to the place cell populations and the right y axis shows the firing rate of each place cell ensemble corresponding to a

particular track position. Note that in addition to the loop in the path, the animal occasionally stays arbitrarily longer at particular locations. (E) Fast replay of the path

taken by the animal in less than 100ms; a raster plot of place cell activity is shown; the x axis shows time in milliseconds, the left y axis shows the track positions

corresponding to the place cell populations. (F) Reverse replay of the path taken by the animal; a raster plot of place cell is shown; the axis are the same as in (E).

Note that each weight in the spiking network is multiplied by a gaussian multiplicative noise.

a particular time if its instantaneous rate is at the 50Hz stable
point, and inactive if it is at the silent stable point. Furthermore,
the gating inhibition IG is also either active (if its inhibitory
neurons fire at a high rate) or inactive (if its inhibitory neurons
are silent).

As noted in the previous subsection, these sequence encoding
modules possess twomodes of operation: the encodingmode and
the replay mode. In the encoding mode, only one bistable unit is

active at a particular point in time, and this bistable unit remains
active for as long as necessary, only triggering activity in the next
bistable unit and turning itself inactive when the mouse moves
to another location. In the replay mode, the bistable units are
triggered one after the other in a very brief period of time.

The discussion of the dynamics of sequence cells is split
between this subsection and the section 2.3. This is done to
distinguish the essential building blocks of our model, presented
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FIGURE 2 | Sequence encoding modules. (A) Illustration of a sequence encoding module architecture consisting of 3 bistable units Bi ,Bi+1,Bi+2, the competitive

inhibitory population IC and the gating inhibitory input IG. The inhibitory unit IC prevents two bistable units Bj from having high rate at the same time, whereas the

gating inhibition IG is the ”break” that prevents activity from propagating from Bj to Bj+1. This break is externally controlled, by some mechanism that recognizes when

the animal changes its location. (B) Evolution of the rates of 2 abstract rate units Bi , IC and IG, disposed according to the sequence encoding architecture in (A).

(C) General illustration of the states the network goes through over time. (i,vi) correspond to stable states in the network while IG is activated. Inactivating IG induces a

dynamical process that brings the network from state (ii) into state (v). This dynamical process is depicted in further detail below with (iii,iv). In (iii), due to inactivation of

IG, the activity in Bi+1 picks up, driven from the activity Bi . As shown in (iv), once both Bi and Bi+1 are active, they together activate IC, which gives strong inhibitory

input to Bi and Bi+1 and (in v) forces Bi to become inactive, while the recurrent activity permits Bi+1 to recover and stay active. (D) Spiking network of sequence cells.

Above, the x-axis shows 1.2 s of simulated activity. The left y-axis shows the indices of the cells in each sequence ensemble, and a raster plot is given. The right y-axis

shows the rate of each sequence ensemble. Below, the period where IG is inactivated is emphasized. During this period, the stability of the system is broken and the

dynamics described above take place, leading ultimately to Bi+1 overtaking Bi as the active sequence ensemble. (E) Analogous to (D), but we now purposedly

enforce a longer time out of the global inhibitory mechanism. Observe that the system still functions much like in (D), so the period where IG is turned off is flexible.
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in this subsection, from specific implementation decisions that
are not essential.

2.2.1. Encoding Mode
The encodingmode of the sequence encodingmodules relies on a
specific, complex rate dynamics while the animal is exploring an
environment. To describe them, and to extract the fundamental
ingredients that allow a spiking neural network to produce the
desired behavior, we first adopt a mean-field approach and
collapse the bistable units Bi, the gating inhibition IG and the
competitive inhibition IC into abstract rate units. This approach
is inspired by Litwin-Kumar and Doiron (2014); Zenke et al.
(2015). A detailed description of this rate-based system is given
in the section 4.1.

At all times, the competitive inhibition IC guarantees that only
one bistable unit Bi can be active at any particular point in
time, by realizing essentially a winner-takes-all mechanism. The
gating inhibition IG is responsible for controlling the amount of
time Bi remains active. While IG is active, the currently active
bistable unit remains active. If the mouse location changes, IG
turns inactive, which implements a disinhibitory mechanism that
allows progression of activity in the bistable units as follows (see
the section 3 for experimental evidence relating disinhibition and
behavior). As soon as IG turns inactive, the active bistable unit Bi
drives the rate of the inactive bistable unit Bi+1. Eventually Bi+1

turns active and triggers the competitive inhibition IC. As Bi+1

receives more input than any other bistable unit (if we set the
connections from Bi to Bi+1 stronger than the ones from Bi+1 to
Bi), it will be the only one active at the end due to the winner-
take-all dynamics imposed by IC. Once Bi+1 has taken over,
the disinhibitory signal is removed and IG turns active again
and prevents Bi+1 from activating Bi+2. Figure 2B shows this
evolution of activity in a rate-based system that reproduces the
desired rate dynamics.

Figure 2C illustrates the most notable states of activity the
network goes through. In (i) while IG is active, Bi remains active;
(ii) once IG is inactive; (iii) the rate of Bi+1 is driven up by Bi; (iv)
this, in turn, triggers an increase in the rate of IC, which (v) forces
a competition among Bi and Bi+1; eventually, Bi+1 emerges as the
winner and (vi) IG is again active, preventing Bi+1 from activating
Bi+2, while Bi+1 stays active.

Figures 2D,E show the spiking network of sequence cells
transitioning between two consecutive patterns and exhibiting
the aforementioned rate dynamics. Note that the length of the
period in which the gating inhibition IG is inactive is different in
both. Thus, the length of the period in which the disinhibitory
signal is given to IG does not need to be strictly timed. The
most important requirement is that it gives enough time for the
dynamics happening between (ii) and (v) to reach its stable point.

Furthermore, as will be seen in the next subsection, when
the spiking network obeying these rate dynamics is presented
in detail, the encoding mode has two defining characteristics
other than the combined gating and competitive inhibitory
processing mechanisms. They are: (1) neurons in bistable units
fire asynchronously; and (2) transition time between one bistable
unit and the next is in the order of 50ms to 100ms. The first
property emerges from a balance of excitation and inhibition in

a spiking network of neurons (Van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010) and is crucial in guaranteeing the
stable rate dynamics we expect from the bistable units. The
latter property is a consequence of having a spiking neural
network produce the complex rate dynamics of the sequence
encoding modules. Roughly speaking, for the gating inhibition
IG to prevent activation of the next bistable unit, the weights
between bistable units must be generally weaker than those inside
each bistable unit. Since too high stable rates for a bistable unit Bi
are not reasonable, these weights between bistable units units will
be weak. Finally, weak weights imply that some time is necessary
to increase the membrane potential of the neurons beyond the
spiking threshold.

In essence, in the encoding mode, the sequence encoding
module activates bistable units in a sequence, with the crucial
property that the sequence can be stopped, for an arbitrarily
long period, at any particular point in time. This allows it to
capture the essential elements of the path explored by the animal,
as the sequence transitions to the next element only when a
new location is reached. It may be noted that such an ability to
produce compressed representations is potentially useful in other
contexts. We discuss further applicability in the section 3 of the
paper.

2.2.2. Replay Mode
The main distinguishing feature of the encoding and replay
modes is the synchrony of activity. In the replay mode, activity
progresses through the bistable units in synchronous waves,
reminiscent of a synfire chain (Abeles, 1982), in a manner
depicted in Figure 3A. This synchrony of activity in a bistable
unit yields fast dendritic sodium spikes in the subsequent bistable
unit. Dendritic sodium spikes are observed whenever, in a period
of a couple milliseconds, the membrane potential at a particular
branch of the dendrite of a neuron receives excitatory input above
some threshold (Ariav et al., 2003; Gasparini et al., 2004; Polsky
et al., 2004; Gasparini and Magee, 2006). Therefore, we assume
that the neurons in bistable unit Bi have the axons projecting on
close branches of the dendrites of neurons in bistable unit Bi+1.
We assume a similar structure for the backward connections,
as reverse replays will also be driven by dendritic spikes (in the
model, we follow the same approach as Memmesheimer (2010),
Jahnke et al. (2012), and Jahnke et al. (2015) and assume that
given enough synchronous input dendritic spikes will occur).
Whenever Bi is synchronously activated, some branch of the
dendritic tree of a neuron in Bi+1 receives strong excitatory input
in a few milliseconds, producing a dendritic spike that has a large
depolarizing effect on the soma. Figure 3B shows the effect on the
soma of one such dendritic spike, in comparison to the effect that
would be produced if dendritic nonlinearities were not present.

There is experimental support for the connection between
synchronous events and replays, as replays are observed typically
during sharp-wave ripple events, the most synchronous pattern
of activity in the brain (Buzsaki, 2006; Buzsáki, 2015; Diba and
Buzsáki, 2007). In our model, as shown in red in Figure 3C,
the sequence cells can also be played asynchronously forward,
without the appearance of dendritic spikes due to the lack of
synchrony. In fact, this asynchronous slow replay of sequence
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FIGURE 3 | Replay mode of the sequence encoding module. (A) Synfire chain like synchronous activation of three consecutive bistable units B1,B2,B3. Synchrony

triggers dendritic spikes in the next bistable unit, which in turn synchronously activate it. Activity moves in a single direction due to neurons entering a refractory

period. (B) Nonlinear effect of a dendritic spike on the membrane potential at the soma of a neuron. There is a latency between the moment the dendrite triggers the

dendritic spike and its effect on the soma. All dendritic spikes produce the same stereotypical current pulse effect in the soma. (C) Raster plot of the sequence

encoding module in the replay mode, without any dendritic spikes, and showing different levels of cholinergic effect (for ACh factor of 5, only the first five spikes are

shown). Without any cholinergic modulation (red), or with the cholinergic factor used in the rest of the paper (black), the sequence encoding module does produce a

replay of the path, but on a much slower timescale. Each transition, in the same way as during encoding, takes between 50 and 100 ms. If one increases the

cholinergic effect beyond what is reported in Hasselmo and Schnell (1994) and Hasselmo et al. (1995), then as shown in the plot (blue), the transitions between

consecutive ensembles is around 15 ms in the upper range of what is often reported in the literature (Lee and Wilson, 2002; Diba and Buzsáki, 2007). We emphasize

that only the first five spikes are shown in the blue plot. Due to the fivefold increase in excitatory weights and no counterbalance by inhibition, the network becomes

too excitable and the neurons spike at very high rates. Still, the blue plot indicates that it would be possible to produce fast replays if the cholinergic effect would be

two times or more of what has been reported in the literature, even without using dendritic spikes. On the other hand, reverse replays rely crucially on dendritic spikes

and cholinergic modulatory effect and do not happen without either. (D) Raster plot of the sequence encoding module in the replay mode, now with dendritic spikes.

Dendritic spikes increase the speed of replays by two orders of magnitude, making it in line with what is observed during sharp-wave ripples.

cells produces replays that resemble what is experimentally
observed during REM sleep (Louie and Wilson, 2001). In
the model, the forward replays without synchrony are not

significantly faster than the original encoding time, with
transition between consecutive bistable units is between 50ms
to 100ms. Such slow transition times are not in line with the
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speed of forward replays observed during sharp-wave ripples,
but they are comparable to the speed of replays observed during
REM sleep where sharp-wave ripples are rare and theta activity
is predominant (Buzsáki, 2002). Furthermore, without using
synchrony and cholinergic modulation, it is not possible to
significantly reduce such transition times (see Figure 3C in red).
If asynchronous firing of a bistable unit Bi, in a couple of
milliseconds, sends too large input to Bi+1, then a simple form of
inhibitory gating of activity may not prevent Bi+1 from turning
active. Even more, the non-linear effect of dendritic spikes is also
crucial if the neurons in Bi are synchronously activated. This
is because, without the non-linear effect of dendritic spikes, it
is difficult to distinguish high asynchronous firing rates, from
synchronous events. Only a couple milliseconds are required for
a bistable unit firing at 50Hz to send forward the same input
that it would send if it fired synchronously (lowering the stable
rate at which a bistable unit is active would also have undesirable
consequences as one needs to be able to clearly distinguish
between the low and high firing rate stable points of the bistable
units. This will be further discussed in the next subsection).

Figure 3D shows a fast replay of sequence cells produced
by the spiking network. Note that the transition time drops
to around 5ms, that the activity in each bistable unit is very
synchronous and that most neurons spike once and in the right
order.

The second distinguishing feature between the encoding and
replay modes is a different cholinergic environment. In the replay
mode, we assume lower levels of Acetylcholine (ACh) in the
network. This is motivated by the experimental observation
that replays typically occur in sharp-wave ripples during slow-
wave sleep and quiet wakefulness, where lower ACh levels are
documented (Hasselmo, 1999, 2006). It is known that a lower
ACh level makes synapses overall stronger and the network more
excitable (Hasselmo et al., 1995). In our model, higher excitability
is not necessary for forward replays, but it is strictly necessary
for reverse replays. Furthermore, higher excitability facilitates
faster transition times between bistable units, as well as the
occurrence of dendritic spikes. In principle, if there would not
be any dendritic spikes, this higher excitability of the network
could decrease the transition times between bistable units, even
when the bistable units fire in an asynchronous manner. Hence,
the higher network excitability would allow for the bistable
units to be replayed asynchronously faster than shown in red in
Figure 3C, which would in turn allow for replays even without
a synchronous mode containing dendritic spikes. However, in
order for the replays to be as fast as what is observed in the
literature (Lee and Wilson, 2002; Diba and Buzsáki, 2007), the
magnitude of the cholinergic effect on the network would have to
be much higher than what is reported in Hasselmo et al. (1995)
(as shown in Figure 3C in black and blue). Dendritic spikes are
therefore necessary for fast replays of activity, in line with what is
reported in the literature.

In short, due to slow transition times, the encoding mode of
the sequence encoding module cannot account for the fast robust
replays observed in the hippocampus. The module needs another
mode of activity that has faster transition times. We remark that
this different mode of activity is consistent with biology, as these

replays are observed during quiet wakefulness and sleep, where
the hippocampus is known to be operating in a different regime.
Two essential observed properties of the hippocampus in quiet
wakefulness and sleep motivate the replay mode: sharp wave
ripples and a different neuromodulatory environment, especially,
lower levels of Acetylcholine (ACh). Evidence concerning sharp
wave ripples indicate that the sequence encoding module in the
replay mode might have its bistable units activated in an almost
synchronous manner (Buzsáki, 2015). Lower ACh levels, as is
observed during sleep and quiet wakefulness (Hasselmo, 1999,
2006), induce higher excitatory synaptic weights which facilitate
faster transitions between bistable units.

2.2.3. Reverse Replays
In our model, as mentioned before, the reverse replays rely
crucially on the higher network excitability produced by lower
levels of ACh, whereas forward replays do not. This is because the
rate dynamics of the encoding mode lead to a weight asymmetry
condition. The backward connections among bistable units that
enable reverse replays must necessarily be weaker than the
forward connections among bistable units. In particular, this
asymmetry gives a potential function for the (experimentally
observed) increased excitatory weights induced by lower ACh
levels (Hasselmo, 1999, 2006). For the backward connections to
produce synchronous activation of the bistable units in reverse
order, they need to be strong enough to produce dendritic spikes.
However, as they are weaker than the forward connections, in
the encoding mode, asynchronous activation of a bistable unit
should not produce dendritic spikes in the next one. If the
excitatory synaptic weights are not generally increased in the
replay mode it is difficult to have, at the same time, dendritic
spikes at the backward connections in the replay mode and
a fully functioning encoding mode. One either gets instability
in the encoding mode, or not enough dendritic spikes in the
replay mode. Therefore, reverse replays are made possible by the
difference in the neuromodulatory environment, in addition to
sharp-wave like synchronous activity triggering dendritic spikes.

Observe, additionally, that dendritic spikes have a refractory
period of about 5ms (Memmesheimer, 2010; Jahnke et al.,
2012, 2015) and that within this refractory period the respective
dendrites do not transmit any spikes. It is this refractory period
that forces the synchronous wave to travel in a single direction.
This is also shown in Figure 3A. In this case, if bistable unit Bi
is synchronously activated by dendritic spikes from Bi−1 (from
Bi+1), it will produce dendritic spikes only in Bi+1 (in Bi−1),
as the neurons of Bi−1 (of Bi+1) are in the refractory period,
respectively. Moreover, Figure 3D shows a reverse replay of
activity produced by the spiking network.

In essence, the asynchronous encoding mode has a preferred
direction for the activity to travel, as the forward connections
between bistable units Bi and Bi+1 are stronger than the backward
connections between Bi and Bi−1. Dendritic spikes, cholinergic
modulation and the refractory period of neurons allow the
sequence cells to be activated in both directions, depending on
which bistable unit the synchronous volley starts.

While the previous discussion is constrained to the setting of
our model, in general, there are other possible ways of enabling
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the sequences to be traversed only forward during encoding
but in both directions during replays. For example, replays
and reverse replays can be generated by symmetric connection
weights between sequence modules as done in Chenkov et al.
(2017) and unidirectional sequence propagation during encoding
could be enforced by short-term synaptic depression (Stevens
and Wang, 1995; Markram and Tsodyks, 1996; Abbott et al.,
1997).

2.3. Sequence Encoding Modules—Spiking
Network
In the previous subsection, the essential building blocks of
sequence encodingmodules were discussed on a conceptual level.
In this subsection, we describe more detailed conditions that
are necessary so the dynamical system comprising our spiking
network model behaves as intended.

2.3.1. Bistable Units
In the spiking network, each bistable unit consists of a recurrently
connected population of excitatory and inhibitory cells as
depicted in Figure 4A. To produce bistable units where the rate
dynamics maintain two stable fixed points, one around 0Hz and
one around 50Hz, we analyse the gain function (Gerstner et al.,
2014) of excitatory and inhibitory neurons as shown in the left
of Figure 4B. There, the rate of excitation (red) and inhibition
(teal) is shown for varying recurrent excitatory (inhibitory) and
compared with the identity (black). Formally, to obtain the stable
points of activity one has to solve the system of equations: rE =

F(rE, rI) and rI = G(rE, rI), where F andG represent the evolution
of the rate of excitatory and inhibitory neurons when receiving
excitatory rate rE and inhibitory rate rI . For the plot, the implicit
solution rI(x) = G(x, rI(x)) is approximated for all x. For the
excitatory gain function, the function F(x, rI(x)) (in red) is plotted
and compared to the identity (in black). An analogous procedure
is done to plot the inhibitory gain function G(rE(x), x), where we
now define rE(x) implicitly via the equation rE(x) = F(rE(x), x).

Note that the excitatory gain function is below the identity
for low rates in Figure 4B but not in Figure 4C. This implies
that there is a stable point at 0Hz while the gating inhibition IG
is active, even when receiving input from the previous bistable
unit, but this stable point disappears when IG is turned inactive.
This allows the activity to move forward. On the other hand,
in both Figures 4B,C, the excitatory gain function is above and
then below the identity around the corresponding stable points.
This characterizes the stable point as well as the stable region
around it.

2.3.2. Encoding Mode
The spiking network operates in the encoding mode if the initial
excitatory input that activates the first bistable unit does so
in an asynchronous manner. If the bistable units exhibit the
correct rate dynamics, then the gating and competitive inhibitory
mechanisms guarantee that it behaves as intended, again, by a
through analysis of the gain functions of excitatory and inhibitory
neurons. From the conditions given by the rate dynamics we
have: (1) if the gating inhibition IG is inactive, then the input
sent by Bi to Bi+1 should be enough to activate Bi+1; (2) if IG

is active, then Bi remains active; and (3) while IG is active, Bi+1

remains silent. Figures 4B,C explain the functioning of the gating
inhibitorymechanism. In Figure 4B observe that if IG is activated
then the bistable unit Bi maintains both high and low rate stable
points, even when receiving input from the previous bistable unit.

Now, we explain in a little more detail how to choose IG
based on the conditions in the previous paragraph. Essentially,
condition (2) imposes an upper bound on the weight between
IG and the ensembles Bi (which depends only on the weight
parameters inside an ensemble Bi); condition (3) imposes a lower
bound on the weight between IG and the ensembles Bi (which
depends only on the weight of synapses between two consecutive
ensembles). The upper and lower bounds for the weight of
IG have to be consistent, meaning the parameters have to be
chosen in such a way that the lower bound is smaller than the
upper bound. Condition (1) itself only influences IG indirectly by
imposing a lower bound on the weight of the connection between
two consecutive ensembles (which depends only on the weight
parameters inside the ensembles). Typically, for our network to
behave as intended, one chooses the weight between consecutive
ensembles close to the lower bound imposed by condition (1).
Then, one checks the upper bound on the weight from IG to
Bi imposed by condition (2) and the lower bound on the same
quantity imposed by condition (3).

The behavior of the network changes once IG is inactivated.
If bistable unit Bi receives input from the previous bistable unit
then the stable point at 0Hz disappears and only the 50Hz stable
point remains. This is shown in Figure 4C. Observe that if the
gain functions behave as shown in Figures 4B,C then the spiking
network will satisfy conditions (1), (2), and (3) from above.

We observe a few additional points. Increasing the rate of IG
decreases the gain functions of excitatory and inhibitory neurons.
This enlarges the stable region around 0Hz, but shrinks the stable
region around 50Hz, and also shifting to a slightly smaller rate
value. Thus, satisfying the three conditions, corresponds to not
shrinking the stable region around 50Hz by too much in (2) and
enlarging the stable region around 0Hz enough to satisfy (3).
This observation also implies that it is not feasible to have the
high firing rate stable point at too small firing rates, as satisfying
all three conditions is difficult.

Again, from the rate dynamics we see that: once IG is inactive,
and Bi+1 gets active, the competitive inhibition IC will spike
and guarantee that only Bi+1 remains active. The competitive
inhibition IC functions here as a coincidence detector of two
active bistable units. It remains inactive if only a single bistable
unit is active, but once two or more are active, its neurons receive
enough excitatory input to spike. Such behavior is a simple
consequence of the thresholding of the membrane potential
of neurons to produce an action potential. With such a one
spike volley, IC gives strong enough inhibitory input to quickly
inactivate Bi, but Bi+1 recovers and keeps active as it gets
excitatory input from Bi and from itself. As soon as the activity
Bi+1 stabilizes, the gating inhibition IG turns active and prevents
activity from going onwards to activate Bi+2. In particular, these
observations indicate how the weight parameters between IC and
the ensembles Bi should be chosen. Essentially, the weight from
Bi to IC should be such that if a single Bi is active, IC is not active.
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FIGURE 4 | Spiking network. (A) Illustration of a bistable unit consisting of both an excitatory and an inhibitory population. (B) On the left, the gain function of

excitatory (red) and inhibitory(teal) neurons inside a bistable unit Bi is depicted. As shown in the center, if IG is turned on, then the shape of the gain function produces

two stable states, one at 0Hz and another at approximately 50Hz. The stable states are shown on the right. (C) Analogous to (B), but now with IG turned off. As seen

on the left, the gain function shape changes when receiving input from the previous pattern and the stable state at 0Hz ceases to exist. The network always settles for

the only stable point around 50 Hz, a fact which is shown on the right.

However, if two or more Bi are active then IC neurons should
start spiking. This condition is pretty easy to guarantee due to
the threshold of the membrane potential. In addition, the weight
from IC to Bi is chosen large enough to guarantee that if IC is
active then its activity is strong enough to inactivate the patterns
which are active.

The last observation we make about the spiking network in
the encoding mode is that one should decide when to turn IG
active again. To simplify things, we turn IG active again as soon
as the rate in the next ensemble in the sequence stabilizes. In
our simulations, we did not observe that it was necessary to
be too strict about the moment that IG is turned active again
(as illustrated by Figures 2D,E), as long as IG was turned active

after the activity in the next ensemble in the sequence had
stabilized.

2.3.3. Replay Mode
The spiking network is in the replay mode if the first bistable
unit is activated in a synchronous manner. This synchronous
activation of the neurons in a bistable unit triggers dendritic
spikes in neurons in the next bistable unit, which in turn, trigger
synchronous spikes at the corresponding neurons and the activity
can continue in a synchronous wave, much like in a synfire
chain (Abeles, 1982). Such activity travels only forward because
the dendrites have a refractory period of 5ms after transmitting a
dendritic spike to the soma.
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2.3.4. Reverse Replay
The replay mode of the spiking network can produce reverse
replays if the last bistable unit is activated synchronously. As in
the forward replays, the activity proceeds synchronously through
dendritic spikes. Again, it has a single direction of motion,
due to the refractory period of the dendritic compartments
that produce dendritic spikes. We emphasize that the increased
synaptic weights in the replay mode, due to lower ACh levels, are
essential if one wants the encoding and reverse replay modes to
reliably behave as intended.

2.4. Robustness to Noise and Parameter
Variations
We want to point out that the chosen parameters are biologically
plausible and do not need to be fine-tuned. To this end, we
produce Figure 5, showing that the choice network ensemble
sizes and the choice of network weights are not crucial for
the spiking network to behave as intended. In Figures 5A,B

we double the network ensemble sizes, while halving all the
weight parameters (alternatively, one could halve the connection
probability). The encoding and replay modes function the same
way as before. In Figures 5C,Dwe change all the used parameters
following the guide of the gain functions and show another set
of parameters where the encoding and replay modes behave as
intended. We observe that while the conditions of the dynamical
system imply one cannot take a single parameter and change
it significantly, one can change the parameters if a certain set
of reasonable conditions is ensured (in other words, one has to
respect the coupling among different parameters).

As a final note, we emphasize that the plots in Figure 1

were produced using a gaussian multiplicative noise on each
individual weight. It is not crucial for the spiking network that
each individual weight is as defined, only that the total average
weight inside a particular ensemble or between ensembles is close
to the desired values.

3. DISCUSSION

3.1. Summary
In this work, we show a model which can store in behavioral
time place cell activity traces corresponding to paths run by
an animal and produce fast bidirectional replays of these place
cell activity traces during sleep and quiet wakefulness, even
after a single run of the path. Furthermore, our approach
works independently of the geometry of the environment and
of particularities of the path taken (such as loops present in it).
As observed in the literature, the replays produced by our model
have constant speed and are not influenced by the potentially
varying speed of the mouse during the run. As the primary
conclusion of our model, we predict the existence of a population
of sequence cells, dedicated to the task of encoding of sequential
activity, which enables the model to properly deal with loops
in the path of the mouse. This is an experimentally verifiable
hypothesis, as sequence cell firing should be distinguishable
from place cell firing, as well as from head direction cells,
border cells and so on [time cells, (Eichenbaum, 2014) could
pose a challenge as sequence cells also measure time in a

certain sense]. Sequence cells enable behavioral time storage
of paths traversed and subsequent spontaneous fast replay of
place cell activities as observed in rodents during slow-wave
sleep and quiet wakefulness. The sequence cells are organized
in sequence encoding modules where, crucially, the activity
progresses through stereotypical sequences of ensembles. The
sequence encoding modules possess two modes of operation
one used during encoding and another during replay. The
encoding mode relies on a disinhibitory mechanism to control
the speed of asynchronous activity progression in the ensembles.
The replay mode relies on synchronous activity and resulting
dendritic spikes to trigger fast replay of the sequence encoding
modules. Lower levels of ACh, leading to higher excitability,
allow the sequence encoding modules to be played in reverse—
which would also account for the observed reverse replays of
place cell activity in rodents. In addition, reverse replays happen
mostly after rewards, which in our model, permit the sequence
to be played in reverse to find the causes that produced the
reward. In particular, a very long sequence encoding module
can be used to store multiple paths, by just using the reverse
replays to mark the relevant starting and ending positions in the
sequence. Effectively, this allows the sequence to be split up in
many subsequences, each corresponding to a relevant memory.

In the upcoming subsections, we discuss the bioplausibility
of the properties we used, such as how the sequence encoding
modules can be formed, the form of inhibitory processing, the
dendritic spikes and the different cholinergic environment in
movement and quiescence.

3.2. Formation of Sequence Encoding
Modules
The sequence encoding modules proposed here rely on complex
dynamics and a specific connectivity structure. Their structure
can either be hardwired, as a product of evolution, or perhaps
more likely, emerge as a consequence of the interaction of
the many plasticity rules present in the hippocampus. For
example, sequences of ensembles forming long synfire chains can
spontaneously emerge as a product of spike-timing dependent
plasticity (STDP) and axon remodeling (Jun and Jin, 2007), or a
three factor variant of STDP (Frémaux andGerstner, 2015) which
is modulated by global population activity (Weissenberger et al.,
2017). Such long sequences of ensembles form the basis of the
sequence encoding modules in here.

Furthermore, while the sequence encodingmodules presented
in this paper require a defined connectivity structure, in the
brain they would likely emerge as a consequence of plasticity
(or due to evolution). Forming the sequence encoding modules
through learning should produce sequence cells that are more
heterogenous and whose ensembles overlap (as for example
in Weissenberger et al., 2017). In particular, in Weissenberger
et al. (2017), it has been shown that such heterogeneity and
ensemble overlap poses no problem, as through proper learning
rules the ensemble sequences can be learned to exhibit the desired
behavior. Our sequence encoding modules can be described with
very few parameters, so using learning rules to induce the correct
behavior is (at least theoretically) relatively simple.
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FIGURE 5 | Robustness to parameter variations. (A) Raster plot of the encoding mode of the sequence encoding module with 6 patterns. The size of ensembles Bi
and IC are doubled, while the connection probability is halved (alternatively, one can half all corresponding weight parameters). This shows that the size of each

ensemble is not important for the model to work. (B) Analogous to (A) but now the replay mode is shown. Again each ensemble size is doubled. (C) Raster plot of the

encoding mode of the sequence encoding module, with an alternative parameter set (see Table 6). This shows that the choice of parameters we used is not unique.

Instead, as long as the conditions on the gain functions are satisfied, there is a large range of weight parameters where the model performs as expected. (D) Raster

plot of the replay mode using the alternative parameter set (see Table 6).

In addition, in Steemers et al. (2016), experimental evidence
is presented for attractor dynamics in the hippocampus.
Their data shows that linear changes in the environment
context induce dynamic, non-linear changes in hippocampal
activity patterns. Moreover, Pfeiffer and Foster (2015) present
evidence for autoassociative and heteroassociative dynamics in
the hippocampus. Densely connected populations representing
attractor states (autoassociative dynamics) are sparsely connected
among themselves (heteroassociative dynamics), a characteristic

which permits sequential processing of information. Their data
reveals a fundamental discretization in the memory retrieval
processes of the hippocampus, supporting the idea that sequences
of attractor states are sparsely connected, as is the case in the
sequence encoding modules. Finally, Grosmark and Buzsáki
(2016) report two different firing dynamics in place cells,
one of rigid and fast-firing pyramidal neurons, and another
of plastic and slow-firing neurons. Our work provides an
interesting interpretation of the reasons for such difference in
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firing dynamics, with the rigid, fast-firing neurons essentially
functioning as our sequence cells and driving replays of the
plastic neurons.

3.3. Inhibitory Neural Processing
Crucial to the proper functioning of the encoding mode of the
sequence encoding modules are the two forms of inhibitory
neural processing, the gating inhibition and the competitive
inhibition. Speed-correlated firing of hippocampal neurons has
been reported and is controlled by glutamatergic interneurons
in the medial septum (Fuhrmann et al., 2015; Justus et al.,
2017). The firing rates of these glutamatergic interneurons are
proportional to the speed of locomotion and control the theta
oscillations during locomotion, being crucial to the initiation
of theta oscillations. These glutamatergic septo-hippocampal
projections perform disinhibitory control of the activity in areas
CA3 and CA1, which is in line with our proposal of a gating
inhibitory mechanism that is switched off during movement,
possibly via some disinhibitory mechanism.

Furthermore, a specific type of inhibitory interneurons, called
VIP interneurons, are known to have a disinhibitory function
and seem to be ubiquitous in the brain (Letzkus et al., 2011;
Jiang et al., 2013; Pi et al., 2013). These VIP interneurons
perform disinhibitory control in the brain which is activated
under specific behavioral conditions (Pi et al., 2013), a fact which
is consistent with our hypothesis that the gating inhibition is
switched off when the animal changes its location.

The winner-take-all dynamics implemented using the
competitive inhibition are commonplace in the theoretical
neuroscience literature (Maass, 2000; Binas et al., 2014).
Furthermore, anatomical studies have shown that cortical
networks contain essential features which can be implemented
via winner-take-all circuits (Douglas andMartin, 2004; Carandini
and Heeger, 2012).

As the above examples show, there exists a large diversity
of inhibitory interneuron subtypes each potentially serving a
different purpose (Petilla Interneuron Nomenclature Group
et al., 2008). Such diversity of interneuron types and functions
is a strong indicator that the simple forms of inhibitory control
proposed here can be realized in the brain.

3.4. Sharp-Wave Ripples, Dendritic Spikes
and Replays
Previous works (Jahnke et al., 2015) also suggest the relation
between dendritic spikes, sharp-wave ripples and replays. Our
work goes along similar lines, suggesting that replays are a
product of synfire chain like behavior, driven by dendritic spikes,
of special populations of neurons, that fire in a stereotypical
manner, independent of instantial specifics of an animal’s
movement. Sharp-wave ripples are the most synchronous events
reported in the hippocampus (Ylinen et al., 1995). The replay
of place cell activities is known to be concurrent with ripple
events (Nádasdy et al., 1999; Lee and Wilson, 2002). Such
synchronous events favor the occurrence of dendritic spikes,
which, in turn, favor synchronous excitatory activity along a
feedforward structure (Jahnke et al., 2015; Haga and Fukai, 2018).

3.5. ACh Levels and Neuromodulators
It is known that Acetylcholine levels are significantly reduced
in slow-wave sleep and quiet wakefulness, in comparison to an
awake state (Kametani andKawamura, 1990;Marrosu et al., 1995;
Hasselmo, 1999). It is further believed that such change in the
cholinergic modulation is crucial for the process of acquiring
and consolidating new memories (Hasselmo and Bower,
1993; Hasselmo, 1999, 2006). In accordance with this work,
Hasselmo (2006) proposes that different levels of Acetylcholine
during exploration, slow-wave sleep and quiet wakefulness set
the appropriate dynamics of the network for encoding and
consolidating memories (replays). In fact, septal cholinergic
activation to CA3 pyramidal neurons has been experimentally
shown to enhance theta oscillations and effectively suppress
sharp-wave ripples in the CA3 network (Hasselmo, 1999, 2006;
Vandecasteele et al., 2014). The nicotinic receptors either on
the soma, pre-synaptic boutons, or post-synaptic spines of CA3
pyramidal cells can effectively inhibit firing of CA3 pyramidal
neurons. Another potential inhibitory mechanism could be
through the GABA-B receptors on CA3 pyramidal neurons,
which can serve a similar role, although the origin of inputs to
GABA-B receptors are currently unknown.

Lastly, a recent study (Singer and Frank, 2009) indicates
that replays, in both directions, are more likely to occur after
rewards are obtained. In particular, their results suggest that
reverse replays could be a mechanism to reinforce experiences
that produced rewards. This connects nicely to our work, as
replays (and especially reverse replays) in our model rely on
higher excitability of the network which does not need to happen
exclusively due to lower levels of ACh. Other neuromodulators,
such as dopamine, have been reported to possess increased
levels in the presence of rewards (Arias-Carrión et al., 2010),
and these increased levels typically induce higher excitability
of neurons (Henze et al., 2000; Kobayashi and Suzuki, 2007).
However, there are reports indicating inhibitory effects of
dopamine (Stanzione et al., 1984; Smiałowski and Bijak, 1987),
and, to the best of our knowledge, it is currently unknown
whether the total neuromodulatory effect in the presence of
rewards is excitatory or inhibitory in the hippocampus.

3.6. Other Models of Sequence Replay
There are alternative models that achieve partially similar results
to the ones reported here. These previous works fail to produce
replays which cope with the irregularity of behavior and need
specific assumptions about the geometry of the environment or
about the trajectory taken (e.g., that it does not contain loops).
In Romani and Tsodyks (2015), a short-term synaptic depression
mechanism is shown to produce two different regimes of activity
of place cell rate dynamics, that can account for replays observed
in the literature (Wilson andMcNaughton, 1994; Lee andWilson,
2002) and preplays (Dragoi and Tonegawa, 2011; Ólafsdóttir
et al., 2015; Grosmark and Buzsáki, 2016), at least under the
assumption that a map of the environment is stored in the
synaptic connections among the place cell rate units. In Theodoni
et al. (2018), it is studied how standard plasticity rules (Markram
et al., 1997; Bi and Poo, 1998) shape the patterns of activity of
place cell rate units and it is found that the theta rhythm speeds
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up encoding of newly explored environments. The mechanism
for generating the replays is the same as the one used in Romani
and Tsodyks (2015). In Chenkov et al. (2017), a spiking network
consisting of Hebbian assemblies that are weak and sparsely
connected uses pre-existing recurrent connections to quickly
amplify weak signals. As in our work, the assemblies are activated
like a synfire chain during replays and network states are altered
by globally changing neuronal excitability (say, by cholinergic
modulation). The authors of Jahnke et al. (2015), in line with
our work, propose that sharp-wave ripples and replays are
interconnected and that nonlinear dendritic computation, in
the form of dendritic sodium spikes, accounts for the observed
replays in the rodent hippocampus. As in this work, the dendritic
spikes distinguish between an asynchronous state present while
the animal is awake and a synchronous activity state, related to
sharp-wave ripples, occurring during slow-wave sleep and quiet
wakefulness. In Haga and Fukai (2018), dendritic processing is
used in the generation of replays and preplays of activity. In
an hypothesis similar to ours, CA3 possesses innate sequential
structure that gives rise to spontaneous firing sequences and
can be used to one-shot learn place fields. Still, we note that
our sequence encoding modules are the first to account for
a compressed representation of place cell activity to produce
replays, both forward and reverse, which are independent of the
instantial specifics of the animal’s movement and environment.

3.7. Compressing Sequence
Representations in Other Contexts
In this work, we restrict sequence processing to a navigation task
because the hippocampus is extensively studied in this regard
and there are many reported phenomena (sharp-wave ripples,
cholinergic modulation, forward and reverse replays, dendritic
spikes) which fit well into our framework of sequence encoding
modules.

Still, the ability to divide complex tasks into simpler,
compounding, sequential subtasks is essential to understand
and perform the original more complex task. Identifying
these subtasks and their interconnectedness, compressing useful
sequences into the most relevant parts and factoring out the
non-relevant ones, is an important characteristic if one wants to
learn ever more complex behavioral patterns. It is a given that
animals perform this form of sequence processing operation on a
high-level. In this work, it is further argued that this sequence
processing is such an essential operation, that the brain might
develop special modules of cells capable of extracting the relevant
subparts contained in a more complex task.

3.8. Limitations and Outlook
While our model produces near perfect replica of replays and
reverse replays of previous trajectories, doing so after a single
traversal of the path, there are many avenues which are still left
to be explored and which go beyond the scope of this work.

First, our model does not include the observed theta phase
precession (O’Keefe and Recce, 1993) and theta sequences (Foster
and Wilson, 2007). Theta phase precession corresponds to the
fact that place cells fire progressively earlier in the theta phase as
the animal traverses the place field. As a result, theta sequences,

that is sequences of place cells firing corresponding to the
movement of the animal, naturally emerge. This is currently not
considered in our model. In principle, it is possible to incorporate
theta waves and phase precession by increasing the level of detail
in place cell modeling. However, this goes beyond the scope of
our work as the replay phenomena is already reproduced even
with a simple model of place cell activity. This thus preclude
our model from offering insight into how theta waves interplay
with the replay/ripple phenomena. However, it also shows that
theoretically theta waves are not strictly necessary to obtain
robust bidirectional replays in a one shot fashion, which indicates
that the presence of theta waves in conjunction with ripples
cannot be fully understood exclusively from the point of view of
replays.

Second, the firing rates occurring in our simulations are
typically higher and more uniform than what has been reported
in the literature (Mizuseki and Buzsáki, 2013). However,
the high firing rates of our model could be significantly
decreased by combining it with some mechanism which induces
excitability decay during immobility (e.g., short-term synaptic
depression Stevens and Wang, 1995; Markram and Tsodyks,
1996; Abbott et al., 1997). The increase in excitability during
movement would greatly facilitate the task of transitioning from
one sequence ensemble to the next (while staying at the current
ensemble during immobility), and, as a consequence, the firing
rates of active sequence ensembles would not need to be as high.
In particular, there is indirect experimental support for such
a mechanism (Kay et al., 2016), as hippocampal neurons have
been reported to possess significantly reduced firing rates during
immobility. Furthermore, in our model, place cells may have
lower firing rates than sequence cells, as the only condition is
that the combination of place cell firing and plasticity rule used
must be adequate to associate the place cell ensembles to the
currently active sequence ensemble. In particular, lower firing
rates of place cells as opposed to sequence cells is consistent with
the results reported in Grosmark and Buzsáki (2016). Finally, the
sub-populations we simulate are precisely those which represent
the current behavior of the mouse and, thus, must have naturally
higher firing rates than the rest of the network. Therefore, the
entire network naturally has more realistic firing rate profile.

Third, we restrict our discussion and analysis to the initial
learning of a sequence in a single environment. There are some
possibilities about how the sequence cells would behave during
the second run of an already traversed path. For example, each
new run, a new sequence encoding module may be selected
and the place cells are associated to it (independent of whether
this path had been traversed before). Alternatively, the same
sequence of place cells may be associated to the corresponding
sequence encoding module used in the first run of this path
(for example, by associating the place cells to the corresponding
sequence cells). The latter case is less likely though, as over
multiple runs, the place cells would tend to be associated to
many sequences which leads again to the problem that the
context cannot be decided during replays (as was the case when
replays are produced exclusively by the place cell connectivity).
However, there is a whole range of intermediate cases where the
sequence encoding module used would not be neither completely
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independent of the path it is associated to, nor completely
determined by this path. This is an interesting matter because if
sequence cells are associated to a specific path, their firing pattern
would match closely that of place cells, whereas if they would be
independent their firing would not appear as that of place cells.
In particular, as place cells are known to remap across different
environments (Alme et al., 2014), this indicates that sequence
encoding modules are rarely reused. Consequently, sequence
cells might remap depending on the environment, just like place
cells. Observe that, as shown in Weissenberger et al. (2017), it
is possible to pack many such sequence encoding modules in a
population of neurons.

Lastly, we recognize that our model fails to shed light
on how certain replays seem to correspond to novel virtual
experiences, seemingly combining prior experiences to create a
novel one (Gupta et al., 2010; Pfeiffer and Foster, 2013). However,
this phenomena should rely on the ability to produce coherent
internal models of the environment, which can thus be used to
produce coherent virtual experiences. Therefore, comprehending
such phenomena is clearly out of the scope of our model.

4. MATERIALS AND METHODS

4.1. Reduced Rate Encoding Model
To understand the dynamics of the spiking network, we consider
a reduced model where we collapse ensembles into abstract rate
units. As before, we denote by B1, . . . ,Bℓ the ℓ bistable units that
form the sequence, by IC the competitive inhibitory population to
all ℓ ensembles and by IG the gating inhibitory input. The activity
of unit X at time t is given by λX(t) which corresponds to the
rate of the ensemble. The units are connected into a network
which dictates their interaction. We denote the interaction from
unit X to itself by wX , and the interaction strength from unit Y
to X by wXY . The connectivity is as in Figure 2A. We assume
that interactions with an inhibitory (excitatory) source negatively
(positively) affect the target’s rate. Moreover, we assume that
the activity λIG (t) alternates between high and low rate states
as depicted in Figures 2B,C. The rate of other units evolves
according to the following set of differential equations:

dλBi (t)

dt
= f (IBi (t))− λBi (t) (1)

for the rate of unit Bi and

dλIC (t)

dt
= s ∗ (g(IIC (t))− λIC (t)) (2)

for the rate of unit IC, where IBi (t) is:

IBi (t) = wBiλBi (t)+ wBiBi−1λBi−1 (t)+ wBiBi+1λBi+1 (t)

+wBiICλIC (t)+ wBiIGλIG (t) (3)

and IIC (t) is:

IIC (t) =
ℓ
∑

i=1

wICBiλBi (t), (4)

the functions f and g are generally chosen as saturating functions
such as the sigmoid function ex

1+ex and the factor smultiplying the
right-hand side of Equation (2) controls the speed of inhibitory
dynamics relative to excitatory dynamics in the reduced rate
model. These equations represent how the rate of the populations
in the spiking network should evolve, with f and g being
gain functions of neurons and IBi (t) and IIC (t) being the total
input received by the respective neurons. The goal is to set the
parameters of the system such that the activity evolves as in
Figure 2C.

To produce the dynamics of Figures 2B,C, it is enough to
study this rate model with two bistable units Bi and Bi+1, with
the additional constraint that weights from and to Bi are equal
to those from and to Bi+1. This allows for a simple extension
to ℓ bistable units, as the symmetry of the weights guarantees
that the system will have the same rate dynamics independent of
which bistable unit is currently active. In particular, with only two
bistable units, it is possible, under the assumption that f and g are
piecewise linear, to write a simple dynamical system of equations
that can be fully solved and understood.

Moreover, it is crucial that f is chosen to guarantee bistable
rate dynamics of each Bi, that is, specifically that close to zero or
negative input produces silent (zero rate) responses and that large
enough inputs produce a maximal rate response. In addition,
from g it is required that it guarantees the behavior we expect
from IC, namely, that it serves as a detector for two bistable units
being active at the same time, producing maximal response if
it receives input from two bistable units close to the maximal
response, and being silent if it receives not much more than what
a single maximally active bistable unit can produce.

Given this, one can state simple requirements that are
essential: (1) that the system is at a stable point while B1 is at its
maximal rate, B2 silent and IG is at the high rate state. (2) that
B1 can activate B2 to its maximal rate once IG is at the low rate
state; (3) that the rate of IC increases when both bistable units are
jointly active; (4) IC being active is strong enough to turn silent
both B1 and B2; (5) the speed of the inhibitory IC dynamics is
faster than that of B1 and B2, which can force B1 below the point
where it can reactivate itself, while B2 remains above said point.
In particular, the speed of inhibitory IC dynamics (controlled
by s) is crucial to guarantee that the rate system can produce the
desired rate dynamics with symmetric weights.

These requirements of the rate-based system, therefore, imply
that one of three possible outcomes can happen, where only the
third is desired: (1) Bi and Bi+1 turn both inactive; (2) the rates
of Bi,Bi+1 and IC oscillate; (3) Bi turns inactive, but Bi+1 stays
active, driven by activity in Bi and by its own dynamics.

4.1.1. Overview of Parameters—Rate Model
Table 1, we summarize the notation and parameters used in the
rate reduced model.

4.2. Spiking Network
4.2.1. Neuron Models
In the spiking version of the model each ensemble unit is
composed of an excitatory (Ex) population with NE units and
an inhibitory (Ix) population with NI units where the lower-case
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TABLE 1 | Summary of parameters for the rate model.

Symbol Description Value

wBi Synaptic strength between neurons in Bi 11

wBiBi−1
Synaptic strength from neuron in Bi−1 to Bi 8

wBiBi+1
Synaptic strength from neuron in Bi+1 to Bi 4

wICBi Synaptic strength from neuron in Bi to IC 2.2

wBi IC Synaptic strength from neuron in IC to Bi −22

wBi IG Synaptic strength from neuron in IG to Bi −12

λBi (t) Activity of unit Bi at time t Defined by Equation 1

λIC
(t) Activity of unit IC at time t Defined by Equation 2

λIG
(t) Activity of unit IG at time t See Figures 2B,C

IBi (t) Total input received by unit Bi Defined by Equation 3

IIC (t) Total input received by unit IC Defined by Equation 4

f (I) Gain function of the ℓ bistable units Bi 1/(1+ e−(I−3)∗5 )

g(I) Gain function of inhibitory IC 1/(1+ e−(I−3)∗10 )

s Controls speed of inhibitory dynamics relative

to excitatory dynamics

2

subscript x corresponds to the index of the pattern.We follow the
convention of denoting the populations by superscript and the
neuron index by subscripts. The membrane potential dynamics
of neuron i in population X follow:

d

dt
VX
i (t) =

1

τX

(

EXL − VX
i (t)+ 1X

T exp

(

VX
i (t)− VX

T,i(t)

1X
T

))

+
gXEi (t)

C
(EE − VX

i (t))+
gXIi (t)

C
−

wX
i (t)

C
.

The parameter values are summarized in Table 2 and the
dynamics are consistent with (Clopath et al., 2010; Litwin-
Kumar and Doiron, 2014). The main difference between the
excitatory and inhibitory units is that the excitatory neurons
have an adaptation current and an adaptive threshold (Brette and
Gerstner, 2005; Badel et al., 2008) whereas the inhibitory neurons
are non-adapting. The adaptive threshold follows:

d

dt
V
Ex
T,i =

1

τT

(

VT − V
Ex
T,i(t)

)

.

We record a spike when the voltage exceeds 20mV and we reset
it to and hold it at Vre for the refractory period duration τabs.
For an adaptive threshold we set it to VT + AT after a spike. The
adaptation current for a neuron in population Ex follows:

d

dt
w
Ex
i (t) =

1

τw

(

aw

(

V
Ex
i (t)− E

Ex
L

)

− w
Ex
i (t)

)

and it is increased by bw when neuron i spikes.

4.2.2. Synapse Dynamics
Connection probability between population X and Y is given by
pXY and the strength of a connection between unit i ∈ X and
unit j ∈ Y is given by wXY

ij . The total conductance of neuron i in

TABLE 2 | Summary of parameters for membrane dynamics.

Symbol Description Value

τEx Ex neuron resting membrane time constant 20 ms

τIx Ix neuron resting membrane time constant 20 ms

E
Ex
L

Ex neuron resting potential −70 mV

E
Ix
L

Ix neuron resting potential −62 mV

1
Ex
T

Ex neuron EIF slope factor 2 mV

C Membrane capacitance 300 pF

EEx Ex neuron reversal potential 0 mV

E Ix Ix neuron reversal potential −75 mV

VT Threshold potential −52 mV

AT Post spike threshold potential increase 10 mV

τT Adaptive threshold timescale 30 ms

Vre Reset potential −60 mV

τabs Absolute refractory period 1 ms

aw Subthreshold adaptation 4 nS

bw Spike-triggered adaptation 0.8 pA

τw Spike-triggered adaptation timescale 150 ms

population X from a source of type Y (excitatory or inhibitory)
follows:

gXYi (t) = FY (t) ∗



wXY
ext s

XY
i,ext(t)+

∑

Yk∈Y

∑

j

w
XYk
ij s

Yk
j (t)



 ,

where FY (t) =
1

τY
d
−τYr

(

e−t/τY
d − e−t/τYr

)

is the synaptic

kernel for input from neurons of type Y , Yk corresponds to
subpopulations of type Y , ∗ is the convolution operator and

s
Yk
j (t) =

∑n
ℓ=1 δ(t − t

Yk
i,ℓ ) denotes the spike train of neuron j in

population Yk. Additionally, each neuron receives external input
given by the spike train sXYi,ext(t) which follows a homogeneous

Poisson process with rate rXYext and weight wXY
ext for neurons in

population X where Y can either be an excitatory (E) or an
inhibitory (I) source. The resolution of the simulation is 0.1ms
and the coupling parameters can be found in Table 3.

4.2.3. Dendritic Spikes
Dendritic spikes are triggered by excitatory spikes arriving in
a short time span at a particular position in the dendrite
of a neuron. We incorporate them by setting the synaptic
conductance of the afferent input to produce a stereotypical
current pulse, using parameters observed in single-neuron
experiments (Ariav et al., 2003; Gasparini et al., 2004; Polsky
et al., 2004; Gasparini and Magee, 2006) and similar to the one
used in recent spiking network models (Memmesheimer, 2010;
Jahnke et al., 2012, 2015). Whenever the excitatory input to a
(dendritic branch of) a neuron changes the conductance of the
neuron by a threshold θdspike in a timewindow of 2ms, a dendritic
spike is initiated. This produces a stereotypical current pulse at
the soma whose effect is triggered with a time lag of τDS after
the dendritic threshold is crossed. This time lag is on the same
order as the one observed in single neuron experiments. The
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stereotypical current pulse, like that of Jahnke et al. (2015), is
described by:

Ids = 2(t − τDS)
[

−A exp

(

−
t−τDS

τds,1

)

+B exp

(

−
t−τDS

τds,2

)

−C exp

(

−
t−τDS

τds,3

)]

where the factors A,B,C and the decay time constants
τ ds,1, τ ds,2, τ ds,3 are chosen so that the depolarizing effect on
the soma fits experimental data (Ariav et al., 2003; Gasparini
et al., 2004; Polsky et al., 2004; Gasparini and Magee, 2006), and
whose values are shown inTable 4. Moreover, we add a refractory
period tref ,ds = 5ms, as in Memmesheimer (2010), Jahnke et al.
(2012), and Jahnke et al. (2015), to these dendritic branches
after the stereotypical current pulse has influenced the soma, in
accordance to the saturating effect of somatic depolarization of
dendritic spikes reported in the literature (Ariav et al., 2003).

4.2.4. Cholinergic Modulation
In accordance with (Hasselmo and Bower, 1993; Hasselmo, 1999,
2006), we use the fact that, during exploration, high levels of
cholinergic modulation are present and the excitatory feedback
is thus in part suppressed; during sleep and quiet wakefulness,

TABLE 3 | Summary of parameters for neuronal coupling.

Symbol Description Value

NEx Number of neurons in population Ex 200

NIx Number of neurons in population Ix 100

NIC Number of neurons in population IC 100

NIG Number of neurons in population IG 100

p Connection probability 0.2

τEr Rise time for excitatory synapses 1 ms

τE
d

Decay time for excitatory synapses 6 ms

τ Ir Rise time for inhibitory synapses 0.5 ms

τ I
d

Decay time for inhibitory synapses 2 ms

r
ExE
ext Rate of external excitatory input 1.0 kHz

r
Ex I
ext Rate of external inhibitory input 1.0 kHz

r
IxE
ext Rate of external excitatory input 1.0 kHz

r
Ix I
ext Rate of external inhibitory input 1.0 kHz

rXIG Rate of IG input to X 0.05 kHz

wXIG Weight of IG input to X 2.5 pF

wExEx Excitatory to excitatory strength 10 pF

wEx Ix Inhibitory to excitatory strength 10 pF

wIxEx Excitatory to inhibitory strength 4 pF

wIx Ix Excitatory to inhibitory strength 3 pF

wEx+1Ex Forward afferent strength 1.6 pF

wExEx+1 Backward afferent strength 0.8 pF

wICEx Excitatory to competitive inhibitory strength 1.5 pF

wEx IC Competitive inhibitory to excitatory strength 12 pF

w
ExE
ext External excitation to excitation strength 2 pF

w
IxE
ext External excitation to inhibition strength 0 pF

w
Ex I
ext External inhibition to excitation strength 0 pF

w
Ix I
ext External inhibition to inhibition strength 4 pF

the ACh levels drop and this suppression is reduced, thus leading
to generally stronger synaptic weights. We use a simple 2.5 factor
to increase the strength of excitatory synapses during the replay
mode in comparison with the encoding mode. Though not too
much data is available on the cholinergic effect in vivo, this factor
is in line with the one obtained from hippocampal slices of areas
CA3 and CA1 in rats (Hasselmo and Schnell, 1994; Hasselmo
et al., 1995).

4.2.5. Hebbian Plasticity From Sequence to Place

Cells
To connect a bistable unit in the sequence encoding module with
the corresponding population of place cells, we use a Hebbian
like plasticity mechanism. Initially, all synapses from sequence to
place cells are silent, and they are potentiated and turned active if
the corresponding pre and post cells fire at high rates in a short
period. The exact implementation was done by a voltage-based
STDP plasticity rule (Clopath et al., 2010) which tends to increase
synaptic weight if both pre and post neurons have a high firing
rate. As the process of activating a silent synapse is equivalent to
LTP (Isaac et al., 1995; Kerchner and Nicoll, 2008), we speed up
the dynamics to make it consistent with the timescale of LTP. In
accordance with (Clopath et al., 2010; Litwin-Kumar and Doiron,
2014), the dynamics of the synaptic strength wij from sequence
cell j to place cell i are given as:

d

dt
wij(t) = −ALTDsj(t)R

(

ui(t)− θLTD
)

+ALTPxj(t)R
(

Vi(t)− θLTP
) (

vi(t)− θLTP
)

TABLE 4 | Summary of parameters for dendritic spikes.

Symbol Description Value

A Dendritic input pulse constant 55 nA

B Dendritic input pulse constant 64 nA

C Dendritic input pulse constant 9 nA

τDS Dendritic spikes latency 2.7 ms

τds,1 Decay time for dendritic input pulse curve 0.2 ms

τds,2 Decay time for dendritic input pulse curve 0.3 ms

τds,3 Decay time for dendritic input pulse curve 0.7 ms

θdspike Conductance slope threshold for NMDA spikes 6.0 pF

TABLE 5 | Summary of plasticity parameters.

Symbol Description Value

ALTD LTD strength 0.0008pAmV−1

ALTP LTP strength 0.07pAmV−1

θLTD threshold to recruit LTD −70 mV

θLTP threshold to recruit LTP −49 mV

τu time constant of low-pass filtered voltage (LTD) 10 ms

τv time constant of low-pass filtered voltage (LTP) 7 ms

τx time constant of low-pass filtered spike-train 15 ms
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TABLE 6 | Summary of alternative parameters for neuronal coupling.

Symbol Description Value

rXIG Rate of IG input to X 0.05 kHz

wXIG Weight of IG input to X 1.5 pF

wExEx Excitatory to excitatory strength 8 pF

wEx Ix Inhibitory to excitatory strength 6 pF

wIxEx Excitatory to inhibitory strength 4 pF

wIx Ix Excitatory to inhibitory strength 2 pF

wEx+1Ex Forward afferent strength 1.3 pF

wExEx+1 Backward afferent strength 0.65 pF

wICEx Excitatory to competitive inhibitory strength 1.8 pF

wEx IC Competitive inhibitory to excitatory strength 5.5 pF

w
ExE
ext External excitation to excitation strength 3 pF

w
IxE
ext External excitation to inhibition strength 0 pF

w
Ex I
ext External inhibition to excitation strength 0 pF

w
Ix I
ext External inhibition to inhibition strength 3 pF

where R(x) is a linear-rectifying function, that is, R(x) = 0 if
x ≤ 0 and R(x) = x otherwise; ui and vi represent the membrane
voltage Vi low-pass filtered with time constants τu and τv,
respectively; and xj represents the spike train sj low-pass filtered
with time constant τx. The constantsALTD,ALTP, θLTD, θLTP, τu, τv
and τx are given inTable 5 and are the same as Litwin-Kumar and
Doiron (2014), with the exception of ALTP, which is increased to
speed up the dynamics and bring the timescale of activating a
synapse into the hundred milliseconds range. Furthermore, the
maximum value of wij is 5pF.

4.3. Overview of Parameters
Here we summarize the parameters of the spiking neural
network simulation of exponential integrate-and-fire neurons.

Tables 2, 3 contain the parameters regarding the membrane
potential dynamics of a neuron, and the parameters regarding the
neuronal coupling, respectively. Table 4 contains the dendritic
spikes parameters that were used, and Table 5 the Hebbian
plasticity ones.

For Figure 1, we use a multiplicative gaussian noise N(1, 0.2)
for each individual synaptic weight (shown in Table 3) in the
spiking network. For Figures 5C,D, we use a different set of
synaptic weights which we show in Table 6.

In addition, code implementing the model can be found at
GitHub.
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