
OPINION
published: 18 December 2018
doi: 10.3389/fnins.2018.00971

Frontiers in Neuroscience | www.frontiersin.org 1 December 2018 | Volume 12 | Article 971

Edited by:

Myra Spiliopoulou,

Otto-von-Guericke Universität

Magdeburg, Germany

Reviewed by:

Henning Peters,

Neuroimaging Center (TUM-NIC),

Germany

Johannes Schobel,

University of Ulm, Germany

*Correspondence:

Alexander Seifert

alexander.seifert@uzh.ch

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 13 September 2018

Accepted: 04 December 2018

Published: 18 December 2018

Citation:

Seifert A, Hofer M and Allemand M

(2018) Mobile Data Collection: Smart,

but Not (Yet) Smart Enough.

Front. Neurosci. 12:971.

doi: 10.3389/fnins.2018.00971

Mobile Data Collection: Smart, but
Not (Yet) Smart Enough

Alexander Seifert 1*, Matthias Hofer 1,2 and Mathias Allemand 1,3

1University Research Priority Program “Dynamics of Healthy Aging, ” University of Zurich, Zurich, Switzerland, 2Department

of Communication and Media Research, University of Zurich, Zurich, Switzerland, 3Department of Psychology, University of

Zurich, Zurich, Switzerland

Keywords: mobile data, experience sampling, real-life study, big data, smartphone

BACKGROUND

Mobile data collection with smartphones—which belongs to the methodological family of
ambulatory assessment, ecological momentary assessment, and experience sampling—is
a method for assessing and tracking people’s ongoing thoughts, feelings, behaviors,
or physiological processes in daily life using a smartphone (Mehl and Conner, 2012; Miller,
2012; Trull and Ebner-Priemer, 2013; Harari et al., 2016). The primary goal of this method is to
collect in-the-moment or close-to-the-moment active data (i.e., subjective self-reports) and/or
passive data (e.g., data collected from smartphone sensors) directly from people in their daily
lives. The collection and assessment of such data is possible because smartphones are widely
available and come with the computational power and sensors needed to obtain information
about their owners’ daily lives. Researchers in the fields of social science (e.g., Raento et al., 2009),
psychology (e.g., Miller, 2012; Harari et al., 2016), and neuroscience (e.g., Schlee et al., 2016;
Ladouce et al., 2017) use smartphones to collect data about personality processes and dynamics
(Allemand and Mehl, 2017; Beierle et al., 2018a; Stieger et al., 2018; Zimmermann et al., 2018),
daily cognitive behaviors (Aschwanden et al., 2018), social support behaviors (Scholz et al., 2016),
momentary thoughts (Demiray et al., 2017), couple interactions (Horn et al., 2018), physical
activity (Gruenenfelder-Steiger et al., 2017), and moods and emotions (Erbas et al., 2018).

Using smartphones for data collection provides a snapshot of individuals’ everyday perceptions,
experiences, and interactions with their environments. The use of mobile devices for the assessment
of individuals’ daily lives is not a new research method (e.g., Fahrenberg et al., 1996). However,
because smartphones have now become so widespread throughout the population, are low in cost,
and are equipped with sensor technology and ready for data collection through apps (Miller, 2012;
Cartwright, 2016; Harari et al., 2016; Beierle et al., 2018a), we are now living in an interesting time
for smart mobile data collection. Despite much progress, based on our experiences and discussions
with experts in the field, we see the potential for further development of this method.

SMART MOBILE DATA COLLECTION

Mobile data collection with smartphones is growing rapidly in popularity due to its many
advantages. One such advantage is that the findings are ecologically valid because they are collected
during people’s day-to-day lives and capture behaviors and experiences in real environments
outside of research laboratories (Wrzus and Mehl, 2015). Real-time reports (i.e., active data) and
sensor data (i.e., passive data) are measured in the moment and are therefore less prone to memory
bias than are retrospective assessments (Redelmeier and Kahneman, 1996). By capturing real-time
data about when and where an action takes place, the method provides important information
about the dynamics of real-life patterns (Hektner et al., 2007). A smartphone allows researchers to
capture such data by installing random, continuous, or event-based alarms to ask participants for
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their responses to questions or events during the day. Intensive
repeated measurements of one participant capture within-person
information, which represents the behaviors and experiences
of a single individual. In contrast, between-person information
demonstrates variability between individuals. Collecting within-
person information allows for the study of the mechanisms and
processes that underlie behavior, and this can be contrary to
between-person information (Hamaker, 2012). For example, a
study by Stawski et al. (2013) showed that processing speed
is important for understanding between-person differences in
working memory, whereas attention switching is of greater
importance to within-person variations. Therefore, it can be
argued that the proper study of the dynamic nature of
psychological processes requires repeated observations within
individuals (Conner et al., 2009). Smartphones are ideal tools for
collecting such data.

Real-life data measurements are also rich in contextual
information, as mobile data collection allows for the combination
of self-reports or observer-reports (i.e., active data) and objective
assessments (i.e., passive data) of activities, movements, social
interactions, bodily functions, and biological markers, using
the sensors that are built into smartphones (Ebner-Priemer
et al., 2013). For example, it is possible to collect self-reports
(e.g., individuals’ feelings of social inclusion) and simultaneously
to record acoustic sound clips of conversation to collect the
objective patterns of participants’ actual proximity to and
interaction with others (e.g., Mehl et al., 2001).

Finally, as measurement devices, smartphones are both
powerful and widespread in the population. This enables data
analysis in real time and the opportunity to run machine learning
approaches within the devices, allowing for large, individualized,
dynamic, and intensive real-life studies (Raento et al., 2009;
Bleidorn andHopwood, 2018). Becausemost participants already
have their own smartphones, an app is the only thing they need
to install to participate in a study (Miller, 2012). This gives
researchers the opportunity to conduct studies with large samples
(Dufau et al., 2011).

SMARTER MOBILE DATA COLLECTION IN

THE FUTURE

In our research, we identified some of the challenges
accompanying mobile data collection with smartphones. In
addition to discerning six challenging areas, we offer some
suggestions for dealing with these challenges in the future. The
first challenge relates to collecting data in real-life environments.
Collecting smart data in daily life may result in the validation
of existing theories, some of which may relate to behaviors
and phenomena outside the realm of day-to-day life. However,
this requires that researchers develop theories that reflect the
multiple factors and dynamics of the real-life context that may
influence the individual. Additionally, real-life data should not be
collected simply because it is possible to do so, with conclusions
about the theoretical significance of the data being drawn
afterwards. Instead, we should develop and discuss the potential
of real-life theories that consider both the within-person and
between-person effects and the real-life context.

The second challenging area relates to real-time
measurements. In data collection, real-time also means right on
time; in other words, researchers have to carefully determine
whether they are collecting data about the most relevant variables
at the most appropriate moments and at ideal time intervals.
To do so, they must first know when to collect data and when
behaviors, thoughts, or changes are likely to occur. This question
is crucial in mobile data collection, because conclusions about
fluctuations, variability, and dynamics need to stem from a
sound theoretical rationale or from the behavior patterns of
the target participant (e.g., Wright and Hopwood, 2016). For
instance, smartphone sensor technology and machine learning
can help researchers by detecting the time points of events within
a participant, by learning when events normally occur, or by
learning the dependency of other subjective or objective variables
upon events (e.g., Albert et al., 2012).

The third challenging area concerns within-person data.
Typical smartphone studies collect data with great fidelity and
generate large quantities of observations, placing the approach
clearly within the domain of “big data” and requiring its
associated advanced analytic techniques (Yarkoni, 2012; Fan
et al., 2014). Working with big data requires highly technical
expertise that researchers outside the field of computational
science do not normally have. Resources must be organized, and
after collecting the data, skills in advanced statistical analyses,
including longitudinal structural equation modeling (Little,
2013), dynamic structural equation modeling (Asparouhov
et al., 2017), multilevel modeling (Bolger and Laurenceau,
2013), and machine learning (e.g., Bleidorn and Hopwood,
2018), are required. As a result, an interdisciplinary research
approach involving researchers interested in collecting data with
smartphones and experts familiar with those forms of data
collection, management, and analysis is crucial. Such endeavors
should be supported by funding organizations and academic
career programs, enabling the full potential of mobile data
collection with smartphones to be achieved.

As a fourth challenging area, we identify the contextual
information that can be collected with smartphone sensor data
(i.e., passive data), as researchers have to consider the different
forms, intervals, and amounts of sensor data (e.g., GPS data,
app use, and accelerometer data). When collecting passive data
continuously over multiple days, researchers need to consider
more than just the data itself; they must also be able to
interpret what the measurements indicate and convert the data
into psychologically meaningful variables, such as sociability
or mobility patterns (e.g., Mehl et al., 2006; Harari et al.,
2016). Although this task is fundamental to the research, it
often requires new skills of researchers and new approaches
within the technology—approaches that ideally automatically
aggregate passive smartphone-sensor-based data. For example,
when collecting sound files containing conversation, it would be
very helpful to automatically detect the spoken words of a target
person (e.g., Mehl et al., 2001), detect contextual information
(e.g., Lu et al., 2012), or interpret GPS data in terms of
mobility patterns (e.g., Ryder et al., 2009). For such requirements,
preliminary solutions do exist (e.g., Barry et al., 2006; White
et al., 2011), but much more development and validation work
is needed before we can achieve automatic, preprocessed, and
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validated smartphone-sensor data that can be combined with
other types of data collection.

The fifth challenging area relates to the smartphone device
itself. Mobile data collection with smartphones requires more
technical preparation and greater technical confidence and skills,
on the side of both the researcher and participant, than is
required in classic paper-and-pencil studies. Daily technical
hassles such as malfunctioning software and hardware, low
smartphone batteries, and operation systems crashing during
ongoing studies cost time and resources. Therefore, we highly
recommend including an explicit time buffer and anticipating
a higher than usual drop-out rate in smartphone studies to
compensate for potential technical problems and challenges (for
more information on technical issues, please see Mehl and
Conner, 2012; Miller, 2012; Harari et al., 2016). Although the
technical side of mobile data collection with smartphones is likely
to become more reliable over time, more validation studies are
required in this area andmore ready-made valid apps are needed.
When using smartphones for data collection within specific
population groups, it is also important to consider the unique
needs of the target group. For example, when working with older
adults, it can be helpful to reflect participants’ potential lack of
smartphone skills by adapting briefings on smartphone/app use
(Seifert et al., 2017).

The final, though certainly not least important, challenging
area is that of data security and ethical issues. Collecting mobile
data has revived past concerns about data protection and the
ethical use of data. Using mobile devices for data collection,
including tracking behavior and lifestyle patterns, introduces
a unique dimension to individual participant protection.
When collecting intensive profiles of individuals, which is
the main research method within mobile data collection with
smartphones, anonymization is nearly impossible. Therefore,
traceable real-life data requires an intensive consideration of
ethical and legal approval, the safeguarding of participant
privacy, and the establishment of data security and data privacy
(Harari et al., 2016; Marelli and Testa, 2018). As an example,
Beierle et al. (2018b) conceived a privacy model for mobile
data collection apps. Zook et al. (2017) present ten simple
rules for responsible big data research, concluding that ethical
and data protection issues should not prevent research but

that it is vital to ensure “that the work is sound, accurate,
and maximizes the good while minimizing harm” (Zook et al.,
2017, p. 8). When using participants’ own smartphones, it is
also important that researchers acquire participants’ consent
to share self-recorded data with researchers (Gustarini et al.,
2016). In a quantitative population survey among persons over
50 years of age, Seifert et al. (2018) found that more than
the half of this demographic group is willing to share self-
recorded data with researchers, regardless of participants’ age,
gender, education, technology affinity, or perceived health. The
sharing and use of participants’ own self-recorded data may
require new models of participant involvement, with the goal of
creating a trusted relationship between the data providers and
researchers working with the data (Beierle et al., 2018b; Seifert
et al., 2018).

CONCLUSIONS

Mobile data collection with smartphones offers unique and
innovative opportunities for studying human beings and
processes in real life and real time. This approach offers
researchers the opportunity to collect real-time reports of
participants in their natural environment and within their
individual dynamics and life contexts with the help of a regular
smartphone. However, the approach also brings many challenges
that provide interesting avenues for future developments. To
date, mobile data collection with smartphones is already very
smart, but we see the potential for even smarter mobile data
collection in the future.
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