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Objective: To automatically detect focal cortical dysplasia (FCD) lesion by combining
quantitative multimodal surface-based features with machine learning and to assess its
clinical value.

Methods: Neuroimaging data and clinical information for 74 participants (40 with
histologically proven FCD type II) was retrospectively included. The morphology, intensity
and function-based features characterizing FCD lesions were calculated vertex-wise on
each cortical surface and fed to an artificial neural network. The classifier performance
was quantitatively and qualitatively assessed by performing statistical analysis and
conventional visual analysis.

Results: The accuracy, sensitivity, specificity of the neural network classifier based on
multimodal surface-based features were 70.5%, 70.0%, and 69.9%, respectively, which
outperformed the unimodal classifier. There was no significant difference in the detection
rate of FCD subtypes (Pearson’s Chi-Square = 0.001, p = 0.970). Cohen’s kappa score
between automated detection outcomes and post-surgical resection region was 0.385
(considered as fair).

Conclusion: Automated machine learning with multimodal surface features can provide
objective and intelligent detection of FCD lesion in pre-surgical evaluation and can assist
the surgical strategy. Furthermore, the optimal parameters, appropriate surface features
and efficient algorithm are worth exploring.

Keywords: focal cortical dysplasia, machine learning, metabolic, morphological, quantitative

INTRODUCTION

Focal cortical dysplasia (FCD) was intrinsically epileptogenic and was a significant cause of
medically refractory epilepsy (Fauser, 2015). FCD had been reported as being increasingly
frequent in a series of patients who had undergone epilepsy surgery and was the most common
histopathological diagnosis among children (Blumcke et al., 2017). For patients in whom FCD
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lesions were focal, epilepsy surgery may be an option.
Complete resection of the FCD lesions, including surrounding
epileptogenic areas, correlated with a satisfied prognosis and
fewer complications (Timoney and Rutka, 2017). Therefore,
accurate detection of the localization and extent of epileptogenic
lesions during pre-surgical evaluation was crucial because it
affected not only surgical decisions, but also the intracranial
electroencephalogram (iEEG) implantation strategy when the
lesions were located in highly functional areas (e.g., speech, motor
skills) (Chassoux et al., 2017).

Focal cortical dysplasia constituted a broad spectrum of
histopathological and clinical features ranging from FCD type
I (small or subtle in conventional magnetic resonance imaging
[MRI]) to FCD type III (severe pathology with other associated
epileptogenic lesions) (Blümcke et al., 2011). Radiologically, the
features of FCD included the following: (1) local cortical thinning
or thickening; (2) blurring of the gray-white matter (GM/WM)
boundary; (3) gyration anomalies; (4) abnormal signal intensity
on fluid-attenuated inversion recovery (FLAIR)/T2-weighted
MRI (including the Transmantle sign in FCD IIb); (5)
abnormal interhemispheric asymmetry in structural patterns;
(6) lobar hypoplasia/atrophy; and (7) diffuse or multifocal
occurrence in any of the above features (Lee et al., 1998;
Bernasconi, 2003; Colombo et al., 2012). Additionally, 18fluoro-
2-deoxy-d-glucose (18FDG) positron emission tomography–
computed tomography (PET-CT) was performed to help with
the localization of epileptogenic disturbances in metabolism,
which may aid the identification of occult FCD that were
missed on MRI. PET-CT often revealed focal hypometabolism
in the FCD region and has been shown to have a diagnostic
sensitivity of 78–83% in FCD detection (Chassoux et al.,
2010; Yh et al., 2011). The accuracy increased further with
the use of PET/MRI co-registration (Salamon et al., 2008).
Despite enormous progress in neuroimaging techniques and
computational methods, many lesions remain subtle to identify,
as the sensitivity is approximately 70% of patients with FCD
(Wang et al., 2013; Kini et al., 2016). Approximately 30% of
patients with visually negative MRI cause inherent difficulty
in identifying the epileptogenic zone (EZ). Furthermore, in
some cases, re-examination of MRI images indicates that lesions
were missed during initial interpretation, and the pre-operative
evaluation process was time-consuming and depends upon the
experience of the interpreters, which may hinder the localization
of the EZ and advancements of surgical treatments.

To overcome the limitations of radiological assessment of
FCD, quantitative computational analysis and machine learning
methods have built a series of feature measures into an
identification algorithm to improve the detection rate (Adler
et al., 2017; Hong et al., 2017; Jin et al., 2018; Tan et al., 2018).
For example, morphometric analysis on T1-weighted MRI was
designed to generate z-score maps to identify the abnormal
extension of the GM/WM boundary and GM/WM junction
(Wong-Kisiel et al., 2018); voxel-based 3-dimensional (3-D) MRI
analysis evaluated FCD by voxel-wise subtraction of the mean
GM density map of the normal database, and the resulting dataset
is searched for local and global maxima (Kassubek et al., 2010); an
automated algorithm was trained on MRI-negative patients with

histologically confirmed FCD to improve the diagnostic accuracy
(Hong et al., 2014); and quantification of the 18F-FDG PET could
help identify subtle lesions as a complement to the visual analysis
(Mendes et al., 2017). To date, developing an accurate diagnostic
tool that combines machine learning and quantitative imaging
features, to identify potential epileptogenic foci was expected.

Our overall approach was to combine machine learning
methods with quantitative multimodal surface-based features
for the automated detection of FCD lesions. First, we included
eligible structural and functional images [T1-magnetization
prepared rapid gradient echo (T1-MPRAGE) sequence,
T2-FLAIR sequence and PET], performed image pre-processing
[space standardization, cortical construction, co-registration
and drawing the region of interest (ROI)] and extracted surface
features (morphological and metabolic characteristics). Then, we
configured a machine learning model by choosing an appropriate
algorithm and defining related parameters, training the model
with labeled feature inputs and making predictions on the new
dataset. Finally, we evaluated the clinical value of this method
both quantitatively and qualitatively by performing statistical
analysis and conventional visual analysis.

MATERIALS AND METHODS

The flow diagram outlining the study design and results is shown
in Figure 1.

Participants
Forty participants with medically refractory epilepsy who had
undergone pre-surgical assessment in the Epilepsy Centre
of Beijing Tiantan Hospital between 2015 and 2018 were
retrospectively included in the present study. The pathologic
diagnosis was confirmed and subtyped according to the
International League Against Epilepsy 2010 classification (Kwan
et al., 2010). To accurately label the lesion, only the patients
with histopathological proven FCD type II and positive imaging
were included. To assess specificity and perform inter-subject
normalization, we additionally included 33 patients with short
duration (less than 3 years) and histopathological confirmation
of hippocampal sclerosis (HS) or epidermoid cyst (EC) as control
group because it was difficult to find healthy subjects with PET
images who were free of central nervous system disease in the
clinical setting. In addition, other clinical centers also adapted
patients with HS and EC as reference group (Adler et al., 2017;
Tan et al., 2018). All patients in control group underwent epilepsy
surgery and had histopathological verification of the absence of
FCD. Simultaneously, an iEEG was applied to confirm the EZ was
located at mesio-temporal regions, in some cases.

All the included participants fulfilled the following inclusion
criteria: (1) complete clinical data (including demographic
information, origin T1-MPRAGE, T2-FLAIR and PET imaging,
and histological diagnosis); and (2) performance of lesionectomy.
The following patients were excluded: (1) patients who were less
than 3 years old, as the myelination of the neonatal brain does not
reach maturity (Soun et al., 2016), which may influence imaging
data normalization; (2) patients with low-quality images resulting
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FIGURE 1 | Flow diagram of study design.

from head motion, noise or other image artifacts; and (3) patients
with FCD III on histopathology, as other principle lesions may
affect the performance of the artificial neural network (ANN).

Brain imaging data were visually analyzed by expert
neuroradiologists according to established MRI and PET
characteristic features (Lee et al., 1998; Bernasconi, 2003;
Chassoux et al., 2010; Colombo et al., 2012). The determination
of location and border of suspected lesions was validated by an
epilepsy multidisciplinary team that consisted of neurosurgeons,
neurologists, neurophysiologists and neuropsychologists. The
surgery strategy was decided based on pre-surgical evaluation
(semiology, structural and functional imaging and EEG data)
during an epilepsy surgery meeting. We postulated that the
EZ was located inside the resection region, based on seizure
improvement following surgery. Surgical outcome data were
obtained via direct clinical assessment or telephone interview
and were determined based on the International League Against
Epilepsy (ILAE) classification system (Wieser et al., 2010).

The overall procedure of the automated detection approach is
shown in Figure 2.

MRI and PET Imaging Data
In our centre, all neuroimages were acquired at 3.0 T field
strength using dedicated MRI epilepsy protocols, including
3-dimensional (3D) T1-MPRAGE sequence [repetition time
(TR) = 2,300 ms, echo time (TE) = 2.53 ms, flip angle = 12◦, slice
thickness = 1 mm, no gap, voxel size = 1 mm × 1 mm × 1 mm],
and axial T2-FLAIR (TR = 7,000 ms, TE = 80 ms,
flip angle = 12◦, slice thickness = 1 mm, no gap, voxel
size = 1 mm × 1 mm × 1 mm). T1-MPRAGE and T2-FLAIR
sequences offered advantages in identifying subtle differences
in cortical tissue (Viviani et al., 2017). FDG-PET scans were
acquired in the interictal state under standard resting conditions
(eyes closed, dimmed ambient light). Approximately 45 min

following the intravenous administration of 18F-labeled FDG,
PET images of the brain were obtained from the vertex to the
skull base (voxel size was 1 mm, slice thickness was 3.27 mm).
Images were attenuation-corrected using non-contrast CT
transmission information.

Pre-processing and Normalization
Pre-processing involved T1-MPRAGE and T2-FLAIR images
undergoing automated intensity non-uniformity correction and
intensity normalization, which could upgrade the accuracy of
registration performance (Bagci et al., 2010). Then, T1-MPRAGE
images were linearly registered to the Montreal Neurological
Institute (MNI) 152 symmetric template (Evans et al., 1993).
Following that step, T2-FLAIR and PET images were linearly
mapped to the T1-MPARAGE images in MNI space, and
subsequently, analysis was performed using the SPM12 software
package (available for free download1 ) (Figure 2).

Surface Reconstruction
FreeSurfer software v5.32 (NeuroImage. Cortical surface-based
analysis, 1999; Fischl and Dale, 2000) was used to perform
the cortical reconstruction and to register the T2-FLAIR
sequence and PET scans to the T1-MPRAGE with the recon-
all pipeline (NeuroImage. Cortical surface-based analysis, 1999).
The pipeline provided a full processing stream for structural
images, including the following: (1) motion correction and
averaging volumetric T1 weighted images; (2) removal of
non-brain tissue; (3) automated Talairach transformation; (4)
segmentation of the subcortical white matter and deep gray
matter volumetric structures; (5) tessellation of the gray matter
white matter boundary; (6) automated topology correction; and

1http://www.fil.ion.ucl.ac.uk/spm/software/
2http://surfer.nmr.mgh.harvard.edu/
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FIGURE 2 | Overall procedure of automatic detection of FCD.

(7) surface deformation to optimally place the GM/WM and
GM/cerebrospinal fluid (CSF) borders at the location. Once
the cortical models were complete, a number of deformable
procedures could be performed for further data processing
and analysis, including surface inflation (NeuroImage. Cortical
surface-based analysis, 1999). Additionally, cortical surface

data and brain volumes could be displayed in tksurfer and
freeview, respectively. These steps were illustrated in detail
in the tutorials and a prior study (Reuter et al., 2012). The
results of reconstruction and surface extraction were validated
by visual inspection, and any inaccuracies were manually
corrected.
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Manual Lesion Masks
Manual lesion labels of FCD were created for 40 patients in
freeview on an axial T1-MPRAGE volumetric scan. The location
of the lesions were confirmed by the outcomes of pre-surgical
evaluation (the neuroimaging features in combination with
seizure semiology, clinical examination and video EEG). After
that, the labels were converted to surface for compatibility with
the surface reconstructions and normalized to zero-mean, MNI
standard space. Non-lesional tissues were sampled from the
contralateral, healthy, homotopic cortex.

FCD Feature Extraction From MRI
and PET
Labels of vertex morphologic [GM/WM intensity contrast,
local cortical deformation (LGD), cortical thickness, mean
curvature, sulcal depth, doughnut intensity, doughnut thickness],
intensity (FLAIR intensity at a different level of the cortical
depth, doughnut FLAIR) and metabolic (PET hypointense, PET
asymmetry) features were calculated. The MRI and PET features
were computed after first warping surfaces back into each
subject’s MRI native space and subsequently into PET native
space by inversely transforming the previously performed PET-
to-MRI registration. These features were then resampled on the
MNI surface template using the related transformation. The
technical details of these features were described in a prior
study (Adler et al., 2017), and all codes are freely available at
https://github.com/kwagstyl/FCDdetection. The measurements
of features were represented below.

Measures of Morphological Features
GM/WM intensity contrast was measured as the ratio of the
GM signal intensity to the WM signal intensity (Fauser, 2015;
Adler et al., 2017). The GM and WM signal intensities were
measured 30% through the thickness of the cortical ribbon and
1 mm below the GM/WM interface, respectively (Salat et al.,
2009). FCD lesions with blurring of the GM/WM boundary
were expected to have low GM/WM intensity contrast values
compared to those of the non-FCD cortex; (Blumcke et al.,
2017) LGD was measured as the degree of cortical intrinsic
curvature of a 25 mm radius ring that was centered on a vertex
(Ronan et al., 2011; Adler et al., 2017; Timoney and Rutka, 2017).
The cortical thickness was measured as the shortest distance
between corresponding vertices on the GM/WM surfaces (Fischl
and Dale, 2000; Chassoux et al., 2017). The mean curvature
was measured as the area-minimizing flow that defines the
deviation from the cortical surface to a sphere at the GM/WM
boundary (Blümcke et al., 2011; Jin et al., 2018) The sulcal
depth was measured as the geodesic distance between the given
vertices within sulci and the gyral crown vertices (Boucher
et al., 2009). As reported in prior studies, small FCD lesions
were located at the bottom of a deep sulcus (Hofman et al.,
2011).

Measures of Intensity Features
FLAIR intensities at the GM/WM boundary as well as at 25%,
50%, and 75% of cortical thickness, and at 0.5 mm and 1 mm

below the boundary, were sampled. Decreased vertical gradient
indicated the blurring of the GM/WM boundary (Hong et al.,
2017).

Measures of Metabolic Features
Details about extraction of PET features can be found elsewhere
(Tan et al., 2018). (1) PET hypointensity was measured as
normalized intensity at each vertex of the FCD lesion; (2) PET
asymmetry was calculated to compare the relatively lower PET
intensity in the FCD lesion to that of the homotopic location in
the contralateral brain hemisphere.

Doughnut Map
Comparison of the GM/WM intensity contrast, cortical thickness
and FLAIR intensities between a 6 mm radius circle on the
inflated surface and the surrounding region around the circle
was conducive to identifying the local change and reducing the
spurious motion effect (Adler et al., 2017).

Features Smoothing and Normalization
Prior to classification, all the features were smoothed with a
10 mm full-width-at-half-maximum (FWHM) Gaussian surface
kernel (Merkx et al., 2012). Then, for each type of feature across
all the vertices within a given individual, we would perform the
within-subject z-score normalization, followed by the between-
subject z-score normalization, so that feature values at a given
vertex were normalized to the control group.

Interhemispheric Asymmetry
The morphological, intensity, metabolic features and doughnut
maps performed the interhemispheric registration on the average
space (fsaverage_sym). Interhemispheric registration of feature
maps allowed quantification of the interhemispheric asymmetry
of surface-based metrics at each vertex. An initial template
was created from only the left hemisphere value, and bilateral
hemisphere values were aligned with this initial left template.
A new template was then created from these bilateral surfaces,
and the surfaces were reregistered to it. This new template was
a mixture of left and right hemisphere and thus was less biased
(Greve et al., 2013).

Performance of Machine Learning
Automated detection of FCD lesion was performed using an
ANN classifier implemented in MATLAB R2017b (MathWorks,
Natick, MA, United States). The neural network classifier was
trained on the aforementioned neuroimaging features sampled
from the vertices of the labeled lesion and selected non-lesional
vertices. Each vertex in the training data was given two values: “1”
for the lesion in the mask; “0” for the non-lesional hemisphere.
The feedforward network was widely used and provides a proven
method of building a non-parametric classifier. It contained
input, hidden and output layers. The non-linear behavior of the
hidden and output layers generated classifier behavior (Haykin,
1994). Principal component analysis (PCA) was applied to reduce
the input dimension and speed up the learning algorithm. Every
node in the proceeding layer took a weighted average of the
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outputs of the previous layer, until an output was reached.
The value of output layers from the weighted sum of inputs
determines the property of each vertex. And 70% of the available
data was allocated for training. The remaining 30% of data
were equally partitioned as validation and test datasets. Feature
selection, training, and performance evaluation were carried out
using k-fold cross validations (k = 5) with 100 iterations. At each
iteration, the dataset was randomly partitioned into k equal sized
subsets. Then, a single subset was retained as the validation data
for testing the model, and the remaining k – 1 subsets were
used as training data (Rodriguez et al., 2010). The threshold
of probability maps at the highest detection and lowest false-
positive rates were set in all the classification schemes. The
evaluation of classification accuracy was assessed with regards to
post-surgical resection regions and the standard-of-care clinical
evaluation.

Statistical Analysis
All numeric data had a non-parametric statistical distribution
according to the Shapiro–Wilk test. For descriptive data
compared between the patient group and control group, Pearson’s
Chi-square test or Fisher’s exact test and Student t-test or Mann–
Whitney test were used. Statistical significance was set at the
5% level. All results were considered as concordant if there
was a major positive cluster located at the surgically resected
areas. The findings of each diagnostic output were separated
into true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). A comparison of automated
detection outcomes to surgical resection regions were visually
determined. TP (also called the detection rate) was defined
as the proportion of patients in whom a detected cluster
correctly overlapped with the post-surgical resection region.
TN was calculated as the proportion of controls in whom no
FCD lesion cluster was falsely identified. The sensitivity was
calculated as TP/(TP + FN), specificity as TN/(TN + FP)
and accuracy as (TP + TN)/(TP + FP + FN + TN).
Agreement in correctly identifying the resection area was
determined between automated detection outcomes using
Cohen’s kappa scores. According to a prior study, kappa

values were classified as slight (0.00–0.20), fair (0.21–0.40),
moderate (0.41–0.60), substantial (0.61–0.80), and almost perfect
(0.81–1.00) (Landis and Koch, 1977). Statistical analysis was
performed with SPSS software, version 20.0.0 (IBM corp.,
United States).

RESULTS

Patient Demographics and Clinical
Information
Demographics information and lesion characteristics were
summarized in Table 1. In total, seventy-three cases (36 female,
37 male) were eligibly included in the present study. In the
patient group, 18 patients (24.3%) had histologically confirmed
FCD IIa, 22 (29.7%) had FCD IIb; and in the control group,
32 (43.2%) had HS and 1 (1.4%) had EC. The sex proportion
of the control group was not significantly different from that of
the patient group (Pearson’s Chi-Square = 0.117, p = 0.733), nor
was the hemisphere lateralization (Pearson’s Chi-Square = 0.030,
p = 0.862). At the same time, there was no significant difference in
duration between the each group (Mann–Whitney U: p = 0.942, as
the variables of the patient group did not correspond to a normal
distribution). The epilepsy duration ranged from 0.1 to 33 years
[mean 11.2 years, standard deviation (SD) 8.3 years] in the patient
group and from 0.5 to 32 years (mean 11.3 years, SD 8.3 years) in
the control group. Seizure freedom was achieved in 82.5% (33/40)
of participants 1 year after surgery.

Performance of the Neural Network
Classifier (Quantitative Analysis)
The statistical analysis of automated detection outcomes is
available in Figure 3. According to the final output, the detected
clusters colocalized with the post-surgical resection region in 31
patients, yielding a TP of 77.5% (31/40), and 13 lesional clusters
were identified in the control group, resulting in 60.6% (20/33)
TN. Therefore, according to the aforementioned formulas, the
sensitivity was calculated as 70.5%, specificity as 70.0% and

TABLE 1 | Overview of the clinical features of the 73 patients with MRI lesion and pathologic diagnosis.

Patient group Control group P-value

Participants 40 33 –

Sex (%) Female: 19 (47.5%)
Male: 21 (52.5%)

Female: 17 (51.5%)
Male: 16 (48.5%)

0.733a

Duration (mean ± SD, years) 11.2 ± 8.3, range 0.1–33 11.3 ± 8.3, range 0.5–32 0.942b

Pathology (%) FCD IIa 18 (45.0%)
FCD IIb 22 (55.0%)

HS 32 (97.0%)
EC 1 (3.0%)

–

Hemisphere (%) Left 21 (52.5%)
Right 19 (47.5%)

Left 18 (54.5%)
Right 15 (45.5%)

0.862a

Lesion location (%) Frontal lobe 26 (65.0%)
Temporal lobe 4 (10.0%)
Parietal lobe 5 (12.5%)
Occipital lobe 2 (5.0%)
Insular lobe 3 (7.5%)

– –

FCD, focal cortical dysplasia; HS, hippocampal sclerosis; EC, epidermoid cyst; SD, standard deviation. aPearson’s Chi-Square test; bMann–Whitney U test.
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FIGURE 3 | Automated detection outcomes. (A) Patient-level analysis. Numbers in histograms represented number of patients. The percentage of patients in whom
automated outcomes were concordant with the surgical resection is 77.5% (31/40) in all patients, 72.2% (13/18) in FCD IIa subgroup, and 81.8% (18/22) in FCD IIb
subgroup. There was no significant difference between subgroups (Pearson’s Chi-Square = 0.001, p = 0.970). (B) The plot showed the sensitivity and specificity of
separate neural networks operating on unimodal and multimodal features. (C) Confusion matrix for neural networks showed the outcomes of statistical analysis.
(D) The detection rates of different images and the automated detection outcomes. ILAE I: completely seizure-free without auras in ILAE classification. aPearson’s
Chi-Square test.

accuracy as 69.9%. There was no significant difference in the
detection rate of FCD subtypes (Pearson’s Chi-Square = 0.001,
p = 0.970). The outcomes of separate neural networks operating
on unimodal (lesional features derived from only one modality,
such as T1-MPRAGE, T2-FLAIR or PET) were lower than the
performance on multimodal classifiers, and the statistical analysis
is shown in Figures 3B,D. Cohen’s kappa score between the
automated detection outcomes and post-surgical resection region
was 0.385 (considered as fair).

Case Evaluation (Qualitative Analysis)
Pre-surgical imaging data, automated detection outcomes,
surgical resection and a follow-up survey are available in Figure 4.

Here, we take patient 3 as an example to display the qualitative
analysis.

Patient 3, a 4-year-old, right-handed male pediatric patient,
started having seizures 3 years ago. His familial and personal
history was irrelevant. Seizure symptomatology was characterized
by impaired awareness, facial flushing, and upper limb flexion.
Seizures occurred more than 10 times per day and lasted
about half a minute. Neurologic examination was normal,
and neuropsychological evaluation revealed no memory
dysfunctions. During video-EEG monitoring, interictal spikes
were recorded over the left frontal lobe and central area (C3,
F3), and ictal activity appeared in the same areas. The initial
MRI report revealed abnormal signs in the left frontal lobe.
A careful visual analysis of FDG-PET and registered PET-MRI
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FIGURE 4 | Case evaluation. Examples of automated detection outcomes in four patients with the diagnosis of FCD. Red arrows pointed to the lesion. The absence
of red arrows indicated negative diagnosis in the initial report. Evaluation of surgical outcome based on the International League Against Epilepsy (ILAE) classification
system.

revealed hypometabolism of the left occipital lobe (bottom of
middle frontal gyrus). The outcomes of semiology, EEG and
neuroimaging data pointed to the same suspected epileptogenic
area; thus, SEEG was unnecessary. A lesionectomy (from
the anterior boundary of lesion to the precentral sulcus) was
performed, and the patient has remained seizure-free for 11
months, with no neurological deficit. Pathologic examination
showed FCD IIb. In addition, the automated detection outcome
was concordant with the surgical resection region.

DISCUSSION

Achievement
Focal cortical dysplasia caused medically refractory epilepsy
and was amenable to surgical treatment (Blümcke et al.,
2011). Completeness of resection of the dysplastic tissue
and additional epileptogenic tissue was considered to be one
critical factor in determining outcome after surgery (Blount,
2017). Even with the most advanced imaging techniques, the
subtle radiographic appearance of FCD still rendered visual
identification challenging. Meanwhile, the interpretation of
neuroimaging was time-consuming, subjective and based on
the interpreters’ experience, which may result in erroneous or
miss-diagnosis. Clearly, to accurately localize the lesions, achieve
better prognosis and minimize the resection of uninvolved
regions, an objective and machine-aided diagnostic tool was
necessary. Therefore, the aim of the present study was to combine

machine learning methods with quantitative neuroimaging
features for automated identification of the site and extent
of the FCD type II lesion. The neural network classifier
performance was evaluated quantitatively and qualitatively
by performing statistical analysis and conventional visual
analysis. Overall, in the present study, the neuroimaging data
and demographic information of seventy-three participants
were included to train the neural network classifier. The
accuracy, sensitivity, and specificity of the classifier were
70.5%, 70.0%, and 69.9%, respectively. Cohen’s kappa score
between the automated detection outcomes and post-surgical
resection region was 0.385 (considered as fair). There was no
significant difference in the detection rate of FCD subtypes.
In summary, the proposed method had great potential to
become an auxiliary tool for diagnosis of epilepsy in pre-surgical
evaluation. We considered that future strategies for exploring
optimal parameters, appropriate surface features and an efficient
algorithm were worthwhile.

Correlated Literatures
Currently, an improvement in magnetic field strength (De
Ciantis et al., 2016) and sequences of MRI had improved the
detection of FCD. Texture analysis (Antel et al., 2003; Besson
et al., 2008; Wong-Kisiel et al., 2018) and voxel-based analysis
(Huppertz et al., 2001; Kassubek et al., 2010) had been used
to identify FCD characteristics in a quantitative fashion. But
these methods were criticized for their subjective inspection. In
addition, voxel-based methods neglect anatomical relationships
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across the folded cortex and amplify unwanted partial volume
effects, which also led to less remarkable outcomes (Hong
et al., 2014). To overcome these drawbacks, Tan et al. (2018)
introduced an algorithm reliant on surface-based features that
statistically combine morphology, intensity and metabolism and
has better performance (Hong et al., 2014). At the same time,
as the increasing number and complexity of medical images
threatens to overwhelm radiologists’ capacity to interpret them,
machine learning provided an effective way to automate the
analysis and diagnosis of medical images (Wang and Summers,
2012). Machine learning methods were increasingly popular
in imaging diagnosis prognostic estimation. The approaches
were able to process enormous amounts of clinical data and
perform quantitative analysis to make the conclusion more
objective. However, many scientific and practical challenges
still needed to be addressed: variation in imaging protocols,
weak labels, interpretation of results and so on (Bruijne, 2016).
In the present study, we took advantage of the availability
of PET scans and expected to achieve superior sensitivity in
FCD detection using feature modeling of combined MRI and
PET, compared to that using quantitative MRI alone (Hong
et al., 2014; Adler et al., 2017; Mendes et al., 2017; Jin et al.,
2018). However, our neural network classifier underperformed
in identifying the FCD lesion [the detection rate was lower
than that in previous work (Adler et al., 2017; Jin et al.,
2018; Tan et al., 2018)]. Several reasons may explain this
phenomenon. First, multimodal surface features (morphology,
intensity, and metabolism) of FCD were extracted to train
the classifier. However, only several features were confirmed
as valuable, such as cortical thickness and GM/WM matter
intensity (Hong et al., 2014; Jin et al., 2018). Therefore, the
unsatisfied performance may result from other irrelevant and
noisy features (the so-called “overfitting problem”) when we
fed all the features to ANN (Hawkins, 2004). Though the cross
validation had been used for evaluation, the problem could not
be avoided completely. Second, different protocols of available
neuroimaging data may have an influence on data consistency.
On the other hand, relatively low TN rates (60.6%, 20/33) in
the control group suggested that the classifier failed to ignore
healthy tissue and disregard FCD-unrelated pathology in the
control group. This outcome may also be attributable to the
redundant multimodal surface features. Moreover, extra-primary
clusters were found in several patients. However, no post-surgical
pathology was available, as these regions were not resected. Prior
studies revealed that these clusters presented similar features
to those of FCD but were extensive and somewhat different
(Hong et al., 2014). In addition, these findings suggested that
extra-primary clusters may potentially be epileptogenic, as they
were too subtle to discover in the visual analysis and were
ignored easily, which could explain why not all patients with
complete resection of the primary FCD lesion became seizure-
free, especially the patients with FCD I or FCD IIa (Kwon et al.,
2016).

Undoubtedly, technological advances have revolutionized the
field of epilepsy in recent years. However, individual treatment
according to the presurgical data was still important. For
example, integration of clinical symptoms with analysis of

pre-ictal EEG was conducive to establish an anatomical-electro-
clinical correlation, which helped clinicians obtain the hypothesis
of epileptic network. Also, substantial progress of imaging
technology and computer-assistant methods was beneficial for
the localization of lesions and establishment of a surgical plan.
For some complex cases, in particular in surgical candidates
with invisible lesions and discordant presurgical evaluation,
invasive EEG technique based on a reasonable hypothesis should
be preferred as it carries the advantage of allowing a three-
dimensional definition of the EZ, which contributed to complete
resection of the EZ and better surgical outcomes. In summary,
optimization of personalized treatment was deeply connected to
and dependent on the novel technology as well as the clinical
information.

Limitation
Our study had several limitations. First, as PET-CT is an
expensive, radioactive medical technique, it was unethical to
perform on the healthy population, so we could only include
patients with HS and HC as the reference group. Herein, the
neuroimaging of controls will influence the accuracy of the
neural network classifier because some cases of epilepsy were
dual pathology, which means that HS and FCD were combined
(Chacón et al., 2008). Second, the overfitting problem discussed
above may influence the final outcome. It is possible that a
reduction in unnecessary components could be a solution in
future research. Regularization is a way to reduce overfitting
by artificially penalizing higher degree polynomials (in brief,
the technique discourages learning a more complex model)
(Cuingnet et al., 2013). Meanwhile, other potentially useful
surface features to detect FCD may have not yet been discovered
in the current literature. Third, the absence of a ground truth
for each lesion label made it impossible to assess the extent to
which discrepancies between manual and automated detection
are errors. Additionally, we noticed the alarmingly high FP rate
in the present study, which may be related to the HS controls
and the low specificity of PET modality. Though the FP rate
could not be completely avoided in medical testing, inclusion
ideal controls and prudent consideration of PET features were
helpful to alleviate it.

CONCLUSION

In conclusion, automated machine learning with multimodal
surface features could provide objective and intelligent detection
of FCD lesion in pre-surgical evaluation and assist surgical
strategy. Furthermore, the optimal parameters, appropriate
surface features and efficient algorithm were worth exploring.
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