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Parkinson’s disease is the second most prevalent neurodegenerative disorder in
the Western world. It is estimated that the neuronal loss related to Parkinson’s
disease precedes the clinical diagnosis by more than 10 years (prodromal phase)
which leads to a subtle decline that translates into non-specific clinical signs and
symptoms. By leveraging diffusion magnetic resonance imaging brain (MRI) data
evaluated longitudinally, at least at two different time points, we have the opportunity
of detecting and measuring brain changes early on in the neurodegenerative process,
thereby allowing early detection and monitoring that can enable development and
testing of disease modifying therapies. In this study, we were able to define a
longitudinal degenerative Parkinson’s disease progression pattern using diffusion
magnetic resonance imaging connectivity information. Such pattern was discovered
using a de novo early Parkinson’s disease cohort (n = 21), and a cohort of Controls
(n = 30). Afterward, it was tested in a cohort at high risk of being in the Parkinson’s
disease prodromal phase (n = 16). This progression pattern was numerically quantified
with a longitudinal brain connectome progression score. This score is generated by
an interpretable machine learning (ML) algorithm trained, with cross-validation, on
the longitudinal connectivity information of Parkinson’s disease and Control groups
computed on a nigrostriatal pathway-specific parcellation atlas. Experiments indicated
that the longitudinal brain connectome progression score was able to discriminate
between the progression of Parkinson’s disease and Control groups with an area under
the receiver operating curve of 0.89 [confidence interval (CI): 0.81–0.96] and discriminate
the progression of the High Risk Prodromal and Control groups with an area under the
curve of 0.76 [CI: 0.66–0.92]. In these same subjects, common motor and cognitive
clinical scores used in Parkinson’s disease research showed little or no discriminative
ability when evaluated longitudinally. Results suggest that it is possible to quantify
neurodegenerative patterns of progression in the prodromal phase with longitudinal
diffusion magnetic resonance imaging connectivity data and use these image-based
patterns as progression markers for neurodegeneration.

Keywords: longitudinal connectomes, machine learning, neurodegeneration, prodromal Parkinson’s disease,
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INTRODUCTION

As the world demography changes and life spans increase, the
population suffering from neurodegenerative diseases for which
age is an unmodifiable risk factor, will undoubtedly increase. The
prevalence of Parkinson’s disease (PD), the second most frequent
neurodegenerative disorder, is likely to double by 2040 in the
United States alone (Kowal et al., 2013). It is estimated that
Parkinson’s disease neuronal loss precedes the clinical diagnosis
for more than 10 years (prodromal period) (de la Fuente-
Fernández, 2013), during which time there is a subtle motor
decline and a constellation of non-motor signs that cannot
be detected with the current standard of care (Hughes et al.,
1992; Braak et al., 2005; Hawkes, 2008; Rolheiser et al., 2011;
Postuma et al., 2012). In fact, multiple research groups have
independently argued that experimental neuroprotective drugs
could significantly slow down or stop the disease progression if
administered at the early stages of neuronal damage (Lang, 2010;
Streffer et al., 2012). However, there are no proven methodologies
for identifying subjects in the prodromal phase or to track their
progression. This significantly hinders the ability to develop, test
and eventually deploy disease-modifying therapies.

Currently, Parkinson’s disease diagnosis relies mostly on the
clinical examination, which involves evaluating symptoms that
change over time and response to medication (Hughes et al.,
1992). However, the neurodegenerative process is estimated to
start years to decades before diagnosis. Large studies have shown
that a range of pre-diagnostic signs (i.e., tremor, constipation
and change in color vision) are already visible 5–10 years
before diagnosis (Ross et al., 2012; Schrag et al., 2015), however,
simple non-invasive tools able to quantify the brain changes
underlying the neurodegenerative process that may be related to
the pre-diagnostic signs are not available and therefore, constitute
an urgent medical need (Postuma, 2016).

The Parkinson’s Progression Markers Initiative (PPMI) is
a multisite international study set up to perform biomarker
research in Parkinson’s disease. In this study, a cohort of subjects
at high risk of being in the Parkinson’s disease prodromal phase
(PROD) was recruited using idiopathic REM Sleep Behavior
Disorder (RBD) and hyposmia as significant risk factors. These
two markers are part of the MDS Research Criteria for Prodromal
Parkinson’s Disease (Berg et al., 2015). Metrics able to find
commonalities between Parkinson’s disease and PROD subjects
not found in Controls are highly desirable and are considered
excellent candidates for markers able to identify the neuronal loss
happening before Parkinson’s disease diagnosis.

RBD is defined as a parasomnia characterized by recurrent
complex motor behaviors and/or vocalizations that mirror
dream content and emerge during an abnormal loss of

Abbreviations: AUC, Area under curve; dMRI, diffusion Magnetic Resonance
Imaging; FA, Fractional anisotropy; H&Y, Hoehn and Yahr; MD, Mean diffusivity;
ML, Machine Learning; MoCA, Montreal Cognitive Assessment; MRI, Magnetic
Resonance Imaging; PD, Parkinson’s disease; PPMI, Parkinson’s Progressive
Marker Initiative; PROD, Cohort at High risk of being in the Parkinson’s disease
prodromal phase; RBD, REM Sleep Behavior Disorder; ROC, Receiver operating
characteristic; SDM, Symbol Digit Modality; UPDRS-III, Movement Disorder
Society-Unified Parkinson Disease Rating Scale – Part III.

REM sleep atonia (Darien, 2014). In the past decade, studies
have described multiple features of idiopathic RBD subjects
with specific abnormalities in olfaction, vision, gait, cognition
and autonomic dysfunction, impaired cortical activity and
dopaminergic abnormalities in neuroimaging, leading to the idea
that idiopathic RBD is a prodromal synucleinopathy (Suescun
et al., 2016). RBD patients have an estimated lifetime rate of
conversion to a parkinsonian neurodegenerative disorder of
75–90% according to five prospective studies (Wing et al., 2012;
Schenck et al., 2013; Iranzo et al., 2014; Postuma et al., 2015a,b).

Olfactory dysfunction, hyposmia, measured by the reduced
sensitivity to odor is another common non-motor symptom
of Parkinson’s disease. Severely impaired identification and/or
discrimination deficits in olfaction have consistently been
found in more than 95% of Parkinson’s disease patients
(Haehner et al., 2009), along with neuropathological Braak
stages that describe the inclusion of Lewy body pathology in
the olfactory bulb and lower brainstem preceding pathology
in the nigrostriatal pathways. Also, it has been shown that
olfactory deficits can precede classical motor symptoms by
several years (Ponsen et al., 2004; Ross et al., 2008; Chen et al.,
2017).

The first steps showing the feasibility of brain imaging-based
biomarkers for early detection of Parkinson’s disease have already
been described (Ellmore et al., 2013; Langley et al., 2016; Rolinski
et al., 2016). However, validated imaging-based biomarkers
for Parkinson’s disease progression remain elusive, particularly
for the prodromal phase. Recently, data-driven approaches,
including those using brain connectomes, have started to achieve
exciting results in the discovery of imaging biomarker candidates
(Giancardo et al., 2012; Salvatore et al., 2014; Farzan et al., 2015;
Odish et al., 2015; Adeli et al., 2016; Brown and Hamarneh, 2016;
Abós et al., 2017; Shen et al., 2017; Amoroso et al., 2018).

Many of these approaches involve training a Machine
Learning (ML) model that will attempt to learn the combination
of brain features able to characterize a particular condition
based on a mathematical loss function. For example, Amoroso
et al. (2018) used complex brain networks based on MRI
scans combined with clinical features for early diagnosis of PD
through Random Forest and Support Vector Machine (SVM).
Similarly, Salvatore et al. (2014) used structural T1 weighted
MR images to perform differential diagnosis of PD and other
parkinsonian conditions such as Progressive Supranuclear Palsy
(PSP) through SVM. However, most of these methodologies
were not designed to identify patterns from the temporal
information, which may be a key aspect for measuring brain
neuroplasticity and creating progression metrics. Following this
idea, Farzan et al. (2015) used SVM to automatically discriminate
patients with Alzheimer’s disease and Controls through the
longitudinal percentage of brain volume changes. Further, we
developed a new data representation able to encode temporal
patterns in connectomes derived from diffusion MRI (dMRI),
named “longitudinal connectomes” (Giancardo et al., 2018). Such
representations have the potential to enable ML models to learn
multivariate temporal patterns, which can be too complex to
define a priori, thereby allowing the measurement of disease
progression.
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In order to be able to diagnose subjects at high risk of
being in the Parkinson’s disease prodromal phase, we measure
Parkinson’s disease progression with structural/diffusion
MRI at 2-time points one-year apart (baseline and year-1
follow-up, respectively) and compare it with existing clinical
metrics on three cohorts: PROD, matched de novo Parkinson’s
disease subjects, and matched Controls. We extended the
original “longitudinal connectomes” method by (1) employing
multimodal connectivity metrics, (2) ensuring that our method
is relevant to Parkinson’s disease with a parcellation atlas (Xiao
et al., 2017) involving 16 areas in the nigrostriatal pathway, and
(3) allowing our ML algorithm to learn only from Parkinson’s
disease and Control groups. Such longitudinal patterns are
automatically quantified and then further tested and validated
as image-based biomarkers for prodromal Parkinson’s disease in
the PROD group.

MATERIALS AND METHODS

Dataset
The PPMI study was approved by the Institutional Review
Board of all participant sites, and written informed consent was
obtained from all subjects. The PPMI protocol, available on the
website www.ppmi-info.org, defines the inclusion and exclusion
criteria for the Parkinson’s disease, PROD and Control group.
In summary, the Parkinson’s disease cohort are de novo subjects
having a diagnosis of Parkinson’s disease by the United Kingdom
brain bank criteria for 2 years or less, Hoehn and Yahr stage of
I or II at baseline (H&Y; Hoehn and Yahr, 1998), not expected
to require Parkinson’s disease medication within 6 months from
baseline and confirmation of dopamine transporter deficit by
dopamine transporter (DAT) scan or VMAT-2 PET; the PROD
cohort are subjects that meet criteria of RBD according to the
International Classification of Sleep Disorders – 3rd Edition
and/or hyposmia confirmed with The University of Pennsylvania
Smell Identification Test (UPSIT) score equal to or below
the 10th percentile by age and gender. Control subjects were
defined by absence of any neurological disorder, normal cognitive
function measure by Montreal Cognitive Assessment (MoCA;

Nasreddine et al., 2005) and lack of first-degree relatives with
idiopathic Parkinson’s disease.

For the current study, all data were downloaded in May 2017.
We started from all the PROD subjects available having at least
a diffusion MRI (dMRI) acquisition (n = 21). Then, we used a
1:2 matching strategy to find the two most similar Parkinson’s
disease and Control subjects for each PROD according to age,
gender, and time between scans. This was done with an automatic
pipeline that found the two most similar candidates, without
using any preselected threshold neither for age nor gender. From
the 42 subjects in the Control group, we excluded 10 subjects
who did not have at least two MRI scans (baseline and year-1
follow-up), one who did not have diffusion MRI acquisition at the
baseline visit, and another one whose diffusion MRI acquisition
had a substandard quality. From the 21 PROD group we excluded
five subjects who had fewer than two MRI scans. From the
42 Parkinson’s disease group we excluded 19 subjects who had
fewer than two MRI scans, one who did not have a diffusion
MRI acquisition at the baseline visit, and another one whose
diffusion MRI acquisition lacked a b-value. These exclusions left
30 Controls (mean age, 65.66± 4.65 years; 11 females), 16 PROD
(mean age, 67.50 ± 5.19 years; 2 females), and 21 Parkinson’s
disease (mean age, 67.90 ± 4.84 years; 13 females) as shown
in Table 1 and Figure 1. No statistically significant differences
were found between Control and PROD groups, and Control
and Parkinson’s disease groups in age (P = 0.40, and P = 0.19,
respectively) or gender (P = 0.09, and P = 0.18, respectively).
However, the PROD group had a disproportionate number of
men, as RBD occurs much more often in men vs. women (ratio
9:1 as reported in Schenck et al., 1993). P-values were computed
with the Mann–Whitney U test.

Clinical Evaluation
We assessed four clinical scores at baseline and year-1 follow-
up for all subjects in the current study. The clinical rating
scales included were: the Movement Disorder Society-Unified
Parkinson Disease Rating Scale – Part III (UPDRS-III, motor
subscale; Goetz et al., 2008), Hoehn and Yahr staging (H&Y;
Hoehn and Yahr, 1998), Montreal Cognitive Assessment (MoCA;
Nasreddine et al., 2005), and the Symbol Digit Modality (SDM;

TABLE 1 | Demographic and clinical characteristics of study cohorts.

Controls (n = 30) PROD (n = 16) PD (n = 21)

Age at baseline, years mean (std) 65.66 (4.65) 67.50 (5.19) 67.90 (4.84)

Gender: M/F 19/11 14/2 17/4

Race: white/black/NS 29/1/0 13/1/2 21/0/0

Months from PD diagnosis and enrollment in the PPMI study − − 6.33 (6.43)

Days difference between dMRI mean (std) 402.36 (86.61) 399.93 (99.23) 395.95 (42.61)

UPDRS-III [mean (std) at BL]/[mean (std) at year 1] 0.93 (1.76)/1.23 (2.15) 3.56 (4.66)/7.31 (10.79) 20.76 (8.26)/23.52 (9.85)

H&Y [mean (std) at BL]/[mean (std) at year 1] 0.0 (0.0)/0.03 (0.19) 0.06 (0.24)/0.43 (0.93) 1.52 (0.49)/1.76 (0.52)

MoCA [mean (std) at BL]/[mean (std) at year 1] 27.93 (0.92)/26.53 (1.89) 27.18 (1.97)/26.25 (2.43) 26.33 (2.14)/25.19 (3.64)

SDM [mean (std) at BL]/[mean (std) at year 1] 43.13 (7.67)/42.7 (7.26) 34.18 (7.09)/34.68 (5.86) 38.57 (9.82)/34.76 (7.89)

Data represent count or mean (±standard deviation). F, female; M, male; NS, not specified; dMRI, diffusion MRI; UPDRS-III, Movement Disorder Society-Parkinson’s
Disease Rating Scale-Part III; H&Y, Hoehn and Yahr staging; MoCA, Montreal Cognitive Assessment; SDM, Symbol Digit Modality; PD, Parkinson’s disease; BL, baseline;
year 1, year-1 follow-up.
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FIGURE 1 | Flowchart showing the selection of the subjects. From the initial 21 selected Prodromals (PROD) with at least one diffusion MRI (dMRI) scan, we used a
1:2 matching strategy to find the two most similar Parkinson’s disease (PD) and Control (CNT) subject for each PROD according to age, gender and time between
scans. From the 42 subjects in the CNT group we excluded 12. From the 21 subjects in the PROD group we excluded five. From the 42 subjects in the PD group we
excluded 21. These exclusions left a total of 30 CNT subjects, 16 PROD subjects, and 21 PD subjects.

Sheridan et al., 2006). All assessments were performed by
movement disorders specialists following the PPMI protocol.
All subjects in the Parkinson’s disease group were drug naïve
subjects (i.e., they never took a medication for Parkinson’s
disease), however, a few subjects started dopaminergic treatment
before the year-1 follow-up visit. In this case, we evaluated the
clinical assessments performed in the conventional OFF state,
i.e., asking patients not to take dopaminergic medications on the
day of the visit, as described in the PPMI protocol. We analyzed
UPDRS-III and Hoehn and Yahr staging, as they are arguably the
most used scales for measuring Parkinson’s disease progression,
and SDM/MoCA, which are the most sensitive cognitive scales
for prodromal progression according to Chahine et al. (2016).
Further clinical characteristics across the Control, Prodromal,
and Parkinson’s disease groups at baseline and year-1 follow-up
are summarized in Table 1.

MRI Acquisitions
MRI data of the three cohorts in the study were collected at the
10 different organizations listed in Supplementary Table 1. All
participants underwent at least two MRI scans, one at baseline
and another at year-1 follow-up. Acquisitions were performed
on 3T TIM Trio Siemens (Erlangen, Germany) scanners with
software version VB15 or higher, and equipped with a 12-channel
matrix head coil. Participant institutions were supplied with
software version specific electronic protocol to be imported into
each scanner by the PPMI organization. Subjects were scanned
in a supine position using padding and the calipers to keep

the head in a comfortable position and to constraint excessive
movement. The diffusion MRI acquisition was a whole brain
diffusion MRI (dMRI) acquisition with 64 diffusion-weighting
gradient directions at a b-value of 1000 s/mm2 and a nonweighted
image (b0), full k-space acquisition, matrix size of 116 × 116,
voxel resolution of 1.98× 1.98 mm, slice thickness of 2 mm, and
space between slices of 2 mm. Further, all participants underwent
a structural 3D-T1 acquisition (T1 volume) with voxel size of
1 × 1 mm, slice thickness of 1.2 mm, space between slices of
0 mm, and matrix size of 256× 256 on the sagittal plane. A turbo
spin-echo sequence was also acquired (T2 volume) with voxel size
of 0.93 × 0.93 mm, slice thickness of 3 mm, space between slices
of 3 mm, and matrix size of 256× 228 on the axial plane.

Data Preprocessing
Data preprocessing was performed using tools from the FMRIB
Software Library (FSL; Jenkinson et al., 2012) and MRtrix3
(Tournier et al., 2012). The multi-contrast PD25 atlas (Xiao
et al., 2017) with 16 subcortical Parkinson’s disease-related areas
was used. These areas are the left and right areas of the red
nucleus (RN), substantia nigra (SN), subthalamic nucleus (STN),
caudate (CAUD), putamen (PUT), globus pallidus externa (GPe),
globus pallidus interna (GPi), and thalamus (THAL). The PD25
T1 MPRAGE atlas with a 1 mm resolution was registered to
each T1 volume space using a nonlinear FNIRT registration
with the recommended FSL pipeline. The starting estimate
of the nonlinear registration was the standard linear FLIRT
registration of the same automatically skull-stripped volume.
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Every T1 brain extraction was visually inspected, and if large
parts of the brain were missing, a dilated T2 skull-stripped mask
was used to compute the T1 brain extraction. Subsequently, the
T1 volume was registered to the b0 dMRI volume space using
a standard nonlinear FNIRT registration. The starting estimate
of the nonlinear registration was the linear FLIRT registration
of the same automatically skull-stripped volumes. We used the
normalized mutual information cost function to facilitate a better
between-modality registration. Finally, the PD25 subcortical atlas
was transformed onto the b0 dMRI space to parcellate the
diffusion volumes into 16 subcortical areas. Further, to quantify
the displacement of each voxel within the dMRI acquisition due
to eddy currents and subject motion, we obtained the mean
root mean squared (RMS) movement of each acquisition by
calculating the displacement of each voxel, then averaging the
squares of those displacement across all intracerebral voxels,
and finally taking the square root of that. This provided an
array with the RMS movement of each volume relative to the
first one (volume with b-value = 0 s/mm2). In order to discard
the influence of the movement in the method presented in the
manuscript, we then obtained the mean RMS of each acquisition
and performed the Mann–Whitney U-test to the L1-diff mean
RMS movement values of the baseline and year-1 follow-up of
the cohorts. No statistically significant differences were found
between Control and Parkinson’s disease groups, and Control
and Prodromal groups. FSL eddy was used to estimate subject
movement.

In addition, for each diffusion volume the fractional
anisotropy (FA) and the mean diffusivity (MD) maps were
computed with FSL, and a probabilistic whole brain streamline
tractography based on spherical deconvolution for fiber
direction estimation was generated with MRtrix3. The streamline
tractography was generated by randomly seeding on the 16
parcellated areas of the diffusion volumes. The seeding was
repeated until the tractography achieved 400,000 streamlines.
The streamlines were only terminated if encountering a fiber
order orientation amplitude threshold < 0.06 or achieved the
maximum length of 80 mm (length that slightly exceeds the
distance between the most distant areas in the PD25 atlas).
The quality of tractography, registrations, and parcellations
results were all visually inspected. In seven cases, we found the
registration results to be suboptimal, therefore we corrected
them, also with FSL, by recomputing the nonlinear registrations
with a membrane energy regularization algorithm. Three
of these cases were on the baseline and two on the year-1
follow-up of the PROD cohort, and one on the baseline
and another one on the year-1 follow-up of the PD cohort.
Afterward, we calculated the number of streamlines connecting
all pairs of areas for every tractography to compute the
standard connectivity matrices, i.e., connectome matrices.
Further, the mean FA and mean MD throughout each
streamline were averaged over all streamlines between two
areas to compute their connectome matrices. This allowed
us to compute three different connectivity metrics per area
pair. It should be noted that these connectivity metrics
are symmetric and that, in the FA and MD case, we are
using the term “connectivity” loosely as they indicate white

matter integrity between brain areas but not explicit physical
connectivity.

Longitudinal Connectome Score
To numerically represent the longitudinal evolution of the
connectome matrices between baseline and year-1 follow-up,
the 16 Parkinson’s disease significant areas of the connectomes
were converted to a vector x by selecting the upper triangular
part of the connectome matrix. Then, we computed the distance
between baseline (xb) and year-1 follow-up (xfu) using another
vector xd = diff(xfu,xb). Where diff() is a function computing
the distance between each element of the vector independently
and returning a vector with the same dimensions. This function
computed the L1-norm distance metric between two vectors. The
signum information was discarded to better represent distances
than actual increases or decreases of the connectivity matrices.
Further, we concatenated the structural, mean FA and mean MD
vectors into a single feature vector representing the longitudinal
difference between baseline and year-1 follow-up. This way, no
manual feature selection was performed. Figure 2 shows the
pipeline to generate the structural, FA, and MD connectomes, and
their longitudinal counterpart.

The 16 Parkinson’s disease significant areas of each of the
connectomes were converted to a feature vector by selecting the
upper triangular part of the connectome matrix (note that, by
design, the connectome matrices are symmetric). Further, we
concatenated the structural, mean FA, and mean MD into a single
feature vector representing the longitudinal difference between
baseline and year-1 follow-up. No manual feature selection was
performed.

We evaluated multiple ML methods in order to find the best
approach which could distinguish CNT and PD progression and
generalize to the PROD group. We tested classifiers that were
able to output a feature weight in addition to a probability
estimate. Feature weights coupled with random permutation
tests allow for a biological interpretation of the ML models.
We tested logistic-regression regularized with both, L1 and L2
norm, elastic net, linear SVM and random forest as shown in
Table 2. All of them were implemented using the scikit-learn
library (van der Walt et al., 2014). These models output a score
close to 0 if it is believed that the progression is similar to the
control group and 1 if it is similar to the de novo Parkinson’s
disease progression. The results presented were generated by the
L1-norm with previously described ML models trained with a
coordinate descent optimizer using the scikit-learn library. In
order to avoid overfitting, we performed an inter-subject training
adopting a stratified 21-fold cross validation where the controls
and Parkinson’s disease subjects were iteratively split into training
and testing sets. Using the maximum number of folds admitted
in this scenario (note that PD n = 21) allowed the testing set
to be composed of 2 or 3 subjects depending on the fold. This
way we guaranteed that the percentage of samples for each class
(i.e., the class balance) was preserved in every fold. No manual
or automatic fine-tuning of the hyperparameters (i.e., parameters
that are set before the learning process begins) was performed.
At each fold, we performed a permutation test to estimate the
relevance of each feature according to the ML classifier and
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FIGURE 2 | Pipeline for the proposed experimental approach. On the left, an overview of the structural connectome generation is shown. The PD25 subcortical atlas
was nonlinearly registered with the T1 skull-stripped volumes. T1 brain extractions were visually inspected. If large parts of the brain were missing, a dilated T2
skull-stripped mask was used to compute the T1 brain extraction. Next, the T1 volume was registered to the b0 dMRI volume space using a standard nonlinear
registration. Then, the atlas was transformed onto the b0 dMRI space to parcellate the diffusion volumes into 16 subcortical areas, and a probabilistic whole brain
streamline tractography and its associated structural connectome were created. Averaged fractional anisotropy and averaged mean diffusivity connectomes were
also computed. On the right, the various steps to create the longitudinal connectomes and output the Parkinson’s disease-relevant progression metric are shown.
An L1-Norm distance metric was used to build the longitudinal connectomes between baseline and year-1 follow-up for the structural, fractional anisotropy, and
mean diffusivity connectomes. Finally, the three longitudinal connectomes of each Parkinson’s disease (PD) and Control participant were concatenated into a single
feature vector and used to train an L1-norm regularized logistic regression classifier. Further, the obtained progression metric from the trained datasets was
generalizable to discriminate PROD from Controls.

TABLE 2 | Performance comparison of machine learning (ML) models to distinguish between CNT and PD, and CNT and PROD progression.

Control vs. PD

AUC Sensitivity Specificity Balanced accuracy Kappa

Logistic Regr. (L1 reg.) 0.89∗∗∗ 0.905 0.767 0.836 0.648

Logistic Regr. (L2 reg.) 0.61 0.667 0.600 0.633 0.257

Elastic net 0.69 0.762 0.600 0.681 0.345

Linear SVM 0.52 0.476 0.633 0.555 0.110

Random forest 0.76∗ 0.762 0.733 0.748 0.485

Control vs. PROD

AUC Sensitivity Specificity Balanced accuracy Kappa

Logistic Regr. (L1 reg.) 0.76∗∗ 0.688 0.800 0.744 0.480

Logistic Regr. (L2 reg.) 0.62 0.625 0.600 0.613 0.207

Elastic net 0.67 0.625 0.700 0.662 0.311

Linear SVM 0.57 0.438 0.700 0.569 0.138

Random forest 0.64∗ 0.5 0.733 0.617 0.233

Performance comparison of ML models to distinguish between CNT and PD progression (upper table). Performance comparison of the generalization ability to distinguish
between CNT and PROD progression without retraining the models (bottom table). Logistic regression with L1 regularization and random forest are the only ML
models able to distinguish between CNT and PD progression. In addition, they are the only ones able to identify Parkinson’s disease like progression on the PROD
cohort. All metrics from logistic regression with L1 regularization are higher than the metrics from random forest, which indicates the better performance of this ML
model. The statistical significance was computed with a logistic regression model corrected for age and gender using the ML output, age and gender as independent
variables and the cohort as dependent variable. Sensitivity, Specificity, Balanced Accuracy and Kappa have been automatically computed by identifying the threshold that
maximizes (sensitivity2

+ specificity2) in the ROC curve. Bolded values indicate the best metrics among the different ML models (∗P-value < 0.05, ∗∗P-value < 0.01, and
∗∗∗P-value < 0.001).

estimated the progression score for the PROD group. The PROD
group was left out as an independent test set and it was never used
in any of the training folds in order to make sure that the pattern
identified by the ML classifier was entirely Parkinson’s disease-
relevant. The predictions on this group were obtained by model
averaging each of the models learned in the 21-folds, thereby
obtaining a single prediction for each PROD subject (Varoquaux
et al., 2017).

In order to evaluate the relevance of the longitudinal
connections used in the ML model, we estimated a null
distribution on the classifier weights using a random permutation
test as described in Shen et al. (2017). At each fold, ∼1000
classifiers were trained with the original feature matrices
of Parkinson’s disease and Control groups, but with the
labels randomly swapped. Afterward, we computed the mean
and standard deviation for each weight across classifiers
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constructing the null distribution. This enabled the computation
of the distance of each classifier weight from the null
distribution measured in standard deviations, and therefore, its
relevance.

All P-values for evaluating the longitudinal connectome
scores, i.e., the output of the ML methods, were corrected for
gender and age by fitting a logistic regression model using the
class group as binary outcome and longitudinal connectome
score, age, gender as covariates.

The code to replicate the analysis is available online at https:
//github.com/lgiancaUTH/PD-Longitudinal-Connectome.

RESULTS

Longitudinal Brain Connectomes
Table 2 shows the performance comparison of ML models
to distinguish between CNT and PD progression, and the
performance comparison of the generalization ability of the same
ML models to distinguish between CNT and PROD progression.
Logistic regression with L1 regularization and random forest
were able to obtain statistically significant classifications between
CNT and PD, P < 0.001 and P < 0.05, respectively. Further,
both ML models were able to obtain statistically significant
classifications between CNT and PROD, P < 0.01 and P < 0.05,
respectively. However, Logistic Regression with L1 regularization
showed the best performance in distinguishing the progression of
CNT vs. PD, and CNT vs. PROD, as shown in Table 2. Therefore,
in our further analysis we only used logistic regression with
L1 regularization as the ML model component to obtain the
proposed longitudinal connectome scores.

Figure 3 shows the receiver operating characteristic (ROC)
curves measuring the discriminative performance of the
longitudinal brain connectomes model trained to recognize a
Parkinson’s disease-progression with logistic regression with
L1 regularization. This yielded an area under the ROC curve
(AUC) of 0.89 [confidence interval (CI): 0.81–0.96] when
discriminating the Parkinson’s disease progression from the
Control progression, and an AUC of 0.76 [CI: 0.66–0.92]
when discriminating the PROD progression from the Control
progression. The CI were computed using the nonparametric
bootstrap procedure of the vectors containing the probability
estimations, using 1000 repetitions and keeping at each iteration
80% of the predictions with replacement. This allowed us to
generate 1000 ROC curves used to report the 5th and 95th
percentiles. Such ROCs curves allowed us to find the best
threshold to discriminate the groups progression by maximizing
(sensitivity2

+specificity2). This led to a sensitivity of 0.90,
specificity of 0.77, and balanced accuracy of 0.83 for Parkinson’s
disease and Control progression discrimination. In the case of
PROD and Controls, this led to a sensitivity of 0.69, specificity of
0.80, and balanced accuracy of 0.74. Additional results computed
with the standard threshold of 0.5 are available in Supplementary
Table 2.

Table 3 shows the most prominent longitudinal connections
driving the discriminative ability of the ML model. They were
computed by using the number of standard deviations from

the null distribution estimated with a random permutation
test. Inspired by the Chebyshev inequality, we picked a
very conservative threshold of five standard deviations
from the null distribution. We identified: two longitudinal
connections stemming from streamline counts which involves
red-nucleus, globus pallidus interna, putamen and thalamus;
three longitudinal connections based on fractional anisotropy
involving globus pallidus externa putamen caudate and thalamus;
no longitudinal connections based on mean diffusivity reached
the threshold set.

Comparison With Clinical Metrics
Table 4 shows the cross-sectional discriminative ability of the
UPDRS-III, H&Y, MoCA, and SDM of the Control group
from the PROD and Parkinson’s disease groups at baseline and
year-1 follow-up. UPDRS-III and H&Y achieved almost perfect
discrimination between controls and Parkinson’s disease at both,
baseline and year-1 follow-up. On the other hand, SDM had the
best performance distinguishing PROD from Controls, but failed
to reliably measure a difference between Controls and Parkinson’s
disease.

Figure 4 shows the clinical rating scales evaluated
longitudinally [i.e., (score at year-1 follow-up) – (score
at baseline)] in comparison with the longitudinal brain
connectomes. None of the clinical rating scales reached a
statistical significance while the scores based on the longitudinal
brain connectomes computed over the same time period
showed a statistically significant ability to measure difference
in progressions in Parkinson’s disease vs. Controls, and PROD
vs. Controls. Remarkably, the progression of the PROD group
appeared to be between Parkinson’s disease and Controls.

Prodromal Subtyping With Longitudinal
Connectome Scores
In Figure 5, we evaluated if the progression of the PROD group
could be subtyped based on the progression measured with
the longitudinal connectome scores. We subtyped the PROD
group into two sets according to the threshold derived from
the ROC analysis of Parkinson’s disease/Control discrimination.
This allowed for setting a value independent of the PROD
distribution.

The PROD subgroup 1 (n = 11) (i.e., the subgroup that had
the progression most similar to the Parkinson’s disease group
according to the longitudinal connectome scores) had increased
and more variable UPDRS-III and H&Y scores at 1 and 1.5
year follow-up than at baseline. On the contrary, the PROD
subgroup 2 (n = 5) (i.e., the subgroup that had the progression
most similar to Controls) had UPDRS-III and H&Y scores near
0 at 1 and 1.5 year follow-up, similar to the scores achieved
at baseline. MoCA and SDM did not exhibit a clear trend
between the two subgroups at year 1, no data was available for
year 1.5. Note that the longitudinal connectome scores were
computed based on imaging sessions at baseline and year-1
follow-up. The full clinical scores are available in Supplementary
Table 3.
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FIGURE 3 | Receiver operating characteristic (ROC) curves showing the discriminative performance of the longitudinal brain connectomes in distinguishing
Parkinson’s disease (PD) from Controls (blue line) and PROD from Controls (green line) with a model trained to recognize Parkinson’s disease-progression.
Parkinson’s disease n = 21, PROD n = 16, Control n = 30, all longitudinal connectomes were computed using 1 year progression from the baseline visit. The shaded
areas represent the confidence intervals of the ROC curves. AUC: Area under the ROC curve (perfect discrimination = 1.0, random discrimination = 0.5). Using the
Parkinson’s disease/Control ROC curve we automatically computed the threshold (0.33) that maximizes (sensitivity2+specificity2). Such threshold achieves 0.90
sensitivity, 0.76 specificity and 0.83 balanced accuracy.

TABLE 3 | Most prominent longitudinal connections identified.

Structural connectivity metric

Node 1 Node 2 Streamline
counts

Fractional
anisotropy

Mean
diffusivity

Std from null
distribution

Right red-nucleus Left globus-pallidus-interna x 8.08

Left putamen Left thalamus x 7.97

Right globus-pallidus-externa Left globus-pallidus-externa x 6.67

Left putamen Left globus-pallidus-externa x 6.66

Right caudate Right thalamus x 5.34

Our ML model learns a combination of longitudinal connection changes from the Parkinson’s disease (PD) and Control group. It combines three types of structural
connectivity metrics. The most prominent connections used by our model are computed by using the number of standard deviations from the null distribution estimated
with a random permutation test. Here, we show all connections above five standard deviations. No connections measured with mean diffusivity reached this level.

DISCUSSION

In this study, we evaluated the feasibility of a diffusion MRI-
based computational biomarker able to quantify the progression
patterns occurring in the prodromal phase of Parkinson’s disease.

To this end, we leveraged a novel ML-based method to learn
the longitudinal multivariate patterns from a de novo Parkinson’s
disease and a Control cohort with dMRI connectivity data.
The model generated a “longitudinal connectome score” able
to differentiate progression of the de novo Parkinson’s disease
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TABLE 4 | Discriminative ability of clinical rating scales evaluated cross-sectionally.

Baseline Year-1 follow-up

Rating scale Control vs. PROD
AUC (P-value)

Control vs. PD
AUC (P-value)

Control vs. PROD
AUC (P-value)

Control vs. PD
AUC (P-value)

UPDRS-III 0.70 (<0.05)∗ 1.00 (p < 0.05)∗ 0.70 (0.06) 0.99 (<0.01)∗∗

H&Y† 0.53 (0.19) 1.00 (<0.001)∗∗∗ 0.58 (0.07) 1.00 (<0.001)∗∗∗

MoCA 0.62 (0.1) 0.72 (0.01)∗∗ 0.51 (0.9) 0.58 (0.1)

SDM 0.79 (<0.01)∗∗ 0.65 (0.2) 0.80 (<0.01)∗∗ 0.76 (<0.01)∗∗

AUC, Area and the ROC curve (perfect discrimination = 1.0, random discrimination = 0.5). P-value represents the statistical significance of the metric computed with
logistic regression models corrected for age and gender. †H&Y could not be corrected for age and gender given the sample distributions, a Mann–Whitney U-test
was used instead. As expected, UPDRS-III and H&Y achieved a near perfect discrimination between Control and Parkinson’s disease (PD) groups. SDM had the best
performance in distinguishing PROD from Controls, but failed to reliably measure a difference between Controls and Parkinson’s disease. Bolded values indicate the best
metrics among the different ML models (∗P-value < 0.05, ∗∗P-value < 0.01, and ∗∗∗P-value < 0.001).

FIGURE 4 | Longitudinal brain connectome progression scores compared to clinical rating scales evaluated longitudinally. Top box: diffusion-MRI-based longitudinal
brain connectome score between baseline and year-1 follow-up. Parkinson’s disease (PD) n = 21, PROD n = 16, Control n = 30. Bottom box: clinical rating selected
to be representative of the most used scale for motor signs progression (UPDRS-III) and cognitive sign progression (Chahine et al., 2016 reported SDM and MoCA to
be the cognitive scales most sensitive for cognitive prodromal progression). The statistical significance was computed with logistic regression models corrected for
potential confounders (age and gender). In this dataset, our longitudinal brain connectomes models showed the best discriminative ability to identify differences in
progression among the three groups. Interestingly, the progression for PROD group progression metric computed with the longitudinal brain progression was
between Parkinson’s disease progression and control progression.

group from the Controls with an AUC of 0.89 (P < 0.001),
sensitivity of 0.90, specificity of 0.76 and balanced accuracy
of 0.83. Without any re-training or fine-tuning, the same ML
model was run on the PROD group, (a prodromal cohort,
at high risk of developing Parkinson’s disease) and was able
to identify a progression pattern similar to the one from the
Parkinson’s disease cohort. This latter progression was enough to
discriminate between PROD and Control groups with an AUC of
0.76 (P < 0.01), sensitivity of 0.68, specificity of 0.80 and balanced
accuracy of 0.74. These findings are in line with what we would
expect from a progression marker for the neurodegenerative

phase of prodromal synucleinopathies. ML models differ from
classical statistical designs where a probability model is fit to the
whole dataset to perform inference. ML concentrates on finding
predictive patterns that are generalizable to unseen data (Bzdok
et al., 2017).

The longitudinal connectome score was based on a ML model
that assigned weights to all combinations of 16 Parkinson’s
disease-relevant areas varying between the two imaging sessions
and measured with three connectivity metrics. Logistic regression
with L1 regularization was able to distinguish between groups,
in both CNT vs. PD and CNT vs. PROD, better than the
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FIGURE 5 | Prodromal subtyping using the longitudinal brain connectome scores. On the top, visualization of the threshold used to subgroup the prodromal
subjects according to the longitudinal brain connectomes (as shown in Figure 2). The subtyping threshold is automatically computed from ROC analysis of
Parkinson’s disease (PD)/Control discrimination, by maximizing (sensitivity2+specificity2) as shown in Figure 2. No information about the PROD group was used. On
the bottom, the evolution of clinical rating scales up to 1.5 years follow-up. Bold line: group mean; shaded area: group interquartile range; dim lines: clinical rating
scale for each subject. Only clinical scales with full cohort information for at least 1.5 years were selected. PROD subgroup 1 shows increased UPDRS-III and H&Y
while the same metrics in PROD subgroup 2 are close to 0 and stable. Additional details are shown on Supplementary Table 3.

other ML models tested. This performance is likely due to
the sparse solution found by the L1 regularization which
limits the “curse of dimensionality” and potential correlations
among the different connectivity metrics used. Further, these
weights provide physiological insights to the most prominent
longitudinal connections driving the connectome score. They
included both thalamic and basal ganglia (BG) structures. The
BG involved components of both, the direct pathway (left globus
pallidus interna), which facilitates movement by disinhibiting
the motor thalamus and activating the thalamo-motor cortex,
and components of the indirect pathway (left and right globus
pallidus externa), which inhibits the motor thalamus and
the thalamo-motor cortex. Dopamine depletion in Parkinson’s
disease causes increased inhibitory output from the GPi/SN
through the direct and indirect pathways. Overactivity of the
indirect pathway leads to increased inhibition of the GPe
resulting in amplified STN output that in turn inhibits GPi/SN
output. Decreased activity of the direct pathway causes decreased
inhibition of the GPi/SN (Obeso et al., 2000). The indirect
pathway prevails over the direct one, which is consistent with
our model by the presence of GPe (indirect pathway) in both
nodes and the identification of the connections relating to both
of these pathways in the longitudinally determined pattern. The
main pallidal outflow provides inhibition of thalamocortical
and brainstem motor systems, which manifest clinically by
bradykinesia, rigidity and movement initiation difficulties.

In addition, the red nucleus connection to globus pallidus
interna (GPi) is notable in light of a recent structural

connectivity study that shows the GPi connection to the
ipsilateral subthalamic nucleus (Lambert et al., 2012). By using
a Parkinson’s disease-relevant parcellation atlas, we were able
to model the changes in the nigrostriatal pathway including
subcortical structures not typically included in whole brain
atlases, such as the subthalamic nucleus. This allowed us to
generate a more comprehensive and Parkinson’s disease-relevant
longitudinal connectomes compared to what was previously
described (Giancardo et al., 2018). Nonetheless, one of the main
weaknesses of this atlas is the absence of both olfactory bulb
and limbic structures. The olfactory bulb is affected in early
stages of Parkinson’s disease (stages 1 and 2) (Braak et al., 2003)
and could enhance the sensitivity of the progression marker
proposed.

In this dataset, motor rating scales were able to
discriminate between Control and Parkinson’s disease groups
cross-sectionally; similarly, the SDM scale was able to distinguish
between Control and PROD subjects. However, they failed to
identify any statistically significant difference in progression in a
1-year time span, which was identified by the longitudinal brain
connectome scores, not only in the Parkinson’s disease group but
also in the PROD group where progression is subtler.

Additionally, we described how longitudinal connectomes
scores can be used to subgroup the PROD cohort into
“Parkinson’s disease-like” (PROD subgroup 1) and “Control-
like” (PROD subgroup 2). Given the limited number of subjects,
P-values statistics characterizing differences between the two
subgroups would have been misleading. However, all of the
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clinical rating scales metrics measuring motor signs were stable
and close to zero in the PROD subgroup 2 even at the 1.5-year
follow-up, while that was not the case for the PROD subgroup 1,
which showed an upward trend.

This work has limitations. We used data acquired by 10
clinical different sites (see supplementary material for the full
list) with the same type of 3T scanner and protocol. Further
work is required to identify sensitivity to between-scanner
variability. In addition, the dataset employed to learn the PD
progression is relatively small since it is composed of only
51 subjects (CNT and PD). In this work, we decided to
favor the demographic matching between the groups rather
than the overall size of the dataset. This is one of the
reasons that prompted us to keep the additional 16 PROD
subjects as a fully independent set, thereby drastically reducing
chances of overfitting. Nevertheless, having a larger dataset
that allows us to leave out a fully independent set of CNT
and PD would also be desirable. Our dataset, given its size,
cannot capture the whole heterogeneity of Parkinson’s Disease,
therefore we will need a much larger independent dataset
and a prospective study to precisely quantify the methodology
performance.

Still, the results obtained on data coming from this multi-
site effort are already encouraging and indicate the potential of
these results to be replicable by other research groups and quickly
translated to the clinical practice. Currently, other brain imaging
markers of progression are chiefly based on I-ioflupane SPECT
or F-Fluorodopa PET, which are expensive techniques, requiring
contrast agents and have inherent limitations in their deployment
as longitudinal monitoring tools in the clinic.

CONCLUSION

We have shown the feasibility of diffusion MRI-based
computational biomarkers to quantify the progression patterns
occurring in the prodromal phase of Parkinson’s disease.
These could eventually lead to the addition of an objective
progression tool to the clinical arena, and contribute to
identifying with a high specificity and sensitivity the subjects
that would convert to Parkinson’s disease years earlier of
what is currently possible. Furthermore, this would make

it possible to initiate proof-of-concept prevention trials
that target high-risk populations for early neuroprotective
interventions.
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