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Electroencephalography (EEG) and surface electromyography (sEMG) are notoriously
cumbersome technologies. A typical setup may involve bulky electrodes, dangling wires,
and a large amplifier unit. Adapting these technologies to numerous applications has
been accordingly fairly limited. Thanks to the availability of printed electronics, it is
now possible to effectively simplify these techniques. Elegant electrode arrays with
unprecedented performances can be readily produced, eliminating the need to handle
multiple electrodes and wires. Specifically, in this Perspective paper, we focus on the
advantages of electrodes printed on soft films as manifested in signal transmission at the
electrode-skin interface, electrode-skin stability, and user convenience during electrode
placement while achieving prolonged use. Customizing electrode array designs and
implementing blind source separation methods can also improve recording resolution,
reduce variability between individuals and minimize signal cross-talk between nearby
electrodes. Finally, we outline several important applications in the field of neuroscience
and how each can benefit from the convergence of electrophysiology and printed
electronics.
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INTRODUCTION

Surface Electrophysiology
In recent years, electroencephalography (EEG) and surface electromyography (sEMG) have been
suggested for countless new applications, such as brain-machine interfaces (BMIs), neurological
and psychiatric diagnostics, bio-feedback, rehabilitation, sports, and emotion detection (Griss et al.,
2002; Chowdhury et al., 2013; Hwang et al., 2013; Khan and Hong, 2017). Efforts were directed
toward improved signal processing methods (Hyvärinen, 2011; Farina and Holobar, 2016; Naik
et al., 2016) low noise electronics and low-impedance electrodes (Sun et al., 2012; Yeo et al., 2013;
Piervirgili et al., 2014; Wang et al., 2017). Until recently, electrode technology achieved relatively
little progress. Most contemporary skin electrodes rely on conducting gels, a lingering bottleneck
in skin electrophysiology. Gels and adhesive pastes may cause skin irritation and short circuits
between adjacent electrodes.

Furthermore, signal quality gradually degrades over time as the gel dries (Searle and Kirkup,
2000; Kappenman and Luck, 2010). As an alternative, dry skin-penetration electrodes shaped as
pins and barbs were suggested, utilizing micro electro mechanical systems (MEMS) techniques.
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Improving the electrode skin interface with applied pressure on
the electrode was also explored (Searle and Kirkup, 2000; Griss
et al., 2001; Liao et al., 2011; Lopez-Gordo et al., 2014). These
technologies are nevertheless cumbersome and do not provide a
true solution for prolonged use.

Overall, despite the clear motivation to use EEG and sEMG in
many clinical and consumer settings, contemporary technology is
too cumbersome for non-laboratory use. State of the art systems
suffer from major technological challenges including: (a) Poor
electrode quality manifested primarily by signal-to-noise ratio
(SNR) reduction over time; (b) signal cross-talk between nearby
electrodes resulting in limited source identification; and (c) low
resolution recording (Searle and Kirkup, 2000; De Luca et al.,
2010; Fiedler et al., 2014; Hug and Tucker, 2016).

Printed Electronics
Printed electronics is a key technology in a wide range of
applications including displays and touch screens (Berggren
et al., 2007). The growing need for flexible electronics has
also contributed to vast expertise in printing materials that
can accommodate bending and stretching. Printing of flexible
electronics addresses the needs of huge markets, a fact which
has driven its rapid development and maturation (Kamyshny
and Magdassi, 2014; Sabatini et al., 2017). This resulted in the
development of affordable and high performing inks, substrates,
printing methods and tools, lamination processes, and more
(Jiang et al., 2016). Substantial academic research is still carried
out in this field, although well-established techniques along with
vast expertise are already available in the industry for small to
medium and large volume production.

Biocompatible materials, suitable for long-term use in direct
contact with the skin, are also available commercially. Materials
that can stretch to accommodate significant skin deformation
during movement were developed (Jeong et al., 2013; Matsuhisa
et al., 2017). Resolution achieved in printing techniques is limited
compared with micro-fabrication, (Kim et al., 2011; Webb et al.,
2013; Yeo et al., 2013; Madhvapathy et al., 2018) yet it is
perfectly compatible with the needs of skin electrophysiology
while benefiting from significantly reduced prototyping and
production costs.

Electrophysiology Meets Printed
Electronics
Printing electrode arrays on flexible substrates, such as polyimide
or polyester, was suggested as a mean to improve user
convenience and electrode placement (on hair-free regions).
Printed electrodes using various conductive inks, such as
thermoplastic silver ink (Myllymaa et al., 2013a), carbon
(Bareket et al., 2016; Inzelberg et al., 2018a) and poly(3,4-
ethylenedioxythiophene, PEDOT) (Inzelberg et al., 2018a) were
applied recently in several applications (Figure 1). Printed
EEG electrode arrays, such as BrainStatus (Lepola et al., 2014;
Miettinen et al., 2018) and cEEGGrid (Debener et al., 2015)
opened new opportunities in neurological investigations and
diagnostics. Optimal material selection for printing the electrodes
also permit safe artifact-free magnetic resonance imaging (MRI)

and computerized tomography (CT) scanning (Myllymaa et al.,
2013a,b). In the realm of sEMG, several studies demonstrated the
benefits of printing (Scalisi et al., 2015; Zucca et al., 2015; Bareket
et al., 2016; Ferrari et al., 2018; Inzelberg et al., 2018a). Ultrathin
sEMG electrodes can maximize the contact area, lower the
contact impedance, while reducing movement artifacts (Ferrari
et al., 2018; Inzelberg et al., 2018a). High density printed sEMG
emerges as a non-invasive method to acquire precise information
of muscle activation by increasing the electrode number and
enabling data analysis schemes (Marco, 2015; Scalisi et al., 2015).

SOFT PRINTED ELECTRODE ARRAYS
AND IMPROVED SIGNAL QUALITY

Ideally, electrophysiological electrodes should be capable of
prolonged recording time, should be flexible and stretchable
to conform with the human skin, should provide user
convenience and achieve high-resolution recording with
no cross-talk. The mechanical properties of the ink have
to satisfy two main conditions: durability in bending and
stretching, and high flexibility to achieve conformity with
the skin. In our investigations we have addressed this
issue by identifying inks that can sustain extreme folding
without breaking. This proved to be particularly important
for larger EEG electrodes. The electrical conductivity of
the ink is important in EEG applications when long traces
resistance may reach values comparable with the skin-electrode
impedance. In this case, silver traces are needed. Detailed
discussion regarding ink and material properties is available in
Inzelberg et al., 2018a.

Early printed arrays, used to date, were realized on polyimide
or polyester. Although flexible, they are not soft enough to
conform and stretch with the human skin, and as such do not
resolve the need for a conducting gel. However, printing the
electrodes on soft substrates, such as polyurethane, facilitated
a dramatic improvement (beyond user convenience achieved
with the polyimide or polyester electrodes). Principally, a
conducting gel is no longer needed to establish good electrode-
skin conductivity. Secondly, recording quickly stabilizes and
remains stable over time. Along with these two benefits, data
analysis can be used to reduce cross-talk and inter- and intra-
subject variability. Moreover, soft printed electrodes allow high-
resolution and array customization.

Commercially available gelled electrodes are relatively rigid
and thus can record effectively from relatively flat skin areas.
Their recording performances from uneven or curved skin
regions (such as the face) are limited. Moreover, as the skin-
electrode impedance of a gelled electrode tends to deteriorate
over time, the recording quality degrades over time (Searle and
Kirkup, 2000). Dry electrodes, usually in the form of stiff metal
pads, do not require gel. However, they lack flexibility resulting in
poor adhesion to the skin, especially in curved areas (Searle and
Kirkup, 2000; Fiedler et al., 2014). Electrode arrays printed on a
highly soft support, on the other hand, facilitate skin-electrode
conformity at uneven skin surfaces. As soft printed electrodes are
dry, they enable stable, prolonged recordings. While commercial
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dry electrodes interfere with user comfort, electrodes printed
on highly soft substrates allow superior user convenience with
minimal attention to the experimental setup (Fiedler et al., 2014;
Zucca et al., 2015; Ferrari et al., 2018; Inzelberg et al., 2018a,b).
This property allows prolonged recording of several hours in
sEMG (Bareket et al., 2016; Inzelberg et al., 2018b) and EEG
(Figure 2B; Shustak et al., in press).

Cross-talk, defined as the contamination of the sEMG
signal by the myoelectric activity in adjacent muscles, is a
major challenge in skin electrophysiology (Chowdhury et al.,
2013; Hug and Tucker, 2016). It may cause a change in the
sEMG signal shape depending on electrode location, and in
many cases, a muscle can be falsely identified as generating
electrical activity when it does not (Hug and Tucker, 2016).
Cross-talk depends strongly on anatomical and physiological
parameters. Reducing the electrode size and precisely controlling
the inter-electrode distance is a direct approach to reduce
cross-talk (Chowdhury et al., 2013). Nevertheless, reduced
electrode dimension is beneficial as long as electrodes can
record distinguishable signals, which are not located in high-
density muscle regions. A more relevant approach to address
cross-talk in sEMG is by applying mathematical methodologies,
such as blind source separation (BSS) (Hyvärinen et al.,
2001; Farina et al., 2004; Naik et al., 2008, 2016; Farina
and Holobar, 2016). As printed electrodes can be designed
to include high-density arrays with multiple recording sites,
they are ideal for source identification. This analysis cannot
be achieved with contemporary electrodes due to their relative
large size, limited density, and cumbersome placement. In facial
expression mapping in particular, fast independent component
analysis (fastICA) algorithm is a powerful tool (Inzelberg et al.,
2018b). Once fastICA is applied on the data, the relative
weight at each recording site is calculated and the independent
components for each event are obtained. This methodology
reduces variability between repetitions and individuals as it
does not rely on electrode specific location (Hyvärinen, 2011;
Inzelberg et al., 2018b).

In Figure 2 we show four examples of temporary-tattoo
electrode arrays designed for four different uses: (1) Sub hairlines
EEG; (2) EEG, Electrooculography (EOG) and sEMG array
for sleep stage [stages 1–3 and Rapid Eye Movement (REM)]
recording (six hr); (3) sEMG from the cheek and eyebrow regions
to detect emotional affect; and (4) High resolution (16) electrode
array for sEMG of the forearm.

NOVEL APPLICATIONS

As summarized above, printed electrodes on soft substrates
offer several important benefits over conventional electrode
technology. Precise electrode placement is an important part
in skin electrophysiology, commonly necessitating experienced
technicians, and prolonging the placement process. Replacing
such a manual procedure by a quick placement of a single
adhesive patch has a clear advantage in reducing time and
manpower costs. Printing enables customization of electrode
arrays to ideally fit specific individuals, needs and applications.

The large number of electrodes integrated in a single printed
array provides high-resolution recordings with reduced
motion artifacts, compared with conventional electrodes
(Inzelberg et al., 2018b).

Reports from the last decades addressed numerous
applications of skin electrophysiology. Most of these reports
were based on gel electrodes. Clearly, the number of applications
of wearable electrophysiological sensors is immense. We review
below several examples of applications we currently study,
emphasizing the benefits of printed electronic technology for
neurological applications, while discussing existing knowledge
gaps for each application.

Sleep Monitoring in Neurological
Evaluation
Sleep disturbances appear in many neurological diseases and are
one of the most common non-motor symptoms in Parkinson’s
disease (PD) (Paparrigopoulos, 2005; Postuma, 2014). REM sleep
behavior disorder (RBD) is a form of parasomnia characterized
by the loss of normal skeletal muscle atonia during REM sleep,
with prominent motor activity accompanying dreaming. In the
search for markers of the disease, RBD holds much promise,
as it is highly specific for phenoconversion to PD (Postuma
et al., 2013). The gold standard for diagnosis of sleep disorders
is based on studies conducted overnight in a laboratory setting
using polysomnography (PSG). However, since RBD is episodic
in nature, and does not necessarily appear every night, it is
difficult to diagnose in a single night. In addition, this method
is expensive, is not feasible for widespread clinical practice, and
often does not reflect everyday life conditions. An electrode array
with the capability to record EEG, EOG, and sEMG signals
over multiple nights in the home environment holds great
promise.

FIGURE 1 | Screen printed electrodes. (1) Support layer, (2) stiffener,
(3) conductive ink printed on a soft substrate, (4) Kapton, (5) skin adhesive
layer, and (6) release layer. Layers 1 and 6 are temporary and are used to
mechanically stabilize the electrode array before its placement on the skin.
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FIGURE 2 | Four printed electrode arrays customized for different neurological or psychological applications: (A) EEG monitoring. (B) Sleep stage monitoring
(adapted from Shustak et al., in press). (C) Facial expressions as a marker of neuro-psychiatric conditions (adapted from Inzelberg et al., 2018a). (D) Limb muscle
activation. (Ai) Electrode array located at the forehead region. (Aii) Voltage versus time of EEG signals showing clear alpha waves (differentiating between eyes open
and closed). (Bi) Electrode array for sleep stage monitoring with four electrodes located at the forehead (EEG), two next to the right eye (EOG) and two by the chin
region (sEMG). (Bii) Sleep hypnogram during 6 h. (Ci) Electrodes array to capture muscle activity close to the eyebrow and cheek regions. (Cii) Root Mean Square
(RMS) sEMG signals during video watching (frowning at the top panel, smiling at the middle panel and the stimuli trace at the bottom panel). (Di) 16 channel
electrode array located at the forearm with superimposed color maps of calculated independent components (ICs) shown in (Dii). Red color in IC maps specifies
maximal muscle activation. (Dii) IC signals, generated from fastICA algorithm, show clear separation of middle finger versus index finger activations. Written informed
consent was obtained from all the individuals presented in this image.

We recently designed, implemented and tested such a wireless
dry electrode system for sleep stage analysis. sEMG, EOG, and
EEG were successfully recorded using a wireless system. Stable
recordings were achieved both in a hospital environment and in
a home setting (Shustak et al., in press). Utilizing our wireless
recording technology (Inzelberg et al., 2017, 2018b) with a
printed EEG electrode array, enabled clear separation between
open versus closed eyes (Figure 2A). Sleep monitoring during

a six hr session showed clear differentiation of sleep stages
(Figure 2B).

Facial Expressions as a Marker of
Neuro-Psychiatric Conditions
Precise mapping (spatial and temporal) of facial expressions
provides a vast promise in medical assessment because many

Frontiers in Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 992

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00992 December 22, 2018 Time: 12:38 # 5

Inzelberg and Hanein Electrophysiology Meets Printed Electronics

neurological and psychiatric disorders are typified by abnormal
activation patterns. One example is the clinical feature of
PD, hypomimia; the reduction or loss of spontaneous facial
expressions (Argaud et al., 2016; Bologna et al., 2016). On the
other hand, an example demonstrating excessive facial muscle
activation is Tourette syndrome (TS), that includes involuntary
fast, brief and repetitive facial movements in the form of tics
(Brandt et al., 2016; Muth, 2017). These examples point to the
necessity to objectively classify facial expressions for diagnostic
and therapeutic purposes.

We recently demonstrated a unique ability to differentiate
between facial muscle activations using printed electrode arrays
(Inzelberg et al., 2018b). Furthermore, the ability to record
spontaneous, commanded and mimicry facial expressions,
utilizing both screen- and inkjet-printed electrodes comprising
both the cheek and the eyebrows regions in a single integrated
array, was also implemented (Figure 2C; Inzelberg et al., 2018a).

Limb Muscle Activation in Neurology
Abnormal limb muscle activation reflects a multitude of
pathological conditions that encompass diseases of the muscles,
peripheral nerves and central nervous system, as well as
orthopedics and trauma medicine. These pathologies are
manifested by various clinical symptoms, including muscle
weakness, change in muscle tone, co-activation patterns, as
well as changes in the electromyography (EMG) signals. One
such example is the change in activation of the first dorsal
interosseous (FDI) muscle of the hand, resulting from lesions
of the ulnar nerve (Kimura, 2013). In such cases, contemporary
recordings rely on invasive needle EMG to reach single muscle
specificity. Quantitative recordings from the FDI using printed
electrode arrays can be readily achieved (Bareket et al., 2016;
Inzelberg et al., 2018a). Another example is muscle atrophy, as in
amyotrophic lateral sclerosis (ALS), where multiple muscles are
recorded using needle EMG (Kimura, 2013). BSS is of importance
in such an application as it can differentiate between muscle
activations using a single integrated printed patch non-invasively
(Figure 2D).

The Future: Objective Physiological
Evaluation for Everyday Clinics
With the increase of life expectancy, neurological disorders are
becoming one of the greatest societal and economical challenges
of our era. Despite the immensity of the problem, clinical
evaluation still relies heavily on subjective judgment of an
experienced physician. Patients who lack access to a high quality
specialist evaluation may be undiagnosed or misdiagnosed. In
both cases, they miss an opportunity for early diagnosis that
can significantly affect disease management. Physicians also
rely on patient self-reporting to assess symptoms that may not
be apparent during a visit to the clinic. Moreover, symptom
severity is almost impossible to quantify, therefore the efficacy
of drugs is difficult to assess. Finally, latent clinical problems,
which may already indicate disease onset, are very difficult to
be identified. Printed electrodes on soft substrates together with
advanced analysis schemes of the acquired data provide a simple

and cheap tool for objective mapping of neurophysiological
abnormalities. Additional sensors such as temperature and skin
conductivity may further enhance the performances of printed
films. Improving both printed technology and data analysis
methodology, such as BSS (Urigüen and Garcia-Zapirain, 2015;
Negro et al., 2016; Inzelberg et al., 2018b), classification (Debener
et al., 2015; Zhang et al., 2016) and machine learning (Wang et al.,
2014; Amin et al., 2015; Gokgoz and Subasi, 2015) will impact
diagnosis, evaluation of treatment efficacy and enhance research
of neuro-psychiatric disorders. Ideally, such systems will enable
automatic feedback and screening of normal versus pathological
performances.

SUMMARY

Printed electrodes can be used to perform high fidelity EEG and
sEMG recordings and have countless applications in the medical
and consumer markets. Further development may transform
EEG and sEMG into a widely used diagnostic method in
neurology, psychology and marketing. Further advancement of
printed electronics may allow in the future the integration
of additional capabilities beyond the sensing elements, such
as amplifiers, temperature sensors, energy harvesting elements,
chemical sensing and more.
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