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Diabetes affects the morphology and plasticity of the hippocampus, and leads to learning

and memory deficits. Caffeine has been proposed to prevent memory impairment

upon multiple chronic disorders with neurological involvement. We tested whether

long-term caffeine consumption prevents type 2 diabetes (T2D)-induced spatial memory

impairment and hippocampal alterations, including synaptic degeneration, astrogliosis,

and metabolic modifications. Control Wistar rats and Goto-Kakizaki (GK) rats that

develop T2D were treated with caffeine (1 g/L in drinking water) for 4 months. Spatial

memory was evaluated in a Y-maze. Hippocampal metabolic profile and glucose

homeostasis were investigated by 1H magnetic resonance spectroscopy. The density

of neuronal, synaptic, and glial-specific markers was evaluated by Western blot analysis.

GK rats displayed reduced Y-maze spontaneous alternation and a lower amplitude of

hippocampal long-term potentiation when compared to controls, suggesting impaired

hippocampal-dependent spatial memory. Diabetes did not impact the relation of

hippocampal to plasma glucose concentrations, but altered the neurochemical profile

of the hippocampus, such as increased in levels of the osmolites taurine (P < 0.001)

and myo-inositol (P < 0.05). The diabetic hippocampus showed decreased density of

the presynaptic proteins synaptophysin (P < 0.05) and SNAP25 (P < 0.05), suggesting

synaptic degeneration, and increased GFAP (P < 0.001) and vimentin (P < 0.05)

immunoreactivities that are indicative of astrogliosis. The effects of caffeine intake

on hippocampal metabolism added to those of T2D, namely reducing myo-inositol

levels (P < 0.001) and further increasing taurine levels (P < 0.05). Caffeine prevented
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T2D-induced alterations of GFAP, vimentin and SNAP25, and improved memory deficits.

We conclude that caffeine consumption has beneficial effects counteracting alterations

in the hippocampus of GK rats, leading to the improvement of T2D-associated memory

impairment.

Keywords: insulin, adenosine, caffeine, neuroprotection, synaptic dysfunction, gliosis, glucose,metabolic profiling

INTRODUCTION

Metabolic syndrome and diabetes mellitus affect brain function
and increase the risk of age-related cognitive impairment,
vascular dementia, and Alzheimer’s disease (Frisardi et al.,
2010; Duarte, 2015; Moheet et al., 2015). Diabetes conditions
are particularly associated with atrophy of the hippocampus
(Convit et al., 2003; Gold et al., 2007). We and others have
reported that experimental diabetic conditions cause synaptic
degeneration (Duarte et al., 2006, 2009a, 2012), increase
astrocytic reactivity and proliferation (Saravia et al., 2002; Baydas
et al., 2003; Duarte et al., 2012), and change metabolism (Duarte
et al., 2009a; Girault et al., 2018) in the hippocampus. As
important as understanding the mechanisms of diabetes-induced
hippocampal alterations leading to memory impairment, is the
design of novel strategies to prevent such degeneration. The
neuromodulation system operated by adenosine is altered in
diabetes, with reduced density of adenosine A1 receptors (A1Rs)
and increased density of adenosine A2A receptors (A2ARs)
in membranes from the hippocampus (Duarte et al., 2006,
2012). Caffeine is a widely consumed non-selective antagonist of
adenosine receptors (Fredholm et al., 1999), and both caffeine
and selective adenosine A2AR antagonists affect performance
in learning and memory tasks (Takahashi et al., 2008; Cunha,
2016) and afford neuroprotection upon chronic brain insults
(Cunha, 2005). In addition, caffeine may reduce the risk of
developing glucose-intolerance and diabetes severity (e.g., van
Dam and Hu, 2005; Greenberg et al., 2006; Higdon and
Frei, 2006). We previously reported that caffeine consumption
ameliorates diabetes-induced hippocampal degeneration and
prevents diabetes-associated memory deficits in insulin-deficient
rats (Duarte et al., 2009a) and in a mouse model of obesity-
associated type 2 diabetes (T2D) (Duarte et al., 2012). The
different etiology of lean T2D prompted us to investigate

Abbreviations: aCSF, artificial cerebrospinal fluid; Ala, alanine; Asc, ascorbate;

Asp, aspartate; BBB, blood-brain-barrier; βHB, β-hydroxibutyrate; CADO,

2-chloroadenosine; CMRglc, cerebral metabolic rate of glucose consumption;

Cr, creatine; CRLB, Cramér-Rao lower bound; DPCPX, 1,3-dipropyl-8-

cyclopentylxanthine; ELISA, enzyme-linked immunosorbent assay; fEPSP, field

excitatory postsynaptic potential; GABA, γ-aminobutyrate; GFAP, glial fibrillary

acidic protein; GK, Goto-Kakizaki; Glc, glucose; Gln, glutamine; Glu, glutamate;

GPC, glycerophosphocholine; GSH, glutathione; I/O, input/output; Ins, myo-

inositol; Lac, lactate; LTP, long-term potentiation; MAP2, microtubule-associated

protein type 2; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate;

NAAG, N-acetylaspartatylglutamate; NMR, nuclear magnetic resonance;

PCho, phosphocholine; PCr, phosphocreatine; PE, phosphoethanolamine;

PSD95, postsynaptic density protein of 95 kDa; SCH58261, 2-(2-furanyl)-7-

(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine;

scyllo, scyllo-inositol; SNAP25, synaptosome-associated protein of 25 kDa; STZ,

streptozotocin; Tau, taurine; VOI, volume of interest.

the effect of long-term caffeine intake on alterations in the
hippocampus of Goto-Kakizaki (GK) rats, an animal model of
non-obese T2D that was produced by selective breeding of non-
diabetic Wistar rats which displayed high plasma glucose levels
in oral glucose tolerance tests (Girault et al., 2018, and references
therein). In this study, we tested the hypothesis that caffeine
exposure ameliorates T2D-induced alterations of hippocampal
metabolism, degeneration of synapses and astrogliosis, as well as
concomitant spatial memory impairment.

METHODS

Animals
Animals were handled according to Swiss and Portuguese
guidelines for the use of experimental animals, and authorized
by the respective local ethics committees (EXPANIM-SCAV
and ORBEA). Male GK rats, which spontaneously develop
insulin resistance, and control Wistar-Hannover-Galas rats were
obtained from Taconic (Lille Skensved, Denmark), or from the
colony kept at the animal house of the Faculty of Medicine of
theUniversity of Coimbra (for electrophysiology recordings).We
used a total of 22 GK rats and 22Wistar rats. All the animals were
maintained with food and water ad libitum. When tested, caffeine
was administered in the drinking water at 1 g/L from 2 to 6
months of age (4 month period). Thus, the present experimental
design included four animal groups: control Wistar, caffeine-
treated Wistar, diabetic GK, and caffeine-treated GK. Body
weight and caffeine consumptionweremonitored throughout the
treatment period. Glycaemia was measured monthly in a 2 µL
blood sample collected by tail pricking, using a glucose oxidase-
based glucometer (Ascencia Contour, Bayer, Switzerland). At 2
and 4 months of caffeine exposure, blood samples (100 µL) were
taken from the tail vein under brief isoflurane anesthesia (2%
in oxygen) for determination of serum caffeine and/or insulin
concentrations.

Behavioral Tasks
Exploratory behavior and locomotor activity were evaluated in a
square open-field arena of 34 × 34 cm with 30 cm high, which
was divided in 4 squares of 17× 17 cm. The animals were placed
in the central area of the arena and allowed to explore it over
5min in the dark. The number of crossings of the squares and
the number of rearing movements with forepaws were recorded.
Rearing with the forepaws pressed against the walls was not
considered.

Spontaneous alternation was observed in a Y-maze
constructed in black Plexiglas, with three arms measuring
35 cm long, 9 cm wide and 30 cm height, and converging to equal

Frontiers in Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 1015

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Duarte et al. Caffeine and T2D-Induced Hippocampal Alterations

angles, which was placed in a dim-illuminated room (12 lux)
with large visual cues hanged on the walls. The animals were
placed at the bottom of one arm of the Y-maze and allowed to
explore freely all three arms for a single 8min session in the dark.
The measured spontaneous alternation behavior was used to
assess hippocampal-dependent spatial memory (Lalonde, 2002).
If the rat remembers the arm it has just explored, it will therefore
enter one of the other arms of the maze. Complete spontaneous
alternations were defined as successive entries into the three
arms, and were expressed as fraction of the possible alternations
in the respective test. In addition to the open field test, the
number of entries in the arms of the maze also allowed to access
locomotor activity and exploratory behavior of the tested rats.

Localized 1H Magnetic Resonance
Spectroscopy (MRS)
Rats were anesthetized with 2% isoflurane (Attane, Minrad,
USA) in oxygen (PanGas, Ecublens, Switzerland), and then
intubated and ventilated with a pressure-driven ventilator (MRI-
1, CWE incorporated, PA, USA). Catheters were placed into the
femoral artery for monitoring blood gases, glucose and blood
pressure, and into the femoral vein for infusion of saline solutions
containing α-chloralose (Acros Organics, Geel, Belgium) or
D-glucose (Sigma-Aldrich, Switzerland). Rats were placed in
a home-built holder that ensures a fixed and stable position
of the skull for extended scanning times. Body temperature
was maintained around 37.5◦C with a warm water circulation
system based on the feedback from a rectal temperature probe.
Temperature, arterial blood pressure, heart rate, and respiratory
rate were continuously monitored with an animal monitoring
system (SA Instruments, NY, USA). Before inserting the animal
in the bore of the magnet, anesthesia was switched to α-
chloralose (intravenous bolus of 80 mg/kg, and continuous
infusion of 25 mg/kg/h). D-glucose [20% (w/v) solution] was
infused at a rate adjusted based on the concomitantly measured
arterial plasma glucose concentrations to achieve stable targeted
glycaemia levels. NMR measurements were performed after each
glucose level had been stable for at least 15min (Duarte and
Gruetter, 2012). Arterial pH and pressures of O2 and CO2

were measured using a blood gas analyser (AVL Compact 3,
Diamond Diagnostics, MA, USA). Concentration of glucose in
arterial plasma samples was quantified by the glucose oxidase
method, using a multi-assay analyser (GM7 Micro-Stat, Analox
Instruments, UK).

All experiments were carried out as previously described
(Duarte et al., 2009a) using a Varian INOVA spectrometer
(Agilent Technologies, Palo Alto, CA, USA) interfaced to an
actively-shielded 9.4 T magnet with a 31 cm horizontal bore
(Magnex Scientific, Abingdon, UK), and a homebuilt 10mm
1H quadrature surface coil. The rat brain was positioned in the
isocentre of the magnet and located with fast-spin-echo images
with 5 s repetition time, effective echo time of 52ms and echo
train length of 8. Shimming was performed with FAST(EST)MAP
(Gruetter and Tkáč, 2000), and 1H NMR spectra were acquired
from a volume of interest (VOI) of 18 µL placed in the left
dorsal hippocampus using SPECIAL spectroscopy, with echo

time of 2.8ms and repetition time of 4 s (Mlynárik et al., 2006).
Spectra were analyzed using LCModel (Stephen Provencher
Inc., Oakville, Ontario, Canada), including a macromolecule
spectrum in the database, as previously described (Mlynárik
et al., 2006; Duarte et al., 2009a). The unsuppressed water signal
measured from the same VOI was used as an internal reference
(assuming the existence of 80% of water in the brain tissue)
for the absolute quantification of the following metabolites:
glucose (Glc), ascorbate (Asc), phosphoethanolamine (PE),
creatine (Cr), phosphocreatine (PCr),myo-inositol (Ins), taurine
(Tau), N-acetylaspartate (NAA), aspartate (Asp), glutamate
(Glu), glutamine (Gln), γ-aminobutyrate (GABA), alanine (Ala),
lactate (Lac), β-hydroxybutyrate (βHB), glycerophosphocholine
(GPC), phosphocholine (PCho), glutathione (GSH), N-
acetylaspartylglutamate (NAAG), scyllo-inositol (scyllo).
The Cramér-Rao lower bound (CRLB) was provided by
LCModel as a measure of the reliability of the apparent
metabolite concentration quantification. CRLBs above 30%
were systematically associated to scyllo-inositol, which was thus
not used for further analyses. The remaining metabolites were
quantified with CRLBs below 30%.

Determination of Glucose Transport
Kinetics
The determination of hippocampal glucose by MRS in vivo
as function of plasma glucose was used to estimate kinetic
parameters of glucose transport across the blood-brain-barrier
(BBB). Steady-state brain glucose transport kinetics was modeled
with a four-state conformational model that accounts for
reversibility and trans-acceleration of the glucose carrier (Duarte
et al., 2009b). Hippocampal glucose at steady-state was fitted to
the following equation

Ghipp = Vd

(

Tmax
CMRglc

− 1
)

Gp − Kt

Tmax
CMRglc

+ 1+
Gp

Kii

where Ghipp and Gp are the concentrations of glucose in the
hippocampus (in µmol/g) and plasma (in mmol/L), respectively.
CMRglc is the cerebral metabolic rate of glucose. Tmax denotes the
apparent maximal transport rate across the BBB (µmol/g/min),
Kt and Kii denote the apparent Michaelis and iso-inhibition
constants (in mmol/L), Vd = 0.77 mL/g is the volume of the
physical distribution space of glucose in the hippocampus (see
Duarte et al., 2009b for details).

Western Blot Analysis
Immediately after the MRS experiment, rats were decapitated,
the brain was rapidly removed, and the hippocampus dissected.
Whole membranes and synaptosomes (i.e., synaptic-enriched)
membranes were prepared (Rebola et al., 2005; Cunha
et al., 2006), and Western blot analysis of proteins in these
hippocampal membrane preparations was performed using
previously detailed methods (Duarte et al., 2007; Kaster et al.,
2015). Western blot analysis of A2AR was carried out as detailed
by Hurtado-Alvarado et al. (2016), using the avidin-biotin
Vectastain Elite kit (Vector Laboratories, Burlingame, CA-USA)
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for immunoreactivity amplification. The primary antibodies
against the synaptic protein synaptosome-associated protein of
25 kDa (SNAP25; from Sigma, Sintra, Portugal), and against
the glial fibrillary acidic protein (GFAP; from Sigma) were
used at a dilution of 1:5,000. Antibodies against synaptophysin,
α-tubulin and β-actin were purchased from Sigma and used at
1:10,000. Anti-postsynaptic density protein of 95 kDa (PSD95;
from Chemicon) was used at 1:20,000; anti-vimentin (Sigma)
and anti-microtubule-associated protein type 2 (MAP2; from
Santa Cruz Biotechnology, Santa Cruz, CA, USA) at 1:1,000.
Antibodies against A1R (Affinity Bioreagents, Golden, CO-USA)
and A2AR (Abcam, Cambridge, UK) were used at a dilution of
1:600.

Electrophysiological Recordings
Electrophysiological recordings of synaptic transmission and
plasticity were performed in superfused hippocampal slices, as
previously described (Costenla et al., 2011; Kaster et al., 2015;
Silva et al., 2018). Briefly, a rat was deeply anesthetized with 2-
bromo-2-chloro-1,1,1-trifluoroethane (halothane; no reaction to
handling or tail pinch, while still breathing) before decapitation.
The brain was rapidly removed and cooled in an artificial
cerebrospinal fluid (aCSF) solution containing (in mmol/L): 124
NaCl, 3 KCl, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 10 glucose,
26 NaHCO3, pH 7.4; 290–310 mOsm, gassed with 95% O2,
and 5% CO2. Coronal hippocampal slices (400µm thick) were
prepared with a manual Vibratome 1,500 sectioning system
(Vibratome, Germany), and allowed to recover for 1 h at room
temperature in a Harvard Apparatus resting chamber filled with
gassed aCSF. Individual dorsomedial hippocampal slices were
transferred to a submerged recording chamber and continuously
superfused at a rate of 4 mL/min with gassed aCSF kept at
30.5◦C. A bipolar concentric stimulation electrode (SNE-100;
Kopf, Germany) was placed over the Schaffer fibers delivering
rectangular pulses (550 µA) of 0.1ms duration applied with a
Digitimer DS3 stimulator (Digitimer LTD, UK) once every 20 s.
The evoked field excitatory postsynaptic potentials (fEPSPs) were
recorded through an extracellular borosilicate microelectrode
filled with 4 mol/L NaCl (2–5 M� resistance) placed in the
stratum radiatum of the CA1 area, coupled to an ISO-80
amplifier (World Precision Instruments, Hitchin, UK). Averages
of four consecutive responses acquired with a 1 kHz cut-off were
digitalized and continuously monitored on a personal computer
with the WINLTP 1.1 program (Anderson and Collingridge,
2001) to quantify the initial slope of the averaged fEPSPs, used
to estimate the effect of drugs, added to the superfusion solution.

After obtaining a stable baseline, we first carried out an
input/output curve to select a stimulus intensity triggering
40–50% of the maximal amplitude. We then tested the
effects of 2-chloroadenosine (CADO, the closest and
chemically stable analog of adenosine; from Tocris, Bristol,
UK) and 1,3-dipropyl-8-cyclopentylxantine (DPCPX, a
selective antagonist of adenosine A1R; from Tocris) on
basal synaptic transmission. Alternatively, we tested the
effect of 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-
e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, a

selective antagonist of adenosine A2AR; from Sigma) on long-
term potentiation (LTP). LTP was induced with a high-frequency
train (100Hz for 1 s) and was quantified as the percentage change
between the fEPSP slopes 60min after and 15min before the
train.

Statistics
Data was analyzed using ANOVA with two factors (diabetes
and caffeine treatment). For the metabolic profile analysis,
all metabolite concentrations were analyzed together with a
multivariate ANOVA. Significant differences were considered for
P < 0.05. Multiple comparisons after ANOVA were performed
with Fisher’s least significant difference (LSD) tests upon
significant diabetes effect or diabetes-caffeine interaction. Two-
tailed Student t-tests were used to compare caffeine intake and
caffeine serum concentration between GK andWistar rats, as well
as the effects of CADO and DPCPX on synaptic transmission.
Results are reported as mean± SEM unless otherwise stated.

RESULTS

To test the role of caffeine consumption in the prevention
of diabetes-induced hippocampal alterations, GK rats and age-
matched controls were allowed to consume caffeine for 4months,
starting at 2 months of age. During the period when the rats
had free access to 1 g/L caffeine solution, body weight, and pre-
prandial glycaemia were monitored and insulin plasma levels
were quantified 2 months after starting caffeine intake and at
the end of the experiment. GK rats were smaller than controls
independent of caffeine consumption, which had no significant
effect on body weight (diabetes P = 0.002, caffeine P = 0.275,
interaction P = 0.794; Figure 1A). T2D had a significant effect
on fed glycaemia (P < 0.001), which was not impacted by caffeine
treatment (caffeine P = 0.779, interaction P = 0.935; Figure 1B).
Relative to controls, GK rats showed an increase in serum insulin
concentration after 2 and 4 months of treatment (P = 0.002
and P = 0.036, respectively). At 4 months of treatment, caffeine
prevented the diabetes-associated hyperinsulinemia (caffeine
P= 0.212, diabetes P= 0.240, interaction P= 0.050; Figure 1C).
Caffeine intake was slightly lower in Wistar than GK rats, but
not significantly different (P= 0.063; Figure 1D). Serum levels of
caffeine at the end of the treatment period were similar in diabetic
and control rats (P = 0.558; Figure 1E).

Caffeine Consumption Prevents Spatial
Memory Impairment in GK Rats
Hippocampal-dependent spatial memory was tested in a Y-
maze 2 days before MRS in vivo at 6 months of age, i.e.,
after 4 months of caffeine exposure. Both diabetes and caffeine
treatment affected spatial memory performance in the Y-maze
(diabetes P = 0.011, caffeine P = 0.033, interaction P = 0.549).
Post-hoc testing revealed that diabetes in GK rats caused a
reduction of the spontaneous alternation in the Y-maze task when
compared to controls (−19 ± 3%; P < 0.001; Figure 2A), which
was ameliorated by 4 months of caffeine consumption. GK rats
also showed a significant reduction in the number of entries
in the Y-maze arms, independently of caffeine intake (diabetes
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FIGURE 1 | Characteristics of diabetic GK rats (filed symbols/bars) and control Wistar rats (open symbols/bars), namely body weight (A) across the caffeine treatment

period (line graph) and at the end of the study (bar graph), glycaemia (B), concentration in the serum insulin determined after 2 and 4 months of treatment (C), caffeine

intake measured across the treatment period (D), and concentration of serum caffeine after 4 months of caffeine exposure (E). Caffeine (1 g/L) was provided through

the drinking water for 4 months, starting at 2 months of age. Data are mean ± SEM of 8 rats per group. Symbols represent LSD test results after ANOVA with either

significant diabetes effect or significant diabetes-caffeine interaction: *P < 0.05, **P < 0.01, ***P < 0.001 for GK vs. Wistar in the respective treatment group or as

indicated.

P = 0.003, caffeine P = 0.199, interaction P = 0.546; Figure 2B).
Nevertheless, diabetes was not associated with exploratory or
locomotor impairment as gauged by similar exploration of the
open-field arena (Figures 2C,D). Interestingly, caffeine impacted
the number of rearing events in the open-field test (caffeine
P = 0.014, diabetes P = 0.974, interaction P = 0.974), without
impacting the number of crossing events between quadrants of
the arena (caffeine P = 0.908, diabetes P = 0.465, interaction
P = 0.113).

Diabetes-induced Metabolic Alterations
1H spectra were acquired at 9.4 Tesla from the dorsal
hippocampus of rats with half-height linewidths of 8–14Hz and
signal-to-noise ratios above 20, as reported by the LCModel.
By inspecting these representative spectra (Figure 3A), one
notices increased resonances of taurine in the hippocampus
of GK rats relative to controls. This was in fact the most
prominent metabolic alteration present in this model of T2D
(see statistics below). Nineteenmetabolites were quantified under
normoglycaemia for the four experimental groups (Figure 3B).
Analysis with a multivariate ANOVA to the whole metabolic
profile indicated significant effects of diabetes (P = 0.002)
and caffeine (P = 0.028) without diabetes-caffeine interaction

(P = 0.493), which suggests cumulative effects of both factors.
Furthermore, none of the levels of metabolites showed significant
interaction between diabetes and caffeine in follow-up individual
analyses.

Diabetes affected the concentration of taurine (P < 0.001),
ascorbate (P < 0.001), creatine (P = 0.002), phosphocreatine
(P < 0.001), glutamine (P = 0.041), myo-inositol (P = 0.011),
lactate (P = 0.005), and glycerophosphorylcholine (P < 0.001).
In post-hoc analyses comparing GK and Wistar rats in the
absence of caffeine, GK rats only displayed significant increases
in the levels of taurine (+22 ± 3%, P < 0.001), ascorbate
(+20 ± 9%, P = 0.038), lactate (+34 ± 14%, P = 0.035),
and phosphocreatine (+11 ± 4%, P = 0.028). Moreover, we
observed a tendency for reduced creatine levels in GK rats (−7
± 4%, P = 0.080 vs. Wistar), which resulted in a significant
increase of phosphocreatine-to-creatine ratio (PCr/Cr; diabetes
P = 0.004, caffeine P = 0.150, interaction P = 0.378). High
PCr/Cr under normoglycaemia suggests that the hippocampus
of GK rats is metabolically adapted to the diabetic condition in
order to provide sufficient energy for basal oxidative metabolism.

On top of the effect of diabetes, caffeine consumption for
4 months had an effect on the concentration of creatine
(P= 0.027),myo-inositol (P < 0.001),N-acetylaspartylglutamate

Frontiers in Neuroscience | www.frontiersin.org 5 January 2019 | Volume 12 | Article 1015

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Duarte et al. Caffeine and T2D-Induced Hippocampal Alterations

FIGURE 2 | Caffeine consumption improves spatial working memory deficits

in diabetic GK rats. GK rats displayed reduced spontaneous alternation in the

Y-maze, when compared to controls, but not if treated with caffeine for 4

months (A). The number of entries in the Y-maze arms was lower in GK

compared to control rats irrespective of caffeine consumption (B). The number

of crossings in the open-field arena was unaltered by diabetes or caffeine

consumption (C), but the number of rearing events was reduced upon chronic

caffeine consumption (D). Data are mean ± SEM of 8 rats per group. Symbols

represent LSD test results after ANOVA with either significant diabetes effect or

significant diabetes-caffeine interaction: *P < 0.05 for GK vs. Wistar in the

respective treatment group or as indicated.

(P = 0.036) and taurine (P = 0.023). Notably, when compared
to untreated controls, Wistar rats consuming caffeine exhibited
reduced myo-inositol (−9 ± 2%, P = 0.002) and increased
taurine (+15 ± 2%, P < 0.001) concentrations in the
hippocampus. Post-hoc analyses within the caffeine-treated rats
revealed higher levels of ascorbate (+35 ± 9%, P = 0.002),
taurine (+14± 4%, P= 0.004),myo-inositol (7± 2%, P= 0.006),
and phosphocreatine (7 ± 3%, P = 0.045) in GK than Wistar
rats. Altogether, these results suggest that the caffeine-induced
changes, namely in the osmolites myo-inositol and taurine, add
to those induced by T2D.

Hippocampal Glucose Homeostasis
We have recently reported that diabetes impairs global glucose
transport and consumption in the brain, without changes in the
brain to plasma glucose levels (Girault et al., 2018). Since the
hippocampus is particularly affected by T2D in experimental
models, we measured hippocampal glucose concentration at
several steady-state plasma glucose levels to test whether BBB
transport of glucose in this region remains sufficient to feed
metabolism. Physiology parameters measured during the periods
of MRS were similar in all four experimental groups (Table 1).
Glucose concentration in the hippocampus was similar for GK
and control rats, and was dependent on plasma glucose levels
(Figure 4). This indicates that the relation between glucose

transport and consumption is not altered in the hippocampus
of insulin-resistant GK rats, confirming previous observations
in the whole brain (Girault et al., 2018). Kinetic parameters
for hippocampal glucose transport estimated with the four-state
conformational model were similar across the four experimental
groups (Table 2). Indeed, neither T2D nor habitual caffeine
consumption affected Tmax/CMRglc, suggesting that glucose
transport at the BBB in our experimental conditions matches the
glucose consumption needs in the hippocampus.

Synaptic Alterations in the Hippocampus
of GK Rats
The putative degeneration of synapses was evaluated by
quantifying the density of two presynaptic proteins in nerve
terminal-enriched membrane preparations. As shown to occur in
streptozotocin-induced diabetic rats (Duarte et al., 2006, 2009a)
and NONcNZO10/Ltj diabetic mice (Duarte et al., 2012), the
hippocampus of GK rats displayed synaptic degeneration, as
suggested by reduced immunoreactivity of SNAP25 (−23 ±

5%, P = 0.009, n = 8, Figure 5A) and synaptophysin (−19
± 3%, P = 0.007, n = 5, Figure 5B), when compared to
control rats. Chronic caffeine consumption for 4 months did
not significantly affect the immunoreactivity of these synaptic
markers, whereas it prevented the T2D-induced reduction of
SNAP25 (caffeine P = 0.587, diabetes P = 0.176, interaction
P= 0.0162; Figure 5A) but not synaptophysin immunoreactivity
(caffeine P = 0.349, diabetes P = 0.001, interaction P = 0.681;
Figure 5B). To evaluate whether T2D also affected the post-
synaptic compartment, we quantified the immunoreactivity of
post-synaptic density-95 (PSD95), a prototypical postsynaptic
marker. The immunoreactivity of PSD95 was not significantly
altered in synaptic membranes of GK rats when compared to
controls in the absence or presence of caffeine treatment (caffeine
P= 0.719, diabetes P= 0.053, interaction P= 0.692; Figure 5C).
Furthermore, total membranes from the hippocampus of GK
and control rats also displayed similar MAP2 immunoreactivity
(caffeine P = 0.129, diabetes P = 0.154, interaction P = 0.915;
Figure 5D). Altogether these results suggest a main T2D-induced
defect at presynaptic level.

Caffeine Consumption Prevents
Diabetes-Induced Astrogliosis
Astrogliosis has been reported in several neurodegenerative
diseases, including diabetes (e.g., Saravia et al., 2002; Baydas et al.,
2003; Duarte et al., 2009a, 2012). This was now also found in
the hippocampus of GK diabetic rats. Thus, when compared
to controls, total hippocampal membranes prepared from GK
rats exhibited increased immunoreactivity of GFAP (+20 ±

5%, P < 0.001, n = 8; Figure 5E) and vimentin (+65 ± 28%,
P= 0.010, n= 5, Figure 5F). While caffeine intake was devoid of
significant effects on themeasured glial proteins in controlWistar
rats, it prevented T2D-induced increase in the immunoreactivity
of both astroglial-specific proteins GFAP (caffeine P = 0.053,
diabetes P = 0.026, interaction P = 0.003, Figure 5E) and
vimentin (caffeine P = 0.280, diabetes P = 0.108, interaction
P = 0.030, Figure 5F).
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FIGURE 3 | Diabetes-induced metabolic alterations persisted upon caffeine treatment. (A) shows representative 1H spectra acquired in vivo at 9.4 T from the dorsal

hippocampus rats under normoglycaemia. An increase of taurine resonances at 3.25 and 3.42 ppm in the spectra from GK rats is clearly visible. The spectra were

measured by the SPECIAL sequence with echo time of 2.8ms, repetition time of 4 s, 640 scans and in a volume of 18 µL. For resolution enhancement, a shifted

Gaussian function (gf = 0.12 and gsf = 0.05) was applied before Fourrier transformation. Zero-phase but not baseline was corrected. (B) shows mean metabolite

concentrations in the hippocampus of Wistar (n = 6), GK (n = 8), caffeine-treated Wistar (n = 7) and caffeine-treated GK (n = 8) rats, at plasma glucose below 8

mmol/L. None of the metabolite concentrations showed caffeine-diabetes interaction. Results from post-hoc tests on metabolite levels after significant diabetes effect

or caffeine-diabetes interaction are represented by *P < 0.05, **P < 0.01, and ***P < 0.001 for GK vs. Wistar in the respective treatment group.

Altered Density of Adenosine A1 and A2A

Receptors in the Hippocampus
The density of adenosine receptors was evaluated by Western
Blot in whole membranes and nerve terminal-enriched
membranes prepared from the hippocampus. In synaptosomes,
there was a significant interaction between effects of diabetes and
caffeine on the density of A1R (interaction P < 0.001, diabetes
P = 0.539, caffeine P = 0.002, Figure 6A). When compared
to controls, post-hoc analyses revealed a significant reduction
of A1R immunoreactivity in GK rats (-28 ± 7%, P = 0.014,
n = 8), which was reversed upon caffeine consumption (+40
± 10%, P = 0.002, n = 8). In contrast, diabetes caused a
significant increase in levels of A2AR in synaptic membranes,
independently of caffeine consumption (diabetes P < 0.001,
caffeine P = 0.919, interaction P = 0.223; Figure 6A). In the
absence of caffeine, hippocampal synaptosomes from GK rats
showed a 18±7% increase of A2AR immunoreactivity (P= 0.031,
n = 3). Within caffeine treated rats, there was a T2D-induced
increase of A2AR immunoreactivity of 32±6% (P = 0.014,
n = 3). In total membranes, T2D was associated to a major
reduction of A1R levels (diabetes P = 0.006, caffeine P = 0.210,
interaction P = 0.181), which was significantly different from
controls only in the absence of caffeine treatment (−47 ± 8%,
P = 0.005, n = 6; Figure 6B). In turn, the opposite effect was

observed for A2AR immunoreactivity, which increased in GK
rats compared to controls in the absence (+71± 26%, P= 0.046,
n = 2) but not in the presence of caffeine treatment (diabetes
P = 0.057, caffeine P = 0.205, interaction P = 0.232). It should
be noted however that the detection of changes on A2AR density
by Western blot suffered from technical challenges due to the
known low immunoreactivity signal from the hippocampus of
6 month old rats (e.g., Rebola et al., 2003; Canas et al., 2009a).
This is especially critical in total membranes from the rat
hippocampus, in which the density of A2AR is about half of that
in synaptosomal membranes (e.g., Rebola et al., 2005; Duarte
et al., 2006). Therefore, the present A2AR density changes should
be interpreted in a qualitative rather than quantitative manner.

Altered Efficiency of Adenosine Receptors
Controlling Hippocampal Synaptic
Transmission and Plasticity
The near superimposable input/output curves obtained in
hippocampal slices from Wistar and GK rats ascertains that
there were no changes in the density of excitatory inputs in
Schaffer fibers CA1 pyramid synapses (Figure 7A), enabling
a direct comparison of the efficiency of A1R and A2AR to
control synaptic transmission and plasticity. Thus, we tested
the ability of A1R to control basal synaptic transmission
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TABLE 1 | Mean physiologic parameters measured at 5 different intervals of steady-state plasma glucose concentration in MRS experiments.

Plasma glucose range (mM) <8 8–14 14–20 20–26 >26

Body Temperature (◦C) Control 37.5 ± 0.2 37.4 ± 0.1 37.5 ± 0.1 37.2 ± 0.2 37.3 ± 0.1

Caffeine 37.5 ± 0.2 37.2 ± 0.2 37.3 ± 0.1 37.1 ± 0.1 37.4 ± 0.1

GK 37.0 ± 0.1 37.3 ± 0.2 37.2 ± 0.3 37.4 ± 0.2 37.0 ± 0.1

GK + Caffeine 37.5 ± 0.1 37.3 ± 0.2 37.5 ± 0.2 37.6 ± 0.1 37.2 ± 0.1

Arterial pH Control 7.34 ± 0.01 7.34 ± 0.01 7.34 ± 0.01 7.31 ± 0.02 7.33 ± 0.03

Caffeine 7.42 ± 0.02 7.38 ± 0.01 7.35 ± 0.01 7.35 ± 0.01 7.33 ± 0.02

GK 7.41 ± 0.02 7.40 ± 0.02 7.42 ± 0.02 7.40 ± 0.01 7.39 ± 0.01

GK + Caffeine 7.44 ± 0.01 7.45 ± 0.01 7.39 ± 0.02 7.39 ± 0.02 7.38 ± 0.02

PaCO2 (mm Hg) Control 44.7 ± 2.0 44.7 ± 1.6 46.8 ± 1.3 44.9 ± 1.9 42.1 ± 2.0

Caffeine 39.9 ± 2.9 41.5 ± 2.7 45.7 ± 3.9 41.7 ± 2.7 41.4 ± 2.9

GK 39.0 ± 3.4 38.6 ± 2.0 37.2 ± 2.7 40.3 ± 2.6 43.2 ± 2.3

GK + Caffeine 35.7 ± 1.7 39.5 ± 4.7 38.9 ± 3.0 40.7 ± 3.0 40.1 ± 1.3

Data is mean ± SEM of 6 to 8 rats in each experimental group.

FIGURE 4 | Relationship between hippocampal and plasma glucose

concentrations in control and GK rats treated or not with caffeine (1 g/L). Data

corresponds to steady-state hippocampal glucose levels determined from 1H

NMR spectra measured during 40min after plasma glucose was stable for at

least 15min. The kinetic parameters of glucose transport estimated from these

datasets are presented in Table 2 and all measurements from n = 6–8 animals

per group were pooled together.

TABLE 2 | Apparent Michaelis-Menten constant (Kt), iso-inhibition constant (Kii)

and ratio of maximal transport rate (Tmax) to cerebral glucose consumption rate

(CMRglc) for the glucose transport across the BBB, estimated with the 4-state

conformational model from the relationship between hippocampal and plasma

glucose concentrations in control, GK, caffeine-treated control, caffeine-treated

GK rats (data in Figure 4).

Tmax/CMRglc Kt Kii

Control 2.3 (1.9–3.1) 4.2 (2.4–7.4) 22.9 (8.4–161.8)

GK 2.5 (2.0–4.7) 1.5 (0.0–8.2) 12.9 (3.3–55.0)

Caffeine-treated control 2.5 (1.9–4.3) 2.9 (0.1–10.4) 19.1 (5.0–201.9)

Caffeine-treated GK 2.4 (1.9–6.8) 1.4 (0.0–17.4) 16.2 (2.3–74.9)

Values are mean (95% confidence interval). Units of Kt and Kii are mmol/L, Tmax/CMRglc
is adimensional.

(Costenla et al., 2011) and found that the closest chemical analog
of adenosine, 2-chloroadenosine (CADO), triggered a similar
concentration-dependent inhibition of synaptic transmission
(Figure 7B). In fact, the estimated EC50 of CADO to inhibit
synaptic transmission was 0.56µmol/L (95% confidence interval:
0.08–1.04 µmol/L, n = 6) in slices from Wistar rats, which
was similar (P = 0.833) to the EC50 values obtained in slices
from GK rats (0.61 µmol/L, 95% confidence interval: 0.23–1.00
µmol/L, n = 6). We then investigated if there were changes in
the levels of endogenous adenosine tonically controlling basal
excitatory transmission (Costenla et al., 2011). A supra-maximal
but selective concentration (100 nmol/L) of the A1R antagonist
DPCPX (Sebastião et al., 2000) caused a greater disinhibition
of hippocampal synaptic transmission in GK rats compared to
Wistar rats (P = 0.006; n = 6; Figures 7C,D). This suggests
a preserved efficiency of A1R-mediated inhibition of synaptic
transmission and higher levels of endogenous extracellular
adenosine controlling synaptic transmission in GK rats.

We next compared synaptic plasticity in hippocampal slices
from Wistar and GK rats to gauge the efficiency of A2AR
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FIGURE 5 | Caffeine consumption attenuated diabetes-induced synaptic degeneration and prevented astrogliosis in the hippocampus of GK rats. Western blot

analysis revealed that hippocampal synaptosomal membranes from diabetic GK rats displayed reduced immunoreactivity of both SNAP25 (A) and synaptophysin (B)

but not PSD95 (C), when compared to Wistar rats (W). In total hippocampal membranes, diabetes failed to alter MAP2 immunoreactivity relative to controls (D).

Caffeine (Caff) consumption prevented diabetes-induced reduction of SNAP25 but not synaptophysin. Western blot analysis revealed that both GFAP (E) and vimentin

(F) immunoreactivity was increased in total hippocampal membranes from GK compared to control rats, an effect prevented by the consumption of caffeine. Samples

were loaded in the SDS-PAGE gel at a protein concentration of 25 µg. Immunoreactivity of proteins of interest was normalized to either α-tubulin or β-actin, and

expressed as percentage of control in the same Western blot experiment. In the graphs, open and filled bars represent Wistar and GK rats, respectively. Data are

mean±SEM of n = 5–8 animals per experimental group. Symbols represent LSD test results after ANOVA with either significant diabetes effect or significant

diabetes-caffeine interaction: *P < 0.05, **P < 0.01 for GK vs. Wistar in the respective treatment group or as indicated.

that selectively control hippocampal synaptic plasticity (Rebola
et al., 2008; Costenla et al., 2011). The amplitude of long-term
potentiation (LTP) was lower (P = 0.0004, Figure 7E) in GK
rats (52 ± 4% over baseline, n = 6) than in Wistar rats (83
± 2% over baseline, n = 5). The selective A2AR antagonist
SCH58261, used in a supramaximal and selective concentration
of 50 nmol/L (Lopes et al., 2004), caused a discrete inhibition of
LTP amplitude in Wistar rats (70 ± 9% over baseline, n = 5)
and recovered the depressed LTP amplitude in GK rats to near
control values (74 ± 5% over baseline, n = 6). A two-way
ANOVA on LTP amplitude results showed a significant effect
of diabetes [F(1,18) = 5.0; P = 0.038], no effect of applied
drug [F(1,18) = 0.5; P = 0.496], and a significant effect of their
interaction [F(1,18) = 9.0; P= 0.008]. Post-hoc analyses confirmed
that LTP amplitude was decreased in GK compared to Wistar
rats (P = 0.002), whereas SCH58261 recovered plasticity in
GK rats (P = 0.014) but had a negligible effect in Wistar rats
(P = 0.136).

DISCUSSION

The present study deepens our knowledge of the impact of
T2D on cognitive function, which is not yet fully understood
(Frisardi et al., 2010; Steculorum et al., 2014; Duarte, 2015).
Diabetic rats displayed impaired hippocampal-dependent
spatial memory, as suggested by reduced Y-maze spontaneous
alternation. This diabetes-induced memory impairment was
not accompanied by a modification of glucose transport
to consumption ratio, that is, there was no alteration of
hippocampal glucose concentration at a given glycaemia. Instead,
when compared to controls, GK rats displayed alterations of the
metabolic profile, synaptic dysfunction, and astrogliosis in the
hippocampus. The causal relation between synaptic damage and
astrogliosis and the memory impairment in GK rats is further
emphasized by the observation that caffeine consumption had
simultaneous beneficial effects on diabetes-induced spatial
memory dysfunction, synaptic damage, and astrogliosis. We
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FIGURE 6 | Density A1R and A2AR analyzed by Western blot in nerve terminal-enriched membranes (A) and total membranes (B) from the hippocampus of GK and

Wistar (W) rats, either receiving 1 g/L caffeine (Caff) or tap water. Samples were loaded in SDS-PAGE gels at a protein concentration of 40 or 150 µg for A1R (n = 6–8)

and A2AR (n = 2–3), respectively. Immunoreactivity was normalized to either α-tubulin or β-actin, and calculated as percentage of control in the same Western blot

experiment. Symbols represent LSD test results after ANOVA with either significant diabetes effect or significant diabetes-caffeine interaction: *P < 0.05, **P < 0.01

for GK vs. Wistar in the respective treatment group or as indicated.

further observed that both caffeine and T2D have an impact on
metabolism in the hippocampus. However, caffeine consumption
did not prevent diabetes-induced metabolic changes. It remains
to be ascertained whether caffeine-associated metabolic changes
are beneficial for the diabetic brain.

Brain function relies on glucose as main source of energy,
and resting brain glucose uptake and consumption are largely
independent from circulating insulin (Hasselbalch et al., 1999).
Although diabetes leads to inadequate glucose transport in
peripheral tissues, brain glucose utilization may eventually adapt
to a new metabolic condition upon diabetes (Pelligrino et al.,
1992). Some studies reported a lack of effect of type 1 diabetes
on the transport of glucose into the brain (Kainulainen et al.,
1993; Simpson et al., 1999). Likewise, previous studies in
humans reported that poorly controlled diabetes did not affect

glucose transport into the brain (Fanelli et al., 1998). We have
previously found that insulin-dependent rats have hippocampus
to plasma glucose concentrations similar to controls (Duarte
et al., 2009a). In GK rats, we recently demonstrated that T2D is
associated to reduced glucose transport and consumption rates
in the whole brain, without modifying brain to plasma glucose
relationship at steady-state. The present results confirmed this
observation in the dorsal hippocampus, which controls learning
and memory. Unaltered glucose transport to consumption ratio
(Tmax/CMRglc) implies an increased glucose concentration in
the hippocampus under sustained hyperglycaemia. The high
glucose level in the hippocampus may trigger osmolarity
alterations and thus induce metabolic adaptation. This is
expected to translate into a modified neurochemical profile,
as was observed in the hippocampus of GK rats compared to
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FIGURE 7 | GK rats display an unchanged A1R-mediated inhibition of excitatory synaptic transmission in the hippocampus but an increased A2AR-mediated control

of synaptic plasticity. (A) Superimposed input-output curves in GK (filed symbols) and Wistar rats (open symbols), indicating a similar density of excitatory innervation

in Schaffer fiber-CA1 pyramid synapses of hippocampal slices. (B) Superimposable concentration-dependent curves of inhibition of CA1 hippocampal field excitatory

post-synaptic potentials (fEPSPs) by the closest chemical analog of adenosine, 2-chloroadenosine (CADO; applied at concentrations of 0.1, 0.3, and 1 µmol/L),

showing that the A1R-mediated inhibition of synaptic transmission is similar in GK and Wistar rats. The fEPSP slope before CADO application is normalized to 100%,

and 0% corresponds to a complete inhibition of fEPSPs. (C,D) GK rats seem to have higher levels of endogenous extracellular adenosine tonically activating inhibitory

A1R, as revealed by the larger disinhibition of fEPSPs by the selective A1R antagonist, DPCPX. (E) Averaged time course changes of fEPSP slope induced by a

high-frequency stimulation train (HFS 100Hz, 1 s, applied when indicated by the arrow) in hippocampal slices taken from Wistar (open symbols) or GK rats (filed

symbols), showing that the amplitude of LTP is larger in Wistar than in GK rats. (F) The presence of the A2AR antagonist SCH58261 (50 nM, +SHC), which was

applied 30min before LTP induction and remained in the bath up to the end of the experiment, has a discrete effect in Wistar rats (open bars) and efficiently restores

LTP amplitude back to control levels in GK rats (gray bars). The electrophysiological data are mean ± SEM of 5–6 animals per experimental condition. *P < 0.05,

**P < 0.01 using either an unpaired Student’s t test in (C) or a two-way ANOVA followed by a LSD post-hoc test in (F).

controls under normoglycaemia (Figure 3). The most prominent
alteration was an increase in the hippocampal concentration
of the osmolite taurine. Surprisingly, the concentration of
myo-inositol (another osmolite) was not substantially altered
in the hippocampus of GK rats in the absence of caffeine,
in contrast to what was observed in streptozotocin-induced
diabetic rats (Duarte et al., 2009a) or Zucker diabetic obese
rats (van der Graaf et al., 2004). However, these models of
diabetes are characterized by sustained hyperglycaemia ranging
from 25 to 30mM of plasma glucose (Wilkes et al., 2005;
Duarte et al., 2009a), while GK rats are subjected to a rather
mild hyperglycaemia state (below 15 mmol/L). This tentatively
suggests that myo-inositol levels may only increase upon more
extreme hyperosmolarity.

T2D was also associated with increased levels of ascorbate
in the hippocampus, which is in line with stimulation of
ascorbate production in the rat liver under mild hyperglycaemia
(Küstermann et al., 1998). Ascorbate is involved in the regulation

of brain glycolysis and pentose phosphate pathway, as well
as astrocyte-neuron metabolic interactions (Cisternas et al.,
2014), and changes of its concentration in the hippocampus
may be related with T2D-induced adaptations of energy
metabolism (Girault et al., 2018). The non-deleterious but
rather adaptive nature of these diabetic-induced metabolic
changes in hippocampal metabolic profile is supported by the
observation that GK rats at euglycaemia displayed augmented
phosphocreatine-to-creatine ratio, compared to controls.

As previously observed in the hippocampus of insulin-
dependent diabetic rats, caffeine consumption lowered myo-
inositol concentration, and increased hippocampal levels of
taurine. Taurine is an amino acid that, although present at
1 µmol/g in the human brain, it reaches relatively large
concentrations in the rodent brain (above 5 µmol/g in rats
and above 8 µmol/g in mice; Duarte, 2016), playing a major
role as osmolyte (Duarte et al., 2009a, and references therein).
Indeed, caffeine is able to control osmotic swelling via adenosine
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receptors (Wurm et al., 2008). In addition, taurine acts as
an agonist at receptors of the GABAergic and glycinergic
neurotransmitter systems (Albrecht and Schousboe, 2005), and
caffeine controls taurine release from both neurons and glia via
adenosine receptors (Hada et al., 1998). Taurine is transported
into the mitochondrial matrix where it buffers pH to the optimal
value for isocitrate dehydrogenase, which is a key enzyme of
the tricarboxylic acid cycle regulating metabolism and oxidative
phosphorylation, contributes to stabilize the pH gradient across
the inner-membrane, and thus helps preserving mitochondrial
function and preventing oxidative damage (Hansen et al., 2010).
Therefore, this caffeine-associated increase of taurine levels in
the diabetic hippocampus is likely related to neuroprotective
functions.

Finally, it should be stressed that these adaptive metabolic
modifications in the hippocampus of GK rats indeed seem to
be caused by hyperglycaemia rather than by hyperinsulinemia
since chronic consumption of caffeine prevented the later but
not the former, and failed to prevent hippocampal metabolite
alterations in GK rats, despite caffeine-induced metabolic
changes.

The evaluation of hippocampal metabolite concentrations in
Wistar and GK rats showed that this brain structure faces high
glucose levels in diabetes at their fed glycaemia, which may
lead to neurotoxicity and cellular damage. The present results
indicate that T2D in GK rats caused neurodegeneration that
does not affect the entire neuron, as suggested by unaltered
MAP2 immunoreactivity, but instead occurs selectively at the
presynaptic component of the nerve terminal, as previously
proposed (Duarte et al., 2006, 2009a, 2012; Gaspar et al., 2010).
In fact, GK rats displayed a reduced density of the presynaptic
proteins SNAP25 and synaptophysin in the hippocampus,
whereas the density of the postsynaptic protein PSD95 was not
significantly altered relative to controls. The alteration of these
presynaptic markers allowed sustaining synaptic transmission
but was associated with an alteration of synaptic plasticity
typified by a reduced amplitude of long-term potentiation in the
hippocampal CA1 area of GK compared to Wistar rats. These
synaptic modifications may eventually underlie the memory
impairment observed in GK rats, as proposed to occur in
Alzheimer’s disease-associated neurodegeneration (Selkoe, 2002;
Coleman et al., 2004). Together with synaptic dysfunction, we
further found increased immunoreactivity of the glial-specific
proteins GFAP and vimentin in the hippocampus of GK rats.
This is in accordance with the occurrence of astrocytosis in the
hippocampus, which was observed in other animal models of
diabetes (e.g., Saravia et al., 2002; Baydas et al., 2003; Duarte et al.,
2009a, 2012). Astrocytosis can be triggered by neuronal damage
and contribute to further neuronal deterioration through the
production of free radicals (e.g., Chao et al., 1996) and apoptotic
factors (e.g., Crutcher et al., 1993; Fahnestock et al., 1996),
leading to memory impairment (see Halassa and Haydon, 2010).
In line with synaptic degeneration and astrocytosis, we have
previously reported that GK rats show whole brain depression of
neuronal oxidative metabolism and glutamate-glutamine cycle,
and exacerbation of oxidative metabolism in astrocytes (Girault
et al., 2018).

The relation between synaptotoxicity and astrogliosis
with memory impairment in GK rats was further supported
by the common ability of chronic caffeine consumption to
simultaneously ameliorate or prevent these T2D-induced
modifications. This is in agreement with the general
neuroprotective action of chronic caffeine consumption against
brain damage, which is largely mimicked by antagonists of
adenosine A2ARs (Cunha, 2005; Chen et al., 2007). In particular,
both caffeine and selective A2AR antagonists are effective
in improving memory performance upon noxious insults
(Takahashi et al., 2008; Cunha, 2016), which was also observed in
this study. Thus, neuroprotection and preservation of memory
function by caffeine is likely associated with antagonism of
A2ARs at the synaptic level as well as in glial cells (Cunha, 2016).
Notably, the over-functioning of A2ARs is sufficient to impair
memory performance (Li et al., 2015; Pagnussat et al., 2015).
Accordingly, A2ARs were up-regulated in the hippocampus of
GK rats, similarly to what was observed in other animal models
of T1D (Duarte et al., 2009a) or T2D (Duarte et al., 2012) and in a
variety of conditions associated with memory dysfunction, such
as aging (Rebola et al., 2003; Canas et al., 2009a; Temido-Ferreira
et al., 2018) or Alzheimer’s disease (Canas et al., 2009b; Espinosa
et al., 2013; Viana da Silva et al., 2016; Silva et al., 2018). In fact,
the only established molecular targets for caffeine at non-toxic
concentrations, which were achieved in the present study, are
adenosine receptors, mainly A1Rs and A2ARs (Fredholm et al.,
1999). Hippocampal A2ARs are concentrated in synapses, where
they selectively control synaptic plasticity processes (Rebola et al.,
2008; Costenla et al., 2011; Temido-Ferreira et al., 2018) and play
a prominent role in controlling the synaptic damage (Cunha
et al., 2006; Silva et al., 2007, 2018; Canas et al., 2009b; Viana da
Silva et al., 2016) that tightly correlates with memory impairment
for instance in Alzheimer’s disease (Selkoe, 2002; Coleman
et al., 2004). Interestingly, we found that caffeine prevented
the diabetes-induced loss of SNAP25 but not of synaptophysin.
This is in agreement with previous observations suggesting that
proteins of the SNARE complex are more robust indicators of
synaptic dysfunction than proteins located in synaptic vesicles,
such as synaptophysin (Reddy et al., 2005; Gao et al., 2006).
We also observed that GK rats displayed a reduction of A1R
immunoreactivity. This was not associated with a modification of
A1R function controlling basal synaptic transmission in GK rats,
in accordance with our observation that the modification of A1R
density mostly occurs in total membranes. Since extra-synaptic
A1Rs have recently been associated with modified information
processing in cortical circuits (Florian et al., 2011; Serchov
et al., 2015), future studies should focus on the possible role of
A1Rs on memory performance through a control of neuron-glia
communication.

In whole hippocampal membranes we observed a diabetes-
induced reduction in A1R and increase of A2AR levels,
which was normalized upon caffeine treatment. Therefore,
limiting excessive activation of A2ARs in extra-synaptic
compartments, namely in glial cells, might also be a mechanism
of neuroprotection by caffeine in T2D (Cunha, 2016). Indeed,
apart from its synapto-protective action, caffeine had beneficial
effects on T2D-induced astrogliosis, which emphasizes the
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potential neuroprotective role of glial A2ARs (Daré et al., 2007),
as reported in animal models of Alzheimer’s (Matos et al., 2012)
and Parkinson’s disease (Yu et al., 2008), as well as exposure to
LPS (Rebola et al., 2011) or glaucoma (Madeira et al., 2015).

It is important to stress that the present results do not
exclude the possibility that the beneficial effects of chronic
caffeine consumptionmight also involve the control of peripheral
metabolism and circulating insulin concentration, such as via
adenosine receptors in the pancreatic islet (e.g., Johansson et al.,
2007; Töpfer et al., 2008; Salehi et al., 2009), or via regulation
of peripheral metabolic rates and energy expenditure (van Dam
and Hu, 2005; Greenberg et al., 2006; Higdon and Frei, 2006).
It is of interest to note that GK rats chronically consuming
caffeine displayed hyperglycemia but not hyperinsulinemia. The
chronic caffeine treatment used in the present study was also
previously found to improve peripheral insulin sensitivity and
reduce circulating insulin concentration in aged rats (Guarino
et al., 2013) and rats under diets rich in sugar or fat (Conde
et al., 2012). In the brain, insulin and insulin-like growth factor
1 (IGF1) may be involved in regulating the presence of glucose
carriers at the membrane of astrocytes (Fernandez et al., 2017),
the expression of synaptic proteins and number of synapses
(Chiu et al., 2008), the reactivity of astrocytes (e.g., Wilczak and
De Keyser, 1997), and learning and memory processes (Zhao
and Alkon, 2001). Notably, while insulin and insulin-sensitizing
drugs have beneficial effect in dementia, it has also been proposed
that persistent activation of insulin receptors could be the trigger
for brain insulin resistance (e.g., Mullins et al., 2017). Therefore,
further research is needed to understand the role of insulin in
T2D-induced brain dysfunction.

In summary, long-term caffeine intake improved T2D-
induced memory impairment, prevented astrogliosis, and
ameliorated hippocampal synaptic degeneration in GK rats.

Caffeine did not prevent T2D-associatedmetabolic modifications
in the hippocampus. Nevertheless, it had an impact onmetabolite
concentrations in the hippocampus of both Wistar and GK rats.

Therefore, we conclude that the hippocampus is adaptable to
different metabolic conditions, and that synaptic degeneration
and astrogliosis rather than metabolic modifications contribute
to diabetes-induced memory dysfunction. Finally, the present
study also emphasizes the neuroprotective potential of chronic
caffeine consumption as a prophylactic strategy to prevent
memory impairment in T2D.
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Gruetter, R., and Tkáč, I. (2000). Field mapping without reference scan using

asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323. doi: 10.

1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1

Guarino, M. P., Ribeiro, M. J., Sacramento, J. F., and Conde, S. V. (2013).

Chronic caffeine intake reverses age-induced insulin resistance in the rat: effect

on skeletal muscle Glut4 transporters and AMPK activity. Age (Dordr) 35,

1755–1765. doi: 10.1007/s11357-012-9475-x

Hada, J., Kaku, T., Morimoto, K., Hayashi, Y., and Nagai, K. (1998).

Activation of adenosine A2 receptors enhances high K+-evoked taurine

release from rat hippocampus: a microdialysis study. Amino Acids 15, 43–52.

doi: 10.1007/BF01345279

Halassa, M. M., and Haydon, P. G. (2010). Integrated brain circuits: astrocytic

networks modulate neuronal activity and behavior. Annu. Rev. Physiol. 72,

335–355. doi: 10.1146/annurev-physiol-021909-135843

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., and Grunnet, N.

(2010). A role for taurine in mitochondrial function. J. Biomed. Sci. 17:S23.

doi: 10.1186/1423-0127-17-S1-S23

Hasselbalch, S. G., Knudsen, G. M., Videbaek, C., Pinborg, L. H., Schmidt,

J. F., Holm, S., et al. (1999). No effect of insulin on glucose blood-brain

barrier transport and cerebral metabolism in humans. Diabetes 48, 1915–1921.

doi: 10.2337/diabetes.48.10.1915

Higdon, J. V., and Frei, B. (2006). Coffee and health: a review of

recent human research. Crit. Rev. Food Sci. Nutr. 46, 101–123.

doi: 10.1080/10408390500400009

Hurtado-Alvarado, G., Domínguez-Salazar, E., Velázquez-Moctezuma, J., and

Gómez-González, B. (2016). A2A Adenosine receptor antagonism reverts

the blood-brain barrier dysfunction induced by sleep restriction. PLoS ONE

11:e0167236. doi: 10.1371/journal.pone.0167236

Johansson, S. M., Salehi, A., Sandström, M. E., Westerblad, H., Lundquist,

I., Carlsson, P. O., et al. (2007). A1 receptor deficiency causes increased

insulin and glucagon secretion in mice. Biochem. Pharmacol. 74, 1628–1635.

doi: 10.1016/j.bcp.2007.08.006

Kainulainen, H., Schürmann, A., Vilja, P., and Joost, H. G. (1993). in vivo

glucose uptake and glucose transporter proteins GLUT1 and GLUT3 in brain

tissue from streptozotocin-diabetic rats. Acta Physiol. Scand. 149, 221–225.

doi: 10.1111/j.1748-1716.1993.tb09615.x

Kaster, M. P., Machado, N. J., Silva, H. B., Nunes, A., Ardais, A. P., Santana, M.,

et al. (2015). Caffeine acts through neuronal adenosine A2A receptors to prevent

mood and memory dysfunction triggered by chronic stress. Proc. Natl. Acad.

Sci. U.S.A. 112, 7833–7838. doi: 10.1073/pnas.1423088112

Küstermann, E., Seelig, J., and Künnecke, B. (1998). Ascorbic acid, a vitamin, is

observed by in vivo 13C nuclear magnetic resonance spectroscopy of rat liver.

Am. J. Physiol. 274(1 Pt 1), E65–E71.

Lalonde, R. (2002). The neurobiological basis of spontaneous alternation.Neurosci.

Biobehav. Rev. 26, 91–104. doi: 10.1016/S0149-7634(01)00041-0

Li, P., Rial, R., Canas, P. M., Yoo, J. H., Li, W., Zhou, X., et al. (2015). Optogenetic

activation of intracellular adenosine A2A receptor signaling in hippocampus

Frontiers in Neuroscience | www.frontiersin.org 14 January 2019 | Volume 12 | Article 1015

https://doi.org/10.1111/j.1460-9568.2011.07719.x
https://doi.org/10.1523/JNEUROSCI.13-06-02540.1993
https://doi.org/10.1016/j.neuroscience.2006.05.024
https://doi.org/10.1007/s11302-005-0649-1
https://doi.org/10.1111/jnc.13724
https://doi.org/10.1016/j.physbeh.2007.05.031
https://doi.org/10.14336/AD.2014.1104
https://doi.org/10.1111/j.1471-4159.2009.06349.x
https://doi.org/10.1111/j.1471-4159.2012.07688.x
https://doi.org/10.3389/neuro.14.006.2009
https://doi.org/10.1016/j.neuroscience.2007.08.005
https://doi.org/10.24966/DMD-201X/100011
https://doi.org/10.1371/journal.pone.0021899
https://doi.org/10.1016/j.neuint.2005.08.008
https://doi.org/10.3233/JAD-111982
https://doi.org/10.1016/S0169-328X(96)00193-3
https://doi.org/10.2337/diabetes.47.9.1444
https://doi.org/10.2337/db16-0861
https://doi.org/10.1523/JNEUROSCI.5761-10.2011
https://doi.org/10.1016/j.arr.2010.04.007
https://doi.org/10.1016/j.neuroscience.2006.04.066
https://doi.org/10.1016/j.neuroscience.2010.06.021
https://doi.org/10.1007/s12640-017-9821-y
https://doi.org/10.1007/s00125-007-0602-7
https://doi.org/10.1093/ajcn/84.4.682
https://doi.org/10.1002/(SICI)1522-2594(200002)43:2<319::AID-MRM22>3.0.CO;2-1
https://doi.org/10.1007/s11357-012-9475-x
https://doi.org/10.1007/BF01345279
https://doi.org/10.1146/annurev-physiol-021909-135843
https://doi.org/10.1186/1423-0127-17-S1-S23
https://doi.org/10.2337/diabetes.48.10.1915
https://doi.org/10.1080/10408390500400009
https://doi.org/10.1371/journal.pone.0167236
https://doi.org/10.1016/j.bcp.2007.08.006
https://doi.org/10.1111/j.1748-1716.1993.tb09615.x
https://doi.org/10.1073/pnas.1423088112
https://doi.org/10.1016/S0149-7634(01)00041-0
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Duarte et al. Caffeine and T2D-Induced Hippocampal Alterations

is sufficient to trigger CREB phosphorylation and impair memory. Mol.

Psychiatry 20, 1339–1349. doi: 10.1038/mp.2014.182

Lopes, L. V., Halldner, L., Rebola, N., Johansson, B., Ledent, C., Chen, J. F., et al.

(2004). Binding of the prototypical adenosine A2A receptor agonist CGS 21680

to the cerebral cortex of adenosine A1 and A2A receptor knockout mice. Br. J.

Pharmacol. 141, 1006–1014. doi: 10.1038/sj.bjp.0705692

Madeira, M. H., Elvas, F., Boia, R., Gonçalves, F. Q., Cunha, R. A., Ambrósio,

A. F., et al. (2015). Adenosine A2AR blockade prevents neuroinflammation-

induced death of retinal ganglion cells caused by elevated pressure. J.

Neuroinflammation 12:115. doi: 10.1186/s12974-015-0333-5

Matos, M., Augusto, E., Machado, N. J., dos Santos-Rodrigues, A., Cunha, R.

A., and Agostinho, P. (2012). Astrocytic adenosine A2A receptors control the

amyloid-β peptide-induced decrease of glutamate uptake. J. Alzheimers Dis. 31,

555–567. doi: 10.3233/JAD-2012-120469

Mlynárik, V., Gambarota, G., Frenkel, H., and Gruetter, R. (2006). Localized short-

echo-time protonMR spectroscopy with full signal-intensity acquisition.Magn.

Reson. Med. 56, 965–970. doi: 10.1002/mrm.21043

Moheet, A., Mangia, S., and Seaquist, E. R. (2015). Impact of diabetes on

cognitive function and brain structure. Ann. N. Y. Acad. Sci. 1353, 60–71

doi: 10.1111/nyas.12807

Mullins, R. J., Diehl, T. C., Chia, C. W., and Kapogiannis, D. (2017). Insulin

resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s

disease. Front. Aging Neurosci. 9:118. doi: 10.3389/fnagi.2017.00118

Pagnussat, N., Almeida, A. S., Marques, D. M., Nunes, F., Chenet, G. C., Botton,

P. H., et al. (2015). Adenosine A2A receptors are necessary and sufficient to

trigger memory impairment in adult mice. Br. J. Pharmacol. 172, 3831–3845.

doi: 10.1111/bph.13180

Pelligrino, D. A., LaManna, J. C., Duckrow, R. B., Bryan, R. M., and Harik, S.

I. (1992). Hyperglycemia and blood-brain barrier glucose transport. J. Cereb.

Blood Flow Metab. 12, 887–899. doi: 10.1038/jcbfm.1992.126

Rebola, N., Canas, P. M., Oliveira, C. R., and Cunha, R. A. (2005).

Different synaptic and subsynaptic localization of adenosine A2A receptors

in the hippocampus and striatum of the rat. Neuroscience 132, 893–903.

doi: 10.1016/j.neuroscience.2005.01.014

Rebola, N., Lujan, R., Cunha, R. A., andMulle, C. (2008). Adenosine A2A receptors

are essential for long-term potentiation of NMDA-EPSCs at hippocampal

mossy fiber synapses. Neuron 57, 121–134. doi: 10.1016/j.neuron.2007.11.023

Rebola, N., Sebastião, A. M., de Mendonça, A., Oliveira, C. R., Ribeiro, J. A., and

Cunha, R. A. (2003). Enhanced adenosine A2A receptor facilitation of synaptic

transmission in the hippocampus of aged rats. J. Neurophysiol. 90, 1295–1303.

doi: 10.1152/jn.00896.2002

Rebola, N., Simões, A. P., Canas, P. M., Tomé, A. R., Andrade, G. M., Barry,

C. E., et al. (2011). Adenosine A2A receptors control neuroinflammation and

consequent hippocampal neuronal dysfunction. J. Neurochem. 117, 100–111.

doi: 10.1111/j.1471-4159.2011.07178.x

Reddy, P. H., Mani, G., Park, B. S., Jacques, J., Murdoch, G., Whetsell,

W., et al. (2005). Differential loss of synaptic proteins in Alzheimer’s

disease: implications for synaptic dysfunction. J. Alzheimers Dis. 7, 103–117.

doi: 10.3233/JAD-2005-7203

Salehi, A., Parandeh, F., Fredholm, B. B., Grapengiesser, E., and Hellman, B.

(2009). Absence of adenosine A1 receptors unmasks pulses of insulin release

and prolongs those of glucagon and somatostatin. Life Sci. 85, 470–476.

doi: 10.1016/j.lfs.2009.08.001

Saravia, F. E., Revsin, Y., Gonzalez Deniselle, M. C., Gonzalez, S. L., Roig, P., Lima,

A., et al. (2002). Increased astrocyte reactivity in the hippocampus of murine

models of type 1 diabetes: the non-obese diabetic (NOD) and streptozotocin-

treated mice. Brain Res. 957, 345–353. doi: 10.1016/S0006-8993(02)03675-2

Sebastião, A. M., Cunha, R. A., de Mendonça, A., and Ribeiro, J. A.

(2000). Modification of adenosine modulation of synaptic transmission

in the hippocampus of aged rats. Br. J. Pharmacol. 131, 1629–1634.

doi: 10.1038/sj.bjp.0703736

Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science 298, 789–791.

doi: 10.1126/science.1074069

Serchov, T., Clement, H. W., Schwarz, M. K., Iasevoli, F., Tosh, D. K., Idzko, M.,

et al. (2015). Increased signaling via adenosine A1 receptors, sleep deprivation,

imipramine, and ketamine inhibit depressive-like behavior via induction of

homer1a. Neuron 87, 549–562. doi: 10.1016/j.neuron.2015.07.010

Silva, A. C., Lemos, C., Gonçalves, F. Q., Pliássova, A. V., Machado, N. J.,

Silva, H. B., et al. (2018). Blockade of adenosine A2A receptors recovers

early deficits of memory and plasticity in the triple transgenic mouse model

of Alzheimer’s disease. Neurobiol. Dis. 117, 72–81. doi: 10.1016/j.nbd.2018.

05.024

Silva, C. G., Porciúncula, L. O., Canas, P. M., Oliveira, C. R., and Cunha,

R. A. (2007). Blockade of adenosine A2A receptors prevents staurosporine-

induced apoptosis of rat hippocampal neurons. Neurobiol. Dis. 27, 182–189.

doi: 10.1016/j.nbd.2007.04.018

Simpson, I. A., Appel, N. M., Hokari, M., Oki, J., Holman, G. D.,

Maher, F., et al. (1999). Blood-brain barrier glucose transporter: effects

of hypo- and hyperglycemia revisited. J. Neurochem. 72, 238–247.

doi: 10.1046/j.1471-4159.1999.0720238.x

Steculorum, S. M., Solas, M., and Brüning, J. C. (2014). The paradox of

neuronal insulin action and resistance in the development of aging-associated

diseases. Alzheimers Dement. 10(1 Suppl. ), S3–S11. doi: 10.1016/j.jalz.2013.

12.008

Takahashi, R. N., Pamplona, F. A., and Prediger, R. D. (2008). Adenosine receptor

antagonists for cognitive dysfunction: a review of animal studies. Front. Biosci.

13, 2614–2632. doi: 10.2741/2870

Temido-Ferreira, M., Ferreira, D. G., Batalha, V. L., Marques-Morgado, I., Coelho,

J. E., Pereira, P., et al. (2018). Age-related shift in LTD is dependent on neuronal

adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Mol.

Psychiatry. doi: 10.1038/s41380-018-0110-9. [Epub ahead of print].

Töpfer, M., Burbiel, C. E., Müller, C. E., Knittel, J., and Verspohl, E. J.

(2008). Modulation of insulin release by adenosine A1 receptor agonists and

antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca2+

uptake. Cell Biochem. Funct. 26, 833–843. doi: 10.1002/cbf.1514

van Dam, R. M., and Hu, F. B. (2005). Coffee consumption and risk of type 2

diabetes: a systematic review. JAMA 294, 97–104. doi: 10.1001/jama.294.1.97

van der Graaf, M., Janssen, S. W., van Asten, J. J., Hermus, A. R., Sweep, C. G.,

Pikkemaat, J. A., et al. (2004). Metabolic profile of the hippocampus of Zucker

Diabetic Fatty rats assessed by in vivo 1H magnetic resonance spectroscopy.

NMR Biomed. 17, 405–410. doi: 10.1002/nbm.896

Viana da Silva, S., Haberl, M. G., Zhang, P., Bethge, P., Lemos, C., Gonçalves, N.,

et al. (2016). Early synaptic deficits in the APP/PS1mouse model of Alzheimer’s

disease involve neuronal adenosine A2A receptors. Nature Comm. 7:11915.

doi: 10.1038/ncomms11915

Wilczak, N., and De Keyser, J. (1997). Insulin-like growth factor-I receptors in

normal appearing white matter and chronic plaques in multiple sclerosis. Brain

Res. 772, 243–246. doi: 10.1016/S0006-8993(97)00940-2

Wilkes, J. J., Nelson, E., Osborne, M., Demarest, K. T., and Olefsky, J. M. (2005).

Topiramate is an insulin-sensitizing compound in vivo with direct effects

on adipocytes in female ZDF rats. Am. J. Physiol. Endocrinol. Metab. 288,

E617–E624. doi: 10.1152/ajpendo.00437.2004

Wurm, A., Iandiev, I., Hollborn, M., Wiedemann, P., Reichenbach, A.,

Zimmermann, H., et al. (2008). Purinergic receptor activation inhibits osmotic

glial cell swelling in the diabetic rat retina. Exp. Eye. Res. 87, 385–393.

doi: 10.1016/j.exer.2008.07.004

Yu, L., Shen, H. Y., Coelho, J. E., Araújo, I. M., Huang, Q. Y., Day, Y. J., et al. (2008).

Adenosine A2A receptor antagonists exert motor and neuroprotective effects by

distinct cellular mechanisms.Ann. Neurol. 63, 338–346. doi: 10.1002/ana.21313

Zhao, W. Q., and Alkon, D. L. (2001). Role of insulin and insulin

receptor in learning and memory. Mol. Cell Endocrinol. 177, 125–134.

doi: 10.1016/S0303-7207(01)00455-5

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Duarte, Skoug, Silva, Carvalho, Gruetter and Cunha. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 January 2019 | Volume 12 | Article 1015

https://doi.org/10.1038/mp.2014.182
https://doi.org/10.1038/sj.bjp.0705692
https://doi.org/10.1186/s12974-015-0333-5
https://doi.org/10.3233/JAD-2012-120469
https://doi.org/10.1002/mrm.21043
https://doi.org/10.1111/nyas.12807
https://doi.org/10.3389/fnagi.2017.00118
https://doi.org/10.1111/bph.13180
https://doi.org/10.1038/jcbfm.1992.126
https://doi.org/10.1016/j.neuroscience.2005.01.014
https://doi.org/10.1016/j.neuron.2007.11.023
https://doi.org/10.1152/jn.00896.2002
https://doi.org/10.1111/j.1471-4159.2011.07178.x
https://doi.org/10.3233/JAD-2005-7203
https://doi.org/10.1016/j.lfs.2009.08.001
https://doi.org/10.1016/S0006-8993(02)03675-2
https://doi.org/10.1038/sj.bjp.0703736
https://doi.org/10.1126/science.1074069
https://doi.org/10.1016/j.neuron.2015.07.010
https://doi.org/10.1016/j.nbd.2018.05.024
https://doi.org/10.1016/j.nbd.2007.04.018
https://doi.org/10.1046/j.1471-4159.1999.0720238.x
https://doi.org/10.1016/j.jalz.2013.12.008
https://doi.org/10.2741/2870
https://doi.org/10.1038/s41380-018-0110-9
https://doi.org/10.1002/cbf.1514
https://doi.org/10.1001/jama.294.1.97
https://doi.org/10.1002/nbm.896
https://doi.org/10.1038/ncomms11915
https://doi.org/10.1016/S0006-8993(97)00940-2
https://doi.org/10.1152/ajpendo.00437.2004
https://doi.org/10.1016/j.exer.2008.07.004
https://doi.org/10.1002/ana.21313
https://doi.org/10.1016/S0303-7207(01)00455-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Impact of Caffeine Consumption on Type 2 Diabetes-Induced Spatial Memory Impairment and Neurochemical Alterations in the Hippocampus
	Introduction
	Methods
	Animals
	Behavioral Tasks
	Localized 1H Magnetic Resonance Spectroscopy (MRS)
	Determination of Glucose Transport Kinetics
	Western Blot Analysis
	Electrophysiological Recordings
	Statistics

	Results
	Caffeine Consumption Prevents Spatial Memory Impairment in GK Rats
	Diabetes-induced Metabolic Alterations
	Hippocampal Glucose Homeostasis
	Synaptic Alterations in the Hippocampus of GK Rats
	Caffeine Consumption Prevents Diabetes-Induced Astrogliosis
	Altered Density of Adenosine A1 and A2A Receptors in the Hippocampus
	Altered Efficiency of Adenosine Receptors Controlling Hippocampal Synaptic Transmission and Plasticity

	Discussion
	Author Contributions
	Acknowledgments
	References


