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Malnutrition has been widely recognized as a grave burden restricting the progress of
underdeveloped and developing countries. Maternal, neonatal and postnatal nutritional
immunity provides an effective approach to decrease the risk of malnutrition associated
stress in adulthood. Particularly, maternal nutritional status is a critical contributor
for determining the long-term health aspects of an offspring. Maternal malnutrition
leads to increased risk of life, poor immune system, delayed motor development and
cognitive dysfunction in the children. An effective immunomodulatory intervention using
nutraceutical could be used to enhance immunity against infections. The immune
system in early life possesses enormous dynamic capacity to manage both genetic
and environment driven processes and can adapt to rapidly changing environmental
exposures. These immunomodulatory stimuli or potent nutraceutical strategy can make
use of early life plasticity to target pathways of immune ontogeny, which in turn could
increase the immunity against infectious diseases arising from malnutrition. This review
provides appreciable human and animal data showing enduring effects of protein
deprivation on CNS development, oxidative stress and inflammation and associated
behavioral and cognitive impairments. Relevant studies on nutritional supplementation
and rehabilitation using Spirulina as a potent protein source and neuroprotectant against
protein malnutrition (PMN) induced deleterious changes have also been discussed.
However, there are many futuristic issues that need to be resolved for proper modulation
of these therapeutic interventions to prevent malnutrition.

Keywords: protein malnutrition, fetal programming, oxidative stress, inflammation, nutritional supplementation,
Spirulina, neuroprotectant

INTRODUCTION

Rapid industrialization and commercialization have changed our living standard and dietary habits.
A proper nutrition provides a flexible infrastructure for the brain development which forms the
basis of human growth and economic progress. The hunger level is measured globally as Global
Hunger Index (GHI) by Welthungerhilfe and concern worldwide to evaluate the progression in
hunger (Von Grebmer et al., 2018). 12.3% of world’s population is undernourished with 27.9%
stunted and 9.3% wasted children as reported by GHI, 2018. Every country in the world is facing
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a grave burden of malnutrition where South Asia and Africa
is striving hard with under serious hunger category with GHI
of 30.5 and 29.4, respectively. The mortality rate of children
aged under five, category is 4.2%. However, GHI score of almost
all countries from 2000 to 2018 decreased substantially except
Central African Republic which shows no advancement. India
ranks 103 out of 119 countries assessed with a GHI score of 31.1
(serious category). Still today, 20–50% of the patients admitted in
hospital are found to be malnourished (Kirkland et al., 2013) with
poor recovery rate from illness (Marshall et al., 2014). In simple
words, malnutrition is a condition of imbalanced or inadequate
nutrient intake by a person. It includes undernutrition (wasting,
stunting, and underweight), over-nutrition (overweight and
obesity) and micronutrient related malnutrition (micronutrient
deficiency or excess). Malnutrition is a serious health problem
associated with the increased susceptibility to mortality and
morbidity. It is now widely accepted as silent executioner. In
this review, we use the term ‘malnutrition’ to refer simply to
a deficiency of nutrition particularly protein. Developmental
Origins of Health and Disease (DOHAD) hypothesis suggest
the link between early life developmental patterns and late
onset of diseases (Barker et al., 2002; Shih et al., 2004). Many
epidemiological and experimental reports suggest that nutritional
status during fetal development plays an important role in
maintaining energy metabolism at later life (Silveira et al., 2007;
McMillen et al., 2008). The nutritional status of the mother
strongly affects the brain development and cognitive abilities
in the offspring. All the members in a community are affected
by maternal nutritional patterns, but children and infant are at
the highest risk as they need more nutrition for growth and
development. Similarly, pregnant and lactating women are at
risk and the babies born will be more prone to any disease
at later life. Maternal and infant malnutrition is found to be
associated with behavioral and cognitive impairment throughout
the childhood and adulthood that makes them more vulnerable
to neuropsychiatric disorders (Naik et al., 2015). Several studies
demonstrated that maternal malnutrition alters the fetal genome
and increases the risk of neuropsychiatric disorders including
depression, schizophrenia, aggression, hyperactivity and anti-
social behavior (Duran et al., 2005; Galler et al., 2005). In
addition, it also reduces the thickness of the visual cortex, parietal
neocortex, dentate gyrus, CA3 and cerebellum (Noback and
Eisenman, 1981; Díaz-Cintra et al., 1990; Ranade et al., 2012). The
compromised physical development, impaired spatial learning
and memory, compromised astrogenesis and oligodendrogenesis
leading to hypo-myelination have all been reported in an intra-
generational protein restriction rat model (Naik et al., 2015, 2017;
Patro et al., 2018). Protein malnutrition (PMN) is also found
to be associated with free radical overproduction, decreased
antioxidant defense system (Feoli et al., 2006; Khare et al., 2014)
and immune impairments that initiate a cascade of inflammatory
reaction (Welsh et al., 1998; Yamada et al., 2016).

Despite the high prevalence of the serious consequences
of maternal PMN, a very little information dealing with
potent nutritional rehabilitation strategies against malnutrition
is available. There is an urgent need of food or a food
supplement which imparts both nutritional and medicinal

benefits to the society. Such types of dietary supplements
are called as nutraceuticals or functional foods. Nowadays,
microalgae are gaining popularity as a dietary supplement
because of low cost, high nutritional value and enormous
health benefits. Spirulina contains significant amount of proteins,
vitamins, beta-carotene, minerals, polysaccharides, glycolipids
and sulfolipids (Campanella et al., 1999; Blinkova et al., 2001;
Watanabe et al., 2002; Colla et al., 2004). Various bioactive
peptides are now derived from Spirulina which can be used
as efficient nutraceutical ingredients in novel food designing
(Ovando et al., 2018). A large number of studies evidence
the neuroprotective role of Spirulina in variety of diseases
like ischemic brain damage, Parkinson’s disease, LPS induced
inflammation and rheumatoid arthritis (Bhat and Madyastha,
2001; Stromberg et al., 2005; Patro et al., 2011). Thus, dietary
complementation with Spirulina could be a cost-effective way to
enhance the balanced food security in a natural way. This review
is focused on the effects of malnutrition on fetal programming,
CNS development, oxidative stress, inflammation and various
nutritional supplementation and rehabilitation strategies with
special attention on neuroprotective role of Spirulina against
PMN induced changes.

MATERNAL NUTRITION AND FETAL
PROGRAMMING

The development of mammalian central nervous system is a
complex process that begins in utero and continues throughout
the adolescence and adulthood. It is tightly regulated by both
genetic and environmental factors. The prenatal and postnatal
environment affects the brain development, maturation and
function both positively and negatively depending on the type
of environmental stimuli (Kolb and Whishaw, 1998; Lenroot
and Giedd, 2008). Several studies were conducted using different
animal models, protocols, sources and types of enrichment to
analyze how prenatal environmental enrichment (EE) affects the
development of fetus (Kiyono et al., 1985; Mychasiuk et al.,
2012; Rosenfeld and Weller, 2012). In most of the studies, EE
is reported to exhibit beneficial effects on neuronal growth and
maturation, neurocognitive abilities, cortical thickness, dendritic
arborization, synaptic integrity, vascular inflammation, and
neurogenesis (Nilsson et al., 1999; Olson et al., 2006; Reynolds
et al., 2010; Simpson and Kelly, 2011; Mesa-Gresa et al., 2013;
Caporali et al., 2014). Such favorable effects appears to be a
common denominator for the remedial efficacy of an EE against
experimental pathologies including trauma, cerebral ischemia,
astroglial degeneration, and glioma growth (Passineau et al.,
2001; Dahlqvist et al., 2004; Anastasía et al., 2009; Yuan et al.,
2009; Cao et al., 2010; Jain et al., 2013; Rodriguez et al.,
2013; Garofalo et al., 2015). Both the embryological and the
postnatal development of the offsprings are governed by in utero
environment (Barbazanges et al., 1996; O’donnell et al., 2009).
An enriched in utero environment probably helps the fetus to
survive in a specific environment as newborns are more prone to
a variety of infections. Neonatal infection is a predominant cause
of childhood mortality and morbidity causing 40% of mortality
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in under five age group (Liu et al., 2012; Bhutta and Black, 2013;
Blencowe et al., 2013; Lawn et al., 2014).

Any adverse environmental condition imposed during
the most vulnerable period of development (gestational and
lactational period) affects the epigenetic status and also alter the
covalent modifications of the DNA and histones of embryos,
fetuses, and neonates (Reynolds and Caton, 2012; Wu et al.,
2012). These changes may influence the complete life cycle of
an offspring and may be transmitted from one generation to
another and thus could result in the origin of ‘fetal programming’
or ‘neonatal programming’ concept (Barker and Clark, 1997;
Ji et al., 2016). Imbalanced maternal nutrition often leads to
the pathophysiological condition termed as intrauterine growth
restriction (IUGR). It exerts detrimental effects on preweaning
survival and developmental rate, growth rate, food intake, organ
structure and function (Wu et al., 2006; Rekiel et al., 2014)
and onset of diseases at adulthood and senility, including type-
2 diabetes, hypertension, hyperglycemia, and cardiovascular
disease (Alberti et al., 2005; Longo et al., 2013; Langley-Evans,
2015). It also affects the transfer of nutrients and oxygen
from pregnant mother to fetus, vascular growth and functional
capacity of placenta (Wu et al., 2004; Leddy et al., 2008).
Maternal stress or infection during the prenatal or perinatal
period also alters the physiological and behavioral profile of the
stress response progression in offspring. One important pathway
for the transmission of prenatal stress is through the secretion
of corticosterone from mother to fetus via placenta, a proximal
symbol of the outer environment. Prenatal inhibition of maternal
corticosterone secretion exerts no difference between progeny
of stressed and non-stressed mothers, thus signifying a possible
mechanism of maternal stress transmission via corticosterone
(Barbazanges et al., 1996; Cicchetti, 2016). The placenta plays
a key role in maternal nutrient transport to the fetus, thus
placental abnormalities may inhibit the nutrient support to
fetus. The nutrient supply depends on the size of placenta,
morphology, blood flow and nutrient transporters (Fowden et al.,
2006; Higgins et al., 2011). Thus, proper modulation of placental
function either through gene expression or supplementation
(nutrients or hormones) is necessary to fulfill the energy demands
of growing fetus (Belkacemi et al., 2010). Both undernutrition and
overnutrition contributes to the metabolic syndrome and chronic
life-threatening diseases in adults (Boney et al., 2005; Leddy et al.,
2008; Rkhzay-Jaf et al., 2012). To elucidate this, a number of
studies have been conducted across the world using rat as a model
organism to mimic the conditions of protein calorie malnutrition,
total calorie undernutrition, maternal protein restriction and
anemia (Ozanne and Hales, 2002; Armitage et al., 2004). Out
of all these models, maternally protein deprived rat model is
the most extensively studied model which involves the feeding
of a low protein diet (5–8% protein) to pregnant dams in
comparison to dams fed with a control diet (20% protein). The
F1 progeny born from protein restricted mothers presented low
birth weight and were more prone to cardiovascular diseases and
psychiatric disorders (Fernandez-Twinn et al., 2003). Moreover,
maternal over-nutrition before and during gestation also resulted
in abnormal weight gain during pregnancy as compared to the
normally nourished mothers which further increases with each

successive pregnancy (Castro and Avina, 2002). Such anomalies
further contribute to the progression of gestational diabetes along
with long lasting negative health consequences for the infant
(Ostlund et al., 2004). The excess protein supplementations to
pregnant mothers also result in preterm delivery and enhanced
perinatal mortality (Say et al., 2003). It is also observed that
high fat diet during pregnancy decreases the mitochondrial copy
number in kidney, thus changing the glucose homeostasis leading
to a condition in parallel with mammalian metabolic syndrome
counting endothelial dysfunction, hypertension, altered serum
lipid status and adiposity (Armitage et al., 2005). Similarly,
maternal glycemia also result in increased body weight and
chances of diabetes in offspring (Franks et al., 2006).

PROTEIN MALNUTRITION AND CNS
DEVELOPMENT

The proper placental development, fetus growth and all other
changes occurring in mother’s body during pregnancy necessitate
amino acids for protein formation. Both mother and fetus are
actually competing for this ‘scarce resource.’ Major proportions
of the amino acids in the fetus are transported from the maternal
circulation through active transport (Regnault et al., 2005a,b).
Both placenta and fetal tissues are the disposal sites of amino
acids present in the fetus, which is further involved in fetal
amino acid metabolism (Brown et al., 2011). Thus, because of
great involvement of amino acid in CNS functioning (amino acid
as precursors of neurotransmitter, structural proteins, enzymes,
peptide hormones), studies on the effect of PMN in developing
CNS is gaining acclamation. Generally, casein content is modified
in the diet to design protein restricted animal model. The protein
deprived diet consists of 5–9% protein, while 16–25% protein is
present in the normal diet.

Brain development is tightly regulated by both environmental
and genetic factors. The period of rapid brain growth is
considered as most critical period of development as brain
is more vulnerable to any insult during this period. Any
insult incurred during this period of brain development may
result in long lasting negative effects on brain function,
behavior and cognition. Nutrition is one of the most important
epigenetic regulators that can affect brain function and behavior.
Nutritional insults during pregnancy changes the epigenetic
of the fetal genome and may leave a permanent devastating
effect. The severity of the effects depends on the developmental
timeline and magnitude of insult, i.e., earlier the insult, the
more permanent the effects are. Vast literature indicate that
malnutrition influences the cell count, synapse formation,
dendritic arborization, cellular differentiation and proliferation,
cell migration, growth factor synthesis and myelination and all
these changes in turn result in impaired motor and cognitive
functions (Georgieff, 2007; Prado and Dewey, 2014). Other
studies also reported a reduction in dendritic basal number
and processes, spine density, thickness of dendrites, somal size
and neuronal loss following malnutrition (Salas and Nieto,
1974; Garcia-Ruiz et al., 1993; Lister et al., 2005). Such changes
in malnourished animals may lead to permanent disturbances
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in dendritic arborization, architecture and synaptic efficiency
(West and Kemper, 1976; Desmond and Levy, 1988). In utero
protein deprivation also leads to reduced body and brain
weight (Dickerson et al., 1967; Smart et al., 1973; Peeling
and Smart, 1994). In nutshell, the nutritional inadequacies
affect the neuroanatomy, neurochemistry, neurophysiology and
neuropathology of the nervous system. A balanced nutrient
supply which includes protein, iron, zinc, folate, choline, vitamin
A and polyunsaturated fatty acids, governs brain function,
behavior and cognitive development (Rao and Georgieff, 2001).
Rats born to protein deprived mothers have shown increased
arterial blood pressure and high cardiovascular sympathetic
tone (Ozaki et al., 2001; Barros et al., 2015). It is observed
that periconceptional and prenatal nutritional insult affects the
postnatal brain maturational events (Morgane et al., 2002). Early
life nutritional insult is also reported to be associated with
enhanced risk for schizophrenia development (Brown and Susser,
2008; Bale et al., 2010). Hippocampus is adversely affected by
early malnutrition. A significant reduction in the size of cells of
the dentate gyrus, reduction in the degree of dendritic branching,
and reduction in the number of granule cells is evident in
hippocampus (Levitsky and Strupp, 1995).

Salas and Nieto (1974) reported that PMN also affects the
size of cerebellum and dendrites of cortical pyramidal cells. Cell
generation time is also increased in undernourished conditions
(Deo et al., 1978). In cerebellar cortex, granule cells and basket
cells per Purkinje neuron were reduced in number along with
hypoplasia of glial cell following PMN (Clos et al., 1977).
Severe lactational undernutrition is also reported to decrease the
number of cells both in external germinal layer and internal
granular layer (Barnes and Altman, 1973).

More recently, Gould et al. (2018) have hypothesized
that maternal PMN before implantation can cause the
adverse developmental programming leading to behavioral
deficits and short-term memory loss. This was correlated with
reduced neural stem cell and progenitor cell numbers through
suppressed proliferation, defective neurosphere formation
and increased apoptosis. Relevant to this, one more study has
shown impaired acquisition and memory following maternal
protein restriction during pregnancy and/or lactation. Such
memory impairment has been closely associated with altered
glucocorticoid production, reduced hippocampal mossy fiber
area and decreased basal dendritic length (Reyes-Castro et al.,
2018). Additionally, Gianatiempo et al. (2018) have shown that
perinatal PMN alters the mother-offspring interaction which
further disrupt the maternal behavior and delay the acquisition of
developmental landmarks and neurological reflex development.
These behavioral alterations were not restricted to F1 generation
only but also transmitted to following generation. These recent
reports have further strengthened the idea that PMN results
in neurobehavioral and epigenetic alteration leading to growth
restriction and hypertension (de Brito Alves and Costa−Silva,
2018).

Our group is also engaged in working on the intragenerational
PMN model of rats, i.e., on pregestational, gestational, and
lactational PMN model (8% protein) which corresponds well with
IUGR clinical conditions of poor socioeconomic group of human

females. We have reported a compromised physical development
(decreased body weight and brain weight), delayed neurological
reflex development (cliff avoidance and negative geotaxis reflex),
hyperactivity, poor neuromuscular strength, impaired spatial
learning and memory and low anxiety in F1 progeny of low
protein fed rats (Naik et al., 2015). All these observed behavioral
and cognitive impairments are signature mark of neurological
disorders including autism and schizophrenia. We have also
assessed the astrocytic density and turnover number in LP-F1
progeny using standard immunohistochemical procedures and
qRT-PCR assay. Expression of GFAP protein (astrocytic marker)
was not evident until E18 in LP rats, whereas numerous stars
shaped GFAP+ cells were reported in E18 HP brain which
suggested delayed astrogenesis following PMN. The same trend
was also recorded in A2B5 (glial restricted precursor) and BLBP
(secondary radial glia) immunolabeling where LP brains showed
reduced labeling which further indicated low progenitor pooling
in the LP-F1 brain (Naik et al., 2017). We further investigated
the oligodendrocyte genesis, differentiation, maturation and
myelination through immunohistochemistry and quantitative
PCR using the expression of myelin associated glycoproteins
(MAG), proteolipid protein (PLP), myelin oligo glycoprotein
(MOG) and platelet derived growth factor receptor α (PDGFRα)
and found reduced expression of myelin proteins depicting
impaired myelination and linked behavioral dysfunction
following intragenerational protein restricted model (Patro et al.,
2018). Our findings clearly demonstrated that the detrimental
changes in astrogenesis and oligodendrogenesis were reflected
in the neurobehavioral and cognitive outcome in the LP-F1 rats.
These results thus support that the early life adversities are the
main cause of later life impairments and neurodevelopmental
dysfunctions (Anderson et al., 2003; Patro et al., 2013).

OXIDATIVE STRESS IN PROTEIN
MALNUTRITION

Oxidative stress generally occurs due to an imbalance between
free radical, i.e., pro-oxidant content (hydrogen peroxide,
superoxide, hydroxyl radical, alkoxyl and peroxyl radicals) and
anti-oxidant (both enzymatic and non-enzymatic) response
system of body. This pro-oxidant/anti-oxidant balance is
necessary for proper body functioning. Both free radical and
mitochondrial theories of aging are the most widely accepted
theories of aging which speculate that reactive oxygen species
(ROS) alter mitochondrial function by interfering with the
replication and transcription machinery of mitochondrial DNA
(mtDNA) resulting in more ROS generation, which in turn
damage mtDNA. In accordance with the above theories, an
aged tissue presents more ROS production suggesting ROS as a
critical contributor in aging (Sawada and Carlson, 1987; Sohal
and Dubey, 1994; Hamilton et al., 2001; Capel et al., 2005). ROS
is responsible for generating DNA lesions which causes genetic
instability. The most dominant DNA lesion formed by ROS is 7,8-
dihydro-8-oxo-deoxyguanosine (8-oxo-dG) which causes G:C
to T:A transversions (Grollman and Moriya, 1993; Dizdaroglu
et al., 2002). These devastating outcomes of ROS production

Frontiers in Neuroscience | www.frontiersin.org 4 December 2018 | Volume 12 | Article 966

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00966 December 14, 2018 Time: 14:35 # 5

Sinha et al. Maternal Protein Malnutrition and Spirulina Supplementation

can be neutralized by enhancing antioxidant defense system.
Numerous studies have shown the inverse relationship between
oxidative stress and life span. The enhanced expression of catalase
(CAT) and superoxide dismutase (SOD) exhibits extended life
expectancy in Drosophila (Orr and Sohal, 1994). Consistently,
decreased life span is also observed in those C. elegans which
are more susceptible to oxidative stress (Larsen, 1993; Ishii
et al., 2004) whereas, antioxidant mimetics (SOD/CAT) reverse
these changes and enhances C. elegans life span (Melov et al.,
2000). The increased oxidative stress is also known to promote
autophagy in Alzheimer disease (AD), Parkinson disease (PD),
amyotrophic lateral sclerosis (ALS), Huntington disease (HD)
brain samples, suggesting the possible role of autophagy in
the pathophysiology of these diseases (Hirai et al., 2001;
Nixon et al., 2005; Rubinsztein et al., 2005; Cherra and Chu,
2008).

Golden and Ramdath (1987), proposed that free radical
overproduction is involved in pathogenesis of kwashiorkor
leading to haemolytic anemia. Increased oxidative and
nitrosative stress is reported to be involved in neurological
disorders like AD, PD, HD, and aging (Sies, 1985; Calabrese
et al., 2003; Mariani et al., 2005; Valko et al., 2007). de
Brito Alves et al. (2016) examined the association between
maternal PMN induced hypertension and oxidative stress.
They noticed that oxidative dysfunction and impaired
antioxidant defense system in ventral medulla might
contribute to progression of hypertension following maternal
protein restriction. Another study by Verma et al. (2017)
also reported increased serum malondialdehyde levels
leading to oxidative stress in severe acute malnourished
children as compared to control group. Prenatal and
lactational PMN in rats is found to be associated with
increased levels of thiobarbituric acid reactive substance
(lipid peroxidation product) in the cerebellum and cerebral
cortex and decreased CAT activity in the cerebellum (Feoli
et al., 2006). Similarly, increased plasma malondialdehyde
(by-product of lipid peroxidation), protein carbonyl (by-
product of protein oxidation) and decreased anti-oxidants
(ascorbic acid, glutathione, SOD, ceruloplasmin) were reported
in a study conducted over 193 malnourished children of
age group 6 months to 5 years in Eastern Uttar Pradesh,
India (Khare et al., 2014). Increased red cells SOD was
also observed in malnourished children with kwashiorkor
and marasmus (Rana et al., 1996; Ashour et al., 1999).
However, majority of the studies showed reduced antioxidant
activity following PMN (Sive et al., 1993; Houssaini et al.,
1997).

In response to any oxidative stress, antioxidant level either
decreases due to their depletion during scavenging of free radicals
or increases to overcome the oxidative stress development and
this shift further depends on multiple factors including type
and source of oxidative stress, duration of exposure, toxicant
concentration, intensity and model organism. These findings
indicate that increased oxidative stress and compromised anti-
oxidant defense system following PMN may be a risk factor for
developing serious neurological and neurodegenerative disorder
at later life.

MALNUTRITION AND INFLAMMATION

Insufficient dietary intake of nutrients is the leading cause
of immunodeficiency worldwide. A synergistic relation
exists between malnutrition and infection where nutritional
inadequacy increases the risk to infection by impairing both
innate and adaptive arms of immune response (Neumann
et al., 2004). Infection also affects the nutritional status of an
individual by reducing food intake and impairing nutrient
absorption (Woodward, 1998; Solomons, 2007). The severity
of infection depends on health status, type of infection and
dietary intake. PMN is associated with immune impairments that
initiate a cascade of inflammatory reaction (Welsh et al., 1998).
Undernutrition is also considered as a pro-inflammatory state
with increased expression of IL-6 (Dulger et al., 2002). However,
PMN induced inflammatory response is still a controversial
subject.

Some studies in malnourished children demonstrate a
decreased expression of inflammatory markers while others
report inflammatory response similar to the healthy children
(Bondestam et al., 1988; Malave et al., 1998). Leptin (adipocyte
derived cytokine) is considered as a central mediator between
nutrition, neuroendocrine system and immunity (Fernandez-
Riejos et al., 2010) and PMN has been reported to result
in a decreased concentration of leptin, thus increasing the
susceptibility to infection (Matarese, 2000). Compromised
cellular components of immune response (IFN-Y, TNF-α,
nitric oxide) have also been reported following PMN. These
components are crucial for protection against Mycobacterium
tuberculosis (Chan et al., 1996). Breast feeding enhances the infant
immunity and provides protection against gastrointestinal and
respiratory infections (Chien and Howie, 2001). Epidemiological
data favors the association between breast milk feeding and
reduced risk of type 1 diabetes, asthma, eczema, rheumatoid
arthritis, multiple sclerosis and bowel disease (Brandtzaeg, 2003;
Hanson et al., 2003). It contains a variety of lymphocytes,
macrophages, neutrophils, cytokines, chemokines, growth factors
and long chain polyunsaturated fatty acids (PUFAs) which
aid in promoting the neonatal immune system development.
Primarily, inflammation is a defensive response against any
infection or stress but its exaggerated response may exert
negative consequences to the infants. Breast milk is rich in
both proinflammatory (IL-1β, IL-6, IL-8, and TNF-α) and
anti-inflammatory (IL-10) cytokines. The only limitation in
understanding the complete association between breast milk
components and infant immunity is the variation that exists
amongst women and period of active lactation. Higher fat content
is observed in the milk of malnourished women as compared to
the well nourished women, although difference is not statistically
significant between the two groups (Spring et al., 1985).
Alternatively, decreased protein, lactalbumin and lactoferrin
concentration is reported in severely malnourished mothers
(Lonnerdal et al., 1976; Forsum and Lonnerdal, 1980), whereas
high protein diet results in enhanced nitrogen contents of milk
(Emery, 1978). The rats fed with a very low protein diet (VLPD)
develop systemic inflammation and vascular calcification as
revealed in a recent publication (Yamada et al., 2016).
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TABLE 1 | Protective effects of Spirulina against oxidative stress and neuroinflammation.

Parameter Test species Main findings Reference

Protein malnutrition induced oxidative stress and neuroinflammation

Oxidative stress Rats Increased CAT and decreased SOD activity in
marasmic-kwashiorkor rats

Akinola et al.,
2010

Human Increased lipid peroxidation product (MDA) and
decreased anti-oxidant level (GSH, Zn-SOD)

Khare et al.,
2014

Human Reduced blood levels of CAT, SOD, GSH,
vitamin C and increased MDA concentration

Aly et al., 2014

Rats Increased MDA level, reduced SOD enzyme
activity and metabolic dysfunction

Vega et al.,
2016

Human Increased serum MDA levels Verma et al.,
2017

Neuroinflammation Mice Decreased serum protein levels and reduced
superoxide anion production

Redmond
et al., 1991

Human Reduced anti-oxidant level (glutathione and
vitamin E) in kwashiorkor patients and
increased concentration of IL-6 and soluble
receptor of TNF-α

Sauerwein
et al., 1997

Rats High circulating concentration of TNF-α,
increased expression of TNF-α mRNA in liver,
reduced phagocytic activity of neutrophils and
increased superoxide anion production

Silva et al.,
2010

Rats Increased serum TNF-α and urinary
8-hydroxydeoxyguanosine level

Yamada et al.,
2016

Human Increased serum levels of pro-inflammatory
cytokines and reduced serum levels of Zn, Ca,
and Mg

El-Maksoud
et al., 2017

Anti-oxidant and anti-inflammatory activities of Spirulina

Anti-oxidant activity Human Reduced plasma level of MDA and increased
SOD activity

Lu et al., 2006

Rat Increased level of antioxidants (GSH, SOD and
CAT)

Jeyaprakash
and
Chinnaswamy,
2007

Mice Decreased lipid peroxidation (LPO) level and
antioxidants concentration (SOD and CAT) were
restored to near normal level

Sharma et al.,
2007

Mice Reduced LPO level in hippocampus, striatum
and cortex, increased CAT and glutathione
peroxidase activity

Hwang et al.,
2011

Rat Reduced lipid peroxidation and decreased
percentage of DNA fragmentation

Hassan et al.,
2012

Anti-inflammatory activity Human Reduced plasma MDA level, decreased
LDL-cholesterol and IL-6 expression

Lee et al., 2008

Mice Inhibited humoral and cell mediated immune
response and decreased TNF-α production

Rasool and
Sabina, 2009

Human Increased indoleamine 2,3-dioxygenase (IDO)
level and ameliorated senescence

Selmi et al.,
2011

Rat Reduced expression of TNF-α, IL-1β, and IL-6 Abdel-Daim
et al., 2015

Human Increased CD4 cell count and significant
reduction in viral load

Ngo-Matip
et al., 2015

Proinflammatory cytokines in particular TNF-α and IL-6
are reported to affect child growth in chronic inflammatory
disorders, which could be rescued when these cytokines are
blocked, stressing the correlation of abnormal expression of
these cytokines with stunted growth (Sederquist et al., 2014).

This was evident from a recently published report by El-
Maksoud et al. (2017) demonstrating the increased serum
levels of proinflammatory cytokines and C-reactive protein in
nutritionally stunted Egyptian children. Thus, there is a possible
link between the malnutrition and inflammation, although the
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exact mechanism by which early life protein deprivation governs
neuroimmunity and also how it integrates with neuroendocrine
system needs further attention.

NUTRITIONAL SUPPLEMENTATION FOR
PROTEIN MALNUTRITION

Dietary supplements generally exert protective effects against diet
related diseases (obesity, diabetes, cardiovascular disease, and
osteoporosis). The successful implementation of nutritional
therapies demands a suitable target (pregnant women
and/or children), which needs to be properly monitored
and supplemented at critical window of development. Diverse
studies across the world have proven the positive health benefits
of oral nutritional supplementation (ONS) in the subjects
suffering from adult malnutrition (Baldwin and Weekes, 2012;
Collins et al., 2012). These ONS are enriched in high quality
nutrition. Recently it has been reported that ONS improves the
muscular strength of leg among malnourished and sarcopenic
older patients (Cramer et al., 2016). A number of nutritional
interventions during pregnancy were designed and studied
to prevent IUGR. Maternal folic acid supplementation either
alone or in combination with other vitamins decreases the
incidences of neural tube defects in the offspring (Rieder,
1994; Pitkin, 2007; Bhutta et al., 2013). Similarly, maternal
intake of cod liver oil during gestational and lactational period
is associated with higher intelligence as measured by higher
mental processing composite source (Helland et al., 2003).
Both oral and intravenous arginine administration in IUGR
pregnancies lead to body weight gain in fetus (Sieroszerski et al.,
2004; Xiao and Li, 2005). Intra-amniotic or maternal protein
supplementation could be a possible way to direct fetal growth.
However, only few studies have focused on how maternal intake
of individual amino acid or protein affects the embryo-fetal
development especially in terms of brain structure, function and
behavior.

SPIRULINA: A WONDER
NUTRACEUTICAL

Nowadays, commercial food sector is interested in food or food
products with nutritional and medicinal benefits. These types of
food products come under an umbrella term ‘nutraceutical.’ They
are also called as functional foods, medical foods, nutritional
supplements or designer foods. Out of a huge range of available
nutrients, microalgae (particularly Chlorella and Spirulina) are
gaining special attention as a food supplement due to its
easy availability, rapid growth, low cost and high nutritive
value. Spirulina is extensively studied for its anti-oxidant, anti-
inflammatory, anti-bacterial, anti-viral and immunomodulatory
properties (Mallikarjun Gouda et al., 2015; Wu Q. et al., 2016;
Finamore et al., 2017) along with its potent role in preventing
IUGR related abnormalities as summarized in Table 1.

Spirulina is a progeny of first photosynthetic life form that
was created by nature 3.6 billion years ago and belongs to the

phylum Cyanobacteria. The name Spirulina is derived from a
Latin word meaning tiny spiral. It is microscopic, photosynthetic,
filamentous, spiral shaped and dark-blue in color due to the
presence of pigment called phycocyanin. Surprisingly, it doubles
its biomass in every 2–5 days and grows naturally in ponds of
brackish or alkaline water. Very few microorganisms are capable
of surviving in such extreme conditions in which Spirulina
develops which in turn ensures crop hygiene. W.H.O designated
it as ‘Food of the Future’ because of its high protein content
and rapid growth. Moreover, it is also called as a ‘Super food’
or ‘Wonder food’ and various published scientific studies reveal
how it boosts the immune system and improves health. It is
approved in Russia as ‘Medicine food’ for treating radiation
induced effects whereas, NASA considered it as a ‘Best food’
for space travel, as its small quantity contains a range of
nutrients.

The most commonly used species of Spirulina are Spirulina
platensis and Spirulina maxima. It has been used as a food
for human consumption for centuries and consumed in many
different countries such as Germany, Brazil, Spain, France,
Canada, United States, Ireland, Philippines, Argentina, India,
and Africa. The cell wall of Spirulina is devoid of cellulose
and mainly composed of mucopolysaccharides, which makes
it easily digested, assimilated and effective for the people
suffering from intestinal malabsorption (older people and
victims of kwashiorkor). It exhibits various positive biological
activities including anti-viral, antibacterial, anti-fungal, anti-
parasitic, free radical scavenging (anti-oxidant) and anti-
arthritic effect. Our lab demonstrated the protective efficacy
of Spirulina against collagen-induced arthritis in (CIA) rats.
Various antioxidant constituents (phycocyanin, carotenoids,
vitamins) present in Spirulina suppresses the physiological,
histological and biochemical changes produced during CIA in
rats (Kumar et al., 2009). Use of Spirulina three times a day
in fish feed (Maylandia lombardoi) is reported to increase
growth rate and seed production as compared to Spirulina
intake once a day (Karadal et al., 2017). It is widely used in
treating nutritional deficiencies, recovering from malnutrition,
immune enhancement and in correcting iron anemia. It
stimulates hematopoiesis especially erythropoiesis. It meets all
international food quality and has applications in health foods
and therapeutics. Its impressive protein content and rapid
growth have attracted the attention of both researchers and
industrialist. Thus, Spirulina supplementation during pregnancy
and lactation may be of great potential value as it contains all
hematopoietic nutrients that will ultimately benefit both mother
and fetus.

NUTRITIONAL COMPOSITION OF
SPIRULINA

Spirulina is one of the most potent sources of nutrition.
The protein content of Spirulina varies between 60 and 70%
of its dry weight. It also contains vitamins (vitamin B-12,
beta carotene, vitamin E), various mineral substances (iron,
calcium, phosphorus, magnesium, and trace minerals), essential
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FIGURE 1 | Nutritional composition of Spirulina (serving size-10 gm of Spirulina): Spirulina is incredibly rich in proteins (60–70%) and contains a wide range of
essential amino acids, non-essential amino acids, vitamins, minerals, phytonutrients and fatty acids.

fatty acids (gamma-linoleic acid, palmitic acid, linoleic acid,
oleic acid, etc.), polysaccharides (rhamnose and glycogen),
glycolipids and sulfolipids, enzymes (SOD responsible for
quenching free radicals) and various pigments like phycocyanin,
chlorophyll, carotenoids (Campanella et al., 1999; Blinkova
et al., 2001; Watanabe et al., 2002; Colla et al., 2004; Khan
et al., 2005; Earthrise, 2006) as represented in Figure 1.
Phycocyanobilin (phycobilin-protein complex) is an inhibitor
of NADPH oxidase. This enzyme is involved in oxidative
stress in various neurological disorders. Thus, Spirulina intake
decreases the activity of NADPH oxidase and has therapeutic
interventions in many vascular diseases, cancers, diabetes,
neurodegenerative and inflammatory disorders (McCarty,
2007). It has been shown that carbohydrates present in
Spirulina increases cell nucleus enzyme activity (particularly
endonucleases) and DNA repair synthesis (Baojiang, 1994).
It also positively influences both the humoral (antibodies
and cytokines) and cell-mediated immunity (T cell and

macrophages). Downregulation of inflammatory and oxidative
stress markers is observed in rats with Spirulina rich diets
both in aging and neurodegenerative disorders making it more
suitable as a natural drug for the treatment of neurological
disorders.

SPIRULINA AS THERAPEUTIC
INTERVENTION AGAINST
INFLAMMATION AND OXIDATIVE
STRESS IN AGING AND
NEURODEGENERATIVE CONDITIONS

The predominant factors responsible for aging and
neurodegeneration are inflammation and oxidative stress. There
is a decline in the normal antioxidant and anti-inflammatory
defense mechanisms in both aging and neurodegeneration that
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makes the brain more susceptible to the deleterious effects
of oxidative stress (Finkel and Holbrook, 2000). There are
considerably strong evidences elucidating that most neurological
disorders (AD, PD, HD, ALS, inflammatory injuries, and
senility) are the result of oxidation and/or inflammation.
Various nutraceuticals as well as pharmaceuticals have been
extensively investigated for their anti-inflammatory and anti-
oxidant potential. With respect to nutraceutical, several dietary
supplementations (blueberries, spinach and Spirulina) have
been reported to protect CNS by downregulating the markers of
inflammation and oxidative stress and thus reducing neurological
deficits. Spirulina consumption also improves life span with
numerous health benefits, increases locomotor activity and
reduces HSP70 (indicator of cellular stress) and Jun-N-terminal
kinase signaling (JNK signaling involved in modulating the
life span) in DJ-1β193 flies (a Parkinson’s disease model)
in Drosophila melanogaster (Kumar et al., 2017). A myriad
of studies demonstrate that this dietary supplementation
increases cerebellar glutathione levels, reduces malondialdehyde
levels, decreases pro-inflammatory cytokines and improves
spatial and motor learning in senile rats (Bickford et al., 2000;
Gemma et al., 2002).

Thus, although an immense literature is available specifying
the widely documented use of Spirulina as a functional food,
yielding health promoting properties and/or reducing the risk
of disease (Wu Z. et al., 2016; Furmaniak et al., 2017) only
a very few and discrete studies have focused to report the
adverse effects of Spirulina. More recently, the genome and
proteome analysis of Arthrospira platensis has clearly mentioned
the absence of genes responsible for the synthesis of various
toxins (Furmaniak et al., 2017), supporting the statement that
Spirulina shows no toxicity, i.e., neither acute nor chronic,
making it safe for the human use (Gutierrez-Salmean et al., 2015).
However, the minor adverse effects of Spirulina, reported include
headache, gastrointestinal discomforts, muscle pain and cramps,
skin rashes, etc. (Iwasa et al., 2002; Mazokopakis et al., 2008;
Marles et al., 2011). In one study, the Spirulina was reported
to be a causative factor for acute rhabdomyolysis in a young
human patient (Mazokopakis et al., 2008). Although we have not
come across any more studies specifying the adverse effects of
Spirulina, but keeping in view the increasing use of Spirulina
as dietary supplement, more studies are warranted to focus this
issue.

SPIRULINA AS A NEUROPROTECTANT

Phenotypic outcomes are generally governed by epigenetic
processes suggesting a possible connection between food
quality and neurological disorders. Neuroprotective effects
of Spirulina are well evidenced in ischemic brain damage
with progressive decline in TUNEL positive cells and caspase-
3 activity in the ischemic hemisphere (Wang et al., 2005).
Brain ischemia or cerebral ischemia is a condition marked
by the cerebral hypoxia that leads to the generation of free
radicals, reactive oxygen or nitrogen species and energy crisis.
Phycocyanin and phycocyanobilin present in the Spirulina

have strong anti-cyclooxygenase-2 and anti-oxidant activities
that reduce peroxynitrite induced oxidative damage to DNA
(Bhat and Madyastha, 2001). Further advances and intervention
studies in omics technology may provide useful information
in understanding the mechanism of microglia mediated
neuroinflammation (Patro et al., 2016) and the possible role of
nutritional approaches in regulating microglia aging (Wu Z.
et al., 2016).

Dietary supplementation with Spirulina in rat model of
Parkinson’s disease results in significant reduction in lesion
volume and decreased microglial activation (Stromberg et al.,
2005). Anti-inflammatory effects of Spirulina have also been
investigated against LPS-induced inflammation in rodent
model. LPS insult causes increased astrogliosis with prominent
activation of GFAP in existing cells and decreased proliferation
of neural progenitor cells (NPCs). However, diet supplemented
with 0.1% Spirulina for 28 days before LPS administration
prevents the LPS induced decrease in NPC proliferation and
astrogliosis (Bachstetter et al., 2010). Researchers at University
of Yaounda (Azabji-Kenfack et al., 2011) found that food
supplementation with Spirulina for 12 weeks in malnourished
adults infected with HIV stimulates weight gain and increase
fat free mass as compared to soya beans. In addition, anti-
retroviral treatment (ART) along with Spirulina showed more
beneficial effects than ART coupled to soyabeans (increased
CD4 cell counts and decreased viral load in Spirulina group).
Spirulina platensis was also found to suppress the peripheral
sensitization, improve motor coordination and restore motor
activity in collagen-induced arthritic rats by reducing NF-200
accumulation in spinal cord neurons suggesting a possible
neuroprotective role of Spirulina for the treatment of rheumatoid
arthritis (Patro et al., 2011). Spirulina also supports the viability
of astrocytes (Kim et al., 2012). Interestingly, polycaprolactone
Spirulina nanofiber mat (composite nanomedicine) was proved
to be effective against CNS injury as it reduces the astrocyte
activation which in turn, could reduce inflammation induced by
astrogliosis. Neuroprotective role of Spirulina is also marked in
alpha-synuclein model of Parkinson’s disease, where increased
expression of tyrosine hydroxylase (TH) positive and NeuN
positive cells was observed. Accordingly, reduced number
of activated microglia was also reported as determined by
the reduced OX6 (MHC-II) immunostaining (Pabon et al.,
2012).

It is thus apparent that dietary complementation with
Spirulina could be beneficial to the patients suffering from
neurodegenerative disorders. It maintains proliferation,
differentiation and migration of NPCs which may lead to
improved brain functioning and body health. The elevated
response of human stem cells in terms of proliferation potential
was also reported in Spirulina fed group. In normal conditions,
CX3CL1 and CX3CR1 are expressed at high levels in brain,
but as age advances their expression decreases. Spirulina
intake shows the increased expression of CX3CR1, suggesting
a possible mechanism of action in neuroprotection (Pabon,
2011). Generally, non-steroidal anti-inflammatory drugs
act by suppressing the immune activation but Arthrospira
enhances both the innate and adaptive immunity thereby
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increasing cellular and humoral adaptive immunity. There
are now accumulating evidence that constituents of Spirulina
have both anti-oxidant and anti-inflammatory activities that
inhibits ROS formation and decreases the cytokine mediated
neuroinflammation, thereby making it a suitable and effective
therapeutic target for combating neurodegenerative disorders
(Figure 2).

NUTRITIONAL REHABILITATION USING
SPIRULINA – SUPER FOOD TO FIGHT
AGAINST MALNUTRITION

Hunger can be either due to the non-availability of food or
due to the lack of micronutrients. Inadequate food sources
and improper nutritional awareness program in developing
countries are the major causes of malnutrition. High protein
content of Spirulina makes it a suitable adjunct to combat
malnutrition. Both Spirulina platensis and Spirulina maxima
have been extensively studied due to its high protein content,
micronutrient composition, vitamins and minerals, easy
and rapid reproducibility, inexpensive and non-toxic nature.
Mass culture and utilization of Spirulina as a potent protein
source against hunger, malnutrition and starvation was first
explored and published by Rodulfo (1990). Many studies
have shown a strong association between malnutrition
and anemia thus suggesting malnutrition as a common
cause of anemia in both children and elderly (Mitrache
et al., 2001; Anticona and San Sebastian, 2014; Sahin et al.,
2016).

Numerous studies have been conducted to test the efficacy
of Spirulina supplementation in rodent model covering a range
of variables including body growth, protein efficiency ratio
(PER), hematological status and toxicity (Maranesi et al., 1984;
Tranquille et al., 1994; Salazar et al., 1996; Narayan et al., 2005).
Enhanced skeletal muscle proteins were also reported in Spirulina
supplemented young rats (Voltarelli and de Mello, 2008). These
animal based studies were further extended to clinical studies
in human subject. In this context, various non-government
organizations (NGO) and international organizations have
chosen to work for reducing public health problems and
prevention of malnutrition in developing countries. Azabji
Kenfack and associates in 2011 examined the effect of daily
Spirulina intake for 12 weeks on 56 malnourished HIV
infected adult patients and concluded that Spirulina consumption
effectively improved weight and body mass index (BMI) among
undernourished HIV sufferers. Spirulina supplementation at a
dose of 10 gm per day was found to improve the nutritional
status as well as to increase the corpuscular hemoglobin and
hematocrit levels in malnourished children in Democratic
Republic of the Congo (Matondo et al., 2016). Another research
on 550 malnourished children showed the beneficial effects
of Spirulina in combination with Misola (millet, coja, and
peanut). This combination was proved to be more effective
than Spirulina or Misola alone (Simpore et al., 2006). In
addition to these, Spirulina platensis also exerts a positive
impact against immunosenescence and anemia because of the

presence of active components such as folic acids, vitamin B12,
phycocyanin, essential amino acids and iron content, which in
turn play central role in Erythropoiesis (Kapoor and Mehta,
1998; Mani et al., 2000; Khan et al., 2005; Selmi et al., 2011).
Subsequently, one more study was conducted in Burkina Faso
evaluating the effects of Spirulina consumption on 84 HIV
positive and 86 HIV negative anemic children, and the results
indicated that 81.8% of HIV negative and 63.6% HIV positive
children recovered from anemia, thus speculating potent role of
Spirulina even in patients with compromised immune system
(Simpore et al., 2005). Effectiveness of Spirulina against child
malnutrition has also been reported in a study in Zambia,
where 10 gm daily Spirulina consumption significantly improved
HAZ (height-for-age-z) score in malnourished children (Masuda
et al., 2014). From the above reports, it can be safely inferred
that Spirulina supplementation can effectively combat the
malnutrition.

NEUROPROTECTIVE EFFECTS OF
SPIRULINA CONSUMPTION DURING
PREGNANCY AND/OR LACTATION

Majority of the available studies have demonstrated the
neuroprotective effects of Spirulina in adult animals. However,
only few studies have been designed to investigate how maternal
Spirulina supplementation would influence the developmental
profile of an offspring. Spirulina enriched diet (0.1% Spirulina)
to lactating mothers, 1 day prior to LPS treatment in
offspring maintains the p38 and IL-1β levels thereby regulating
neuroinflammation and antioxidant defense system in the
offspring (Patil et al., 2018). Furthermore, Spirulina consumption
by pregnant women in Dakar region is proved to be more
effective than iron and folic acid (IFAC) supplementation
in terms of weight gain and improved hemoglobinemia in
the newborn (Niang et al., 2016). It has also been reported
that supplementing pregnant hyperglycemic albino mice with
Spirulina improves fertility rate, reproductive performance
and reduces teratogenicity associated with diabetes (Pankaj,
2015). Furthermore, Banji et al. (2013) have reported that
consumption of this edible alga from embryonic day (ED) 6 to
postnatal day (PND) 15 reduces fluoride toxicity in developing
brain, promotes antioxidant formation and minimizes the risk
of neurodevelopmental disorders. These evidences mark the
beneficial health effects of Spirulina in offsprings following
Spirulina supplementation to pregnant mothers. However, the
exact mechanism by which Spirulina supplementation during
pregnancy imparts health benefits to the offsprings remains to be
elucidated.

To the best of our knowledge, there is no complete study
evaluating how Spirulina supplementation to malnourished
pregnant and lactating mother would affect the oxidative
functioning, inflammatory response and mental skills among
children. Thus, enriching maternal environment with potent
protein source (Spirulina) can be an effective way to reduce
oxidative stress, neuroinflammation, behavioral and cognitive
deficits induced by maternal PMN. This strategy of using
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FIGURE 2 | Mechanism of action of Spirulina: Environmental and genetic factors regulate aging process and progression of neurological disorders, chiefly
characterized by neuroinflammation and oxidative stress or vice-versa. Spirulina has both antioxidant and anti-inflammatory activities and downregulates the
proinflammatory cytokines, which in turn might inhibit the neurodegeneration and oxidative stress thereby aids in maintaining proper brain and body health.

FIGURE 3 | Maternal malnutrition causes, consequences and possible nutritional supplementation strategies to treat IUGR: A synergistic relationship exists between
malnutrition and infection. Maternal malnutrition results in decreased body growth and impaired behavioral and cognitive abilities. Prenatal nutritional therapy
represents a promising approach to treat IUGR by enhancing uteroplacental nutrient transfer, placental growth and nutrient transport, fetal growth which ultimately
results in improved behavioral and cognitive abilities.

Frontiers in Neuroscience | www.frontiersin.org 11 December 2018 | Volume 12 | Article 966

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00966 December 14, 2018 Time: 14:35 # 12

Sinha et al. Maternal Protein Malnutrition and Spirulina Supplementation

Spirulina during pregnancy and lactation period would be
advantageous for treating abnormalities during IUGR pregnancy.

CONCLUSION AND RECOMMENDATION

Any environmental stress during critical periods of CNS
development affects the developmental profile of an individual.
Brain homeostasis and neuronal communication may be
disturbed specifically in conditions of protein deprivation.
Increased reactive oxygen and nitrogen species, impaired
antioxidant defense system, altered glial cell physiology and
inflammatory response are postulated to be the possible drivers
in PMN induced neurocognitive decline. Diets enriched in foods
with high ORAC could be used in reverting age and poor diet
associated behavioral, cognitive and neurochemical impairments
and maintaining cellular homeostasis. Spirulina contains a
combination of nutrients (β carotene, vitamin B12, tocopherols,
essential fatty acids, polysaccharides, glycolipids, sulfolipids and
phycobiliprotein) which exerts more neuroprotective effects
than single nutrient source. The present review has compiled
the numerous studies conducted on Spirulina to establish its
implications as a potent source of nutrition to combat against
micronutrient deficiency, PMN and neurological disorders.
The data discussed in this review suggests that exposure
to malnutrition during critical developmental timeline where
developmental plasticity is at peak, results in long lasting
irreversible behavioral and cognitive abnormalities which further
increases the risk of neurological disorders.

However, this review has certain limitations. More research
is needed in understanding how Spirulina consumption affects
neuron-glia communication? What is the exact molecular
mechanism of Spirulina action? Is Spirulina supplementation
enough for completely combating the detrimental effects of
malnutrition? What are the important subcomponents of
Spirulina necessary for making it as a neuroprotective agent and
its dose response? What are the possible molecular targets while

considering pharmaco-therapeutic applications of Spirulina?
Does it exert any effect on human epigenome? How Spirulina
supplementation regulates placental function? All these questions
need to be resolved in order to make Spirulina as an ideal
natural drug with neuroprotective properties. Various nutritional
inputs including nutritional supplementation, rehabilitation
and therapy, nutritional education and specific nutrient
supplementation (vitamins, mineral, and micronutrient) are
necessary to overcome the detrimental effects of IUGR for
better fetal growth and development (Figure 3). A combination
of nutrition education and nutritional supplementation could
exert more beneficial effects than any of the mentioned
nutritional inputs alone. Inconsistency in research studies
focusing on prenatal therapies and long term nutritional
intervention programs are the major barriers to design effective
strategies to fight malnutrition. Thus, a special attention
should be given to animal studies involving both pre- and
early postnatal nutritional supplementation along with intra-
amniotic nutrient transfer strategies to ameliorate fetal growth
and metabolic functioning during IUGR pregnancy. Further
advances and elucidation of the mechanism of action of
dietary supplements and their effects on microbiota-gut brain
axis will therefore open up new windows for therapeutic
intervention against neurological disorders arising from
malnutrition.
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