
TECHNOLOGY REPORT
published: 13 February 2019

doi: 10.3389/fnins.2018.01030

Frontiers in Neuroscience | www.frontiersin.org 1 February 2019 | Volume 12 | Article 1030

Edited by:

Christoph Guger,

g.tec Medical Engineering GmbH,

Austria

Reviewed by:

Sebastian Halder,

University of Essex, United Kingdom

Hasan Ayaz,

Drexel University, United States

*Correspondence:

Griffin Milsap

griff@jhmi.edu

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 27 August 2018

Accepted: 19 December 2018

Published: 13 February 2019

Citation:

Milsap G, Collard M, Coogan C and

Crone NE (2019) BCI2000Web and

WebFM: Browser-Based Tools for

Brain Computer Interfaces and

Functional Brain Mapping.

Front. Neurosci. 12:1030.

doi: 10.3389/fnins.2018.01030

BCI2000Web and WebFM:
Browser-Based Tools for Brain
Computer Interfaces and Functional
Brain Mapping

Griffin Milsap 1*, Max Collard 2, Christopher Coogan 2 and Nathan E. Crone 2

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States, 2Department of Neurology,

Johns Hopkins University, Baltimore, MD, United States

BCI2000 has been a popular platform for development of real-time brain computer

interfaces (BCIs). Since BCI2000’s initial release, web browsers have evolved

considerably, enabling rapid development of internet-enabled applications and interactive

visualizations. Linking the amplifier abstraction and signal processing native to BCI2000

with the host of technologies and ease of development afforded by modern web

browsers could enable a new generation of browser-based BCIs and visualizations.

We developed a server and filter module called BCI2000Web providing an HTTP

connection capable of escalation into an RFC6455 WebSocket, which enables direct

communication between a browser and a BCI2000 distribution in real-time, facilitating

a number of novel applications. We also present a JavaScript module, bci2k.js, that

allows web developers to create paradigms and visualizations using this interface in an

easy-to-use and intuitive manner. To illustrate the utility of BCI2000Web, we demonstrate

a browser-based implementation of a real-time electrocorticographic (ECoG) functional

mapping suite called WebFM. We also explore how the unique characteristics of

our browser-based framework make BCI2000Web an attractive tool for future BCI

applications. BCI2000Web leverages the advances of BCI2000 to provide real-time

browser-based interactions with human neurophysiological recordings, allowing for

web-based BCIs and other applications, including real-time functional brain mapping.

Both BCI2000 andWebFM are provided under open source licenses. Enabling a powerful

BCI suite to communicate with today’s most technologically progressive software

empowers a new cohort of developers to engage with BCI technology, and could serve

as a platform for internet-enabled BCIs.

Keywords: electrocorticogram (ECoG), functional brain mapping, visualization, web browser, brain computer

interface (BCI)

1. INTRODUCTION

A brain-computer interface (BCI) is a system that translates brain activity into control signals for
a computer. Modern incarnations of BCIs rely on rapid and low-latency brain signal acquisition,
preprocessing, feature extraction, classification and/or regression, and frequently, postprocessing
of the resultant control signal (Wolpaw et al., 2002). In the case of closed-loop BCI, some

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.01030
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.01030&domain=pdf&date_stamp=2019-02-13
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:griff@jhmi.edu
https://doi.org/10.3389/fnins.2018.01030
https://www.frontiersin.org/articles/10.3389/fnins.2018.01030/full
http://loop.frontiersin.org/people/589105/overview
http://loop.frontiersin.org/people/589199/overview
http://loop.frontiersin.org/people/608104/overview
http://loop.frontiersin.org/people/1183/overview

Milsap et al. BCI2000Web and WebFM

form of visual or auditory feedback is given to the user
to inform them of their control performance, typically
requiring a low round-trip latency from signal acquisition
to output. BCI development typically requires performant
implementations of data acquisition and signal processing
algorithms, high precision synchronization of external
device telemetry, and typically, control of external software,
requiring inter-process control or device input emulation
(Wolpaw et al., 2000; Vaughan et al., 2003).

These technical requirements make the development of
software for this purpose extremely challenging; however, there
are a number of existing software platforms that bootstrap
this development endeavor. BCI2000 has been a standardized
research platform for BCI development for the last 15 years;
it has been used by over 400 labs, and has been cited in
numerous publications (Schalk et al., 2004). OpenViBE is another
platform that has been developed to support real-time BCI
research, offering a graphical programming language for signal
processing and visualization (Renard et al., 2010). Additionally, a
low-level communication protocol supporting signal acquisition
and synchronization, called LabStreamingLayer, allows for TCP
network streaming and synchronization of multi-modal data
streams (Kothe, 2016) and could form the foundation of a
BCI platform.

Widespread adoption and advancement of web browser
technology makes it an attractive target for a BCI platform.
Recent advancements in browser technology and standards
have enabled direct access to low-level system resources such
as graphics hardware and accelerometry/system sensors with
application programming interfaces (APIs) that have exposed
this hardware and software functionality via easy-to-use yet
powerful and performant JavaScript packages. Network-enabled
services also implement publicly available APIs that allow
developers to call upon remote computational resources, such
as Amazon web services (AWS), or to query information from
vast databases of indexed knowledge, such as Wikipedia and
Google Image Search.Moreover, many libraries supporting visual
presentation of user interfaces and data visualizations have
been developed. For example, d3.js (Bostock, 2011) has been
used to power interactive data visualizations with impressive
performance and an expressive yet functional API.

Many of the technologies readily available in the modern web
browser would be useful to have available for the development of
a contemporary BCI—for example, the ability to tag data in real-
time with a speech transcription, via the WebSpeech API (Shires
and Wennborg, 2012), or the ability to present stimuli in 3D
using a virtual reality headset, viaWebVR (Vukicevic et al., 2016)
and three.js (Cabello et al., 2010). Visualization of the resulting
data using d3.js (Bostock, 2011) or even sonification using the
WebAudio API (Adenot et al., 2018) are fruitful endeavors for
understanding realtime BCI output. Existing BCI software suites
generally provide some amount of interprocess communication,
typically exposed via user datagram protocol (UDP) or shared
memory. However, browsers do not typically allow web apps to
access UDP natively due to security concerns; further, existing
communication schemes like BCI2000’s AppConnector interface
do not scale well to high data volumes, like those required to

transmit human electrocorticography (ECoG) signals. BCI2000’s
existing interprocess communication tooling was designed with
the transmission of control signals in mind, communicating
signals using ASCII for simplicity instead of binary at the expense
of inflating the data rate by a factor of ∼8-fold—an approach
that was successful until the need to transmit raw and processed
ECoG data streams was desirable. Modern browsers implement
a protocol built on top of TCP called WebSocket (Fette, 2011)
that allows an HTTP client to escalate an existing connection
to a general purpose real-time bidirectional binary/ASCII
communication interface. WebSockets are perfectly situated to
facilitate the transfer of raw brain signals, extracted neural
features, and processed control signals from a BCI software suite
to a web app on a browser-enabled device, as well as the transfer
of auxiliary sensor information from the web app back to the
native software suite, all in real time. In this article, we present
an implementation of the aforementioned interface as a plugin to
BCI2000, which we call BCI2000Web.

1.1. ECoG Functional Mapping: A Testbed
for Web Technologies
In this report, we additionally demonstrate the utility of this new
BCI2000Web interface with an example application that shares
many technical requirements with a BCI: a functional mapping
tool capable of visualizing cortical activation derived from ECoG
recordings in real-time using local processing at the bedside or
in the operating room, and of synchronizing the final results to a
centrally hosted repository.

Functional mapping of eloquent cortex is a target application
of great scientific and clinical impact. About a third of patients
with epilepsy have seizures that are resistant to medication
therapy. In many of these patients, seizures arise from a focal
brain area, and if this area can be safely removed, seizure
control can be achieved. When non-invasive testing cannot
reliably identify the seizure onset zone as distinct from brain
regions needed for normal neurological function, clinicians may
choose to surgically implant electrodes in the depths of the
brain (stereo-EEG) or on its surface (electrocorticography, or
ECoG). These intracranial electrodes may be implanted for
a week or more in order to reliably localize the onset of
seizures. These electrodes also facilitate the identification of
eloquent cortex—i.e., regions that are implicated in speech
and language, as well as perception, movement, and other
important brain functions. A technique called electrocortical
stimulation mapping (ESM) is typically used to map these
regions. During ESM, pulse-trains of electrical current are passed
between pairs of the implanted electrodes to temporarily disable
a small patch of cortex while the patient performs a simple
language or motor task. A behavioral change elicited by this
temporary lesion indicates that the stimulated area of the brain
is necessary for task completion (Ojemann et al., 1989). This
testing procedure is time-consuming and uncomfortable for the
patient, sometimes eliciting after-discharges (Lesser et al., 1984;
Blume et al., 2004); these after-discharges can also evolve into
seizures, which can be of questionable utility for diagnosing ictal
cortex (Hamberger, 2007).

Frontiers in Neuroscience | www.frontiersin.org 2 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

The limitations of ESM have motivated a complementary
mapping technique based upon estimates of task-related changes
in the power spectra, especially in high frequencies, of passive
recordings of ECoG or stereo-EEG during behavioral tasks. This
mapping technique, hereafter referred to as ECoG functional
mapping, produces maps of task-related cortical activation,
which may include cortex that is recruited by a task but
not critical to task performance. In contrast, ESM uses a
temporary electrophysiological disruption of cortical function to
simulate the acute behavioral effects of tissue resection, and is
presumed to be specific to areas critical to task performance.
Nevertheless, a number of clinical studies have demonstrated
good correspondence between ECoG functional mapping and
ESM (Brunner et al., 2009; Wang et al., 2016). Moreover, several
studies have shown that ECoG functional mapping can be used
to predict post-resection neurological impairments, and in some
cases it has predicted impairments that were not predicted by
ESM (Wang et al., 2016). For these reasons, some epilepsy
surgery centers have begun to use ECoG functional mapping as
a complement to ESM, sometimes providing a preliminary map
of cortical function that guides the use of ESM. However, most
epilepsy centers have not yet adopted ECoG functional mapping
because of the lack of technical resources, especially software that
can be used with their clinical EEG monitoring systems.

Several ECoG functional mapping packages have been
developed in recent years. For example, SIGFRIED acquires a
large baseline distribution of neural activity in a calibration
block, then rapidly accumulates estimates of cortical activation
by averaging neural activity evoked by behavior in blocks
of time (Brunner et al., 2009). A commercial product called
cortiQ (Prueckl et al., 2013) is capable of performing this
block-based mapping paradigm, which makes it possible for
minimally trained clinical professionals to perform passive ECoG
mapping. Both SIGFRIED and cortiQ are built using the BCI2000
framework and take advantage of the extensive optimizations and
development legacy of the platform. A more nuanced mapping
technique, termed spatial-temporal functional mapping (STFM),
provides time-resolved, trial-locked results during a specific task
by collecting a pooled baseline activity from a pre-defined 1̃ s
period before the onset of a trial, then performing a statistical
test on each time/channel bin in a window of interest relative to
trial onset (Wang et al., 2016). Though the results of STFM are
more complicated and require more expertise to interpret than
the block-based mapping used by SIGFRIED or CortIQ, they
provide a more detailed map of the spatial-temporal evolution of
task-related activation, which can help clarify the role of different
areas activated by a given task, of clear utility in cognitive
neuroscience research and of potential clinical utility in planning
surgical resections.

ECoG functional mapping relies on high performance signal
processing and sophisticated real-time visualization, making it
a suitable application example for BCI2000 and BCI2000Web.
We saw an opportunity to build an easy-to-deploy-and-use
tool for both researchers and clinicians that delivers the
time-resolved, trial-locked results of STFM at the bedside
in a web application, using BCI2000Web as the underlying
communication technology to drive a browser-based interactive

visualization. As a demonstration of the potential of the
BCI2000Web plugin, in this report we also present WebFM,
a software suite built on top of Node.js and BCI2000Web for
performing real-time functional mapping in a web browser.

2. DESIGN AND IMPLEMENTATION

We chose to build our BCI WebSocket interface on top of
BCI2000 as opposed to the other aforementioned technologies
for many reasons, including support for acquisition devices
in common use within epilepsy monitoring units and
EEG research lab settings, high performance spectral
extraction implementations, pedigree within the research
community, highly accurate stimulus presentation capabilities,
comprehensive documentation, and its ability to replay
experimental sessions post hoc easily and accurately.

The BCI2000 environment is a general-purpose
computational framework, typically used to construct BCIs,
built upon four binary executables: the signal source module,
which acquires physiological data from a supported amplifier;
the signal processing module, which extracts neural features and
transforms those features into control signals; an application
module, which reacts to those control signals and provides
feedback to the subject; and an Operator module, which
orchestrates the behavior of all three functional submodules of
the system (see Figure 1). Signals propagate from the source
module to the processing module to the application module,
with interconnections facilitated by a network-based protocol
(in older versions of BCI2000) or a shared memory interface
(in more recent iterations). Each of the modules consists of a
series of signal “filters,” which accept an incoming signal (as
a channels-by-elements array) and output a derived signal,
potentially of different dimensionality. A built-in Operator
scripting language allows for setup and configuration of filters
within an experimental session to occur automatically, and
a Telnet interface exists in the Operator module, capable of
accepting textual commands in the Operator scripting language
from outside BCI2000.

2.1. BCI2000Web
To address remote control of BCI2000 and data transmission
between BCI2000 and browsers, we developed a Node.js
module called BCI2000Web that accepts Operator scripting
language commands via WebSocket and transmits them to
the Operator executable via Telnet, returning system output
back to the client. It is primarily used to control data
acquisition and signal processing parameters remotely via
a connected WebSocket-enabled client, typically a browser.
BCI2000Web has been developed as a service that runs
within the Node.js runtime. Upon starting, it opens a Telnet
connection to the Operator module and also functions as a
basic HTTP server. While BCI2000’s Telnet implementation
only supports one client sending one set of instructions that
are executed serially, BCI2000Web provides an interface that
allows multiple clients to make requests to send commands to
the Operator module; these commands are queued and executed
sequentially, with responses sent back to the appropriate client

Frontiers in Neuroscience | www.frontiersin.org 3 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

FIGURE 1 | A full BCI2000 stack including a Signal Source, Signal Processing, Application, and Operator module communicates with BCI2000Web, implemented as

a Node.js module, via Telnet. Browser-based remote control software and visualization tools interact with BCI2000Web, and receive raw and processed neural signals

directly from the BCI2000 system modules, via WebSockets, while the application module presents stimuli to the patient, in this case, the word stimulus “HEALTH” for

a word reading paradigm.

asynchronously. BCI2000Web is capable of interfacing with
an unmodified BCI2000 distribution and automating system
configuration without any further software or modifications to
BCI2000 modules.

In order to transmit the raw and processed signal from
the BCI2000 filter pipeline to the browser, however, source
modifications within the system modules are required. The raw
and processed signal is never sent directly to the Operator
module, so the signal can only be transmitted to a browser
by compiling secondary WebSocket servers into the existing
modules at specific locations within the filter chain. This
modification has been realized in our implementation as a
generic “WSIOFilter” (WebSocket Input/Output GenericFilter)
that can be instantiated multiple times into the BCI2000 filter
chain. Each WSIOFilter defines a parameter specifying the
address and port its WebSocket server is hosted on. Once an
incoming connection is escalated to a WebSocket, this filter
sends packets to the client in the BCI2000 binary format, first
describing the dimensionality of the signal and the system state
vector via a “SignalProperties” and “StateList” packet, then a
“GenericSignal” and “StateVector” packet for the current system
signal and state vector once per sample block. These filters
can be instantiated several times in the signal processing chain
for any particular signal processing module. This filter has
also been included as a source module extension that enables
transmission of the raw signal in all signal source modules, and
an application module extension that enables transmission of

the application module input—identical to the signal processing
output—in all application modules. In practice, the amount of
data being sent/received by instantiations of the WSIOfilter is
directly related to CPU usage on the sending and receiving
machines, while the latency of system throughput from recording
to browser is more a function of the network setup and the
number of network interface hops the data has to traverse.

AWebSocket-enabled client is unlikely to natively understand
the format of the incoming/outgoing messages on any of
the aforementioned connections: our implementation of
BCI2000Web adds some decorators to Operator scripting
commands and Operator outputs to handle multiple clients, and
the WSIOFilter output is implemented in the BCI2000 binary
protocol. A JavaScript library, bci2k.js—available as a package on
the Node package manager (NPM) registry—contains functions
that manage the BCI2000 WebSocket connections and translate
the binary BCI2000 format into readily usable data structures
within a JavaScript context. Non-browser WebSocket-enabled
clients will need to implement this functionality in order to
communicate using these interfaces.

2.2. WebFM: Browser-Based ECoG
Functional Mapping
Subdural ECoG recordings are the target modality for WebFM,
the aforementioned functional mapping application; this
modality has different signal processing requirements than scalp
EEG. The signal processing module used in the system in the

Frontiers in Neuroscience | www.frontiersin.org 4 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

Johns Hopkins Epilepsy Monitoring Unit is a modification of
the default SpectralSignalProcessing.exe module.
This signal processing module consists of a chain of filters, the
first of which is a spatial filter capable of applying a common
average reference, a frequently used spatial filter for ECoG
recordings (Liu et al., 2015). This is followed by a series of IIR
Butterworth filters, including a fourth order low pass at 110
Hz, followed by a second order high pass at 70 Hz and a 4th
order notch filter at 60 Hz. After the signal is downsampled to
500 Hz from the native sampling rate, it is passed through a
spectral estimator filter, which generates an autoregressive model
on a window of filtered data and uses the model coefficients to
form an estimate of the signal’s power spectrum, using the Burg
method (Burg, 1968). A WSIOFilter is instantiated at this point
in the filter chain, capable of streaming this estimated spectral
content of the neural signals in real-time. A system diagram and
description of the system topology is detailed in Figure 1.

A language or motor task is parameterized as a BCI2000 .prm
file and a collection of audio-visual stimuli in a git repository
hosted on GitHub, available as packages that remote-control
BCI2000 using the BCI2000Web server. Any number of these
tasks can be checked out into the BCI2000Web distribution, and
the server will automatically present them as startup options
within the built-in BCI2000Web browser interface, shown
and described in Figure 2. These paradigms typically specify
a parameterization for StimulusPresentation.exe, a
BCI2000 application module capable of presenting audio-visual
stimuli to the patient with high-precision timing and sequence
control. A browser is used to communicate to the bedside data-
collection and stimulus-presentation machine, and to set up this
system parameterization. (Because of this setup, it is notable
that, when high-precision control isn’t needed for stimulus
presentation, the tasks presented to patients may themselves be
interactive web applications, utilizing bci2k.js and BCI2000Web
to inject behavioral markers into the data recorded by BCI2000.)
A monitor and speaker connected to the bedside computer is set
up in front of the patient, and a microphone is connected to the
auxiliary analog inputs provided by the acquisition system, to be
digitized synchronously with the electrophysiology.

The WebFM/BCI2000Web system currently supports more
than 20 possible experimental paradigms, including a task battery
used for clinical assessment for functional localization. These
paradigms are currently versioned in GitHub repositories with
group permissions and access control managed by the authors. A
setup script is provided with BCI2000Web that accepts a GitHub
login and clones/updates all available task repositories into the
proper location.

2.2.1. Patients and Electrode Localization

All aspects of this study were carried out in accordance with
the recommendations of the Johns Hopkins Institutional Review
Board with written informed consent from all subjects. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki. The protocol was approved by the Johns
Hopkins Institutional Review Board.

Before any functional mapping sessions occur with a patient, a
post-operative computed tomography scan containing electrode

locations is co-registered to a pre-operative magnetic resonance
imaging scan of sufficient resolution (typically with voxel
dimensions of 1 mm or less) to render the patient’s cortical
surface anatomy in high detail, using Freesurfer (Fischl, 2012)
or Bioimage Suite (Papademetris et al., 2006). These electrode
locations are overlaid on a 2D rendering of the cortical surface.
An image file depicting this cortical anatomy and electrode
layout, as well as a comma-separated value (.csv) file containing
the normalized image coordinates of each electrode, is uploaded
to the WebFM server via controls within the WebFM browser
interface. This layout doesn’t typically change during a patient’s
EMU stay, and it is referenced and retrieved by using a subject
identification code, effectively de-identifying the reconstruction
for research purposes.

2.2.2. Software

During an ECoG functional mapping session, a browser running
on the visualization device contacts the WebFM server and
queries the bedside machine for the subject’s identification code
and what task is currently running. The WebFM server then
serves the corresponding cortical reconstruction image and
sensor location file in addition to a bolus of javascript code that
is capable of opening WebSockets to the BCI2000Web server
and WSIOFilters running on the bedside machine. The code
also contains statistics packages and graphical libraries necessary
for acquiring, analyzing, and visualizing the data. The browser
then opens these data streaming WebSockets and performs the
mapping without further contacting the WebFM server. After
each trial of the task, the visualization is updated and once a
full task run has been collected, the resulting map can be saved
back to the WebFM server for indexing and post-hoc inspection,
available on the WebFM Landing page, detailed in Figure 3.

The statistics and visualization for WebFM are based on
the techniques and methods described in Wang et al. (2016).
The baseline window for the tasks is defined as a configurable
period from 1,000 to 200 ms before the trial onset and a
baseline distribution is formed per channel from the pooled high
gamma power values during this period. A two-way t-test is
performed between the distribution for each time-channel bin
and that channel’s baseline distribution. The resulting p-values
are corrected for multiple comparisons using the Benjamini-
Hochberg (BH) procedure, controlling the false discovery rate at
0.05 (Benjamini and Hochberg, 1995). This correction is used to
threshold the results displayed in the WebFM raster and spatial
plots: time-channel bins that did not survive the BH correction
are hidden from view. Any individual time point in this raster
can be dynamically selected and visualized by “scrubbing” the
mouse cursor over the raster display; this yields circles drawn
on a two dimensional representation of the electrode montage,
highlighting which cortical locations were active during that
particular time-point across trials. An options dialog allows
users to change baseline periods, modify visualization timing
parameters and amplitudes, as well as make comparisons across
task conditions and contrasts. The visualization is shown and
further described in Figure 4.

The visualization APIs exposed by WebFM can be used to
implement a number of other visualizations as well. One mode of

Frontiers in Neuroscience | www.frontiersin.org 5 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

FIGURE 2 | A screenshot of the BCI2000 remote control interface. The paradigm index is hosted by BCI2000Web over HTTP. This page is populated by the

experimental paradigms present on the host machine (center) with buttons to start sub-tasks and specific blocks (right). A pane in the top left reads out the current

BCI2000 system state, in addition to a system reset button. In the bottom left, a link to the system replay menu allows for recorded BCI2000 .dat file playback for

system testing and offline mapping.

FIGURE 3 | The landing page for WebFM. A pane in the top left shows system state and houses buttons that start trial-based functional mapping paradigms and a

“live” mode that visualizes neural activity on the brain in real-time, as visualized in prior studies (Lachaux et al., 2007). A list of subject identifiers on the bottom left

pane enables users to pull up previous/current subjects; a list of saved maps for the selected subject appears in the “Records” pane on the bottom right. The “+” in

the top left of the “Subjects” pane allows operators to add new subjects to the database, and the “Metadata” pane at the top right allows operators to upload brain

reconstruction images and normalized electrode locations for displaying functional mapping results. The brain images used for mapping are often overlaid with

information about seizures and/or ESM results, so that functional activation can be easily visually compared with these data; the image shown in the center includes

colored circles depicting the hypothesized spread of ictal activity during the subject’s seizures.

WebFM provides a visualization of raw high gamma activation in
real time, as in (Lachaux et al., 2007); other modifications have
also been used to visualize the propagation of interictal spiking
and seizure propagation across cortex.

2.3. Deployment
As of the time of writing, the WebFM system has been deployed
at two sites: the Johns Hopkins Hospital and the University
of Pittsburgh Medical Center. Across these sites, WebFM has
been used with three acquisition devices: the NeuroPort system

(Blackrock Microsystems, Salt Lake City, UT), a Grapevine
system (Ripple, Salt Lake City, UT), and the EEG1200 system
(Nihon Kohden, Tomioka, Japan). Between these sites and
amplifiers, WebFM has been used to create over 200 functional
maps across 33 subjects. The majority of these subjects (19)
were hospital inpatients undergoing epilepsy monitoring prior
to resective surgery. Clinical staff in the Johns Hopkins Epilepsy
Monitoring Unit have a link to the WebFM portal on their
desktop machines and frequently use the passive ECoG mapping
results when discussing surgical plans. The remaining 14 subjects

Frontiers in Neuroscience | www.frontiersin.org 6 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

FIGURE 4 | WebFM visualization description An example of WebFM results for an image naming task in a subject with high density (5-mm spacing)

temporal-parietal-occipital electrode coverage. A horizon raster Heer et al. (2009) to the left shows a time (x-axis) by channels (y-axis) plot of trial-averaged

task-modulated high gamma power, thresholded for statistical significance with BH correction for a FDR of <0.05. Warm colors represent a statistically significant

increase in task-modulated high gamma power, while cool colors indicate a statistically significant decrease in task-modulated high gamma power. The left black

vertical bar within the raster indicates the trial-start (t = 0 s) where StimulusCode transitioned from zero to a non-zero value, indicating that a stimulus was being

displayed. The right black vertical bar is a temporal cursor that interactively tracks the user’s mouse gestures; the current time it indexes is shown in the top left corner,

0.538 s after stimulus onset. Buttons next to the selected time manipulate visualization properties. The current temporal slice is visualized on the brain image (right) as

circles with size and color indicating the magnitude of the z-score, with the same coloration as in the horizon chart. A button in the top right maximizes the display to

occupy the full screen-space of the device; a gear icon next to the fullscreen icon presents a configuration dialog box containing options for saving results, changing

visualization parameters, configuring realtime signal or BCI2000 state trial-triggering, and visualizing the raw signal, amongst much more functionality. A drop down

menu next to the gear icon turns on/off multiple visualization layers, enabling/disabling display of ESM, functional mapping, connectivity metrics, evoked responses,

etc. A status message at the bottom right indicates WebFM has connected to BCI2000Web via bci2k.js and a trial counter, in this image represented with an “[n]”,

increments as trials are delivered to and visualized by WebFM.

were temporarily implanted with a 64-channel high density
ECoG strip during lead implantation for deep brain stimulation;
for these subjects, WebFM was used to map sensorimotor cortex
in the operating room. WebFM has even been used to generate
maps of activity recorded at one site by researchers at another
site in real time, utilizing virtual private networks.

3. DISCUSSION

BCI2000Web and WebFM take advantage of several recent
technological developments. First and foremost, these packages
capitalize on advancements in the modern web browser,
which is quickly becoming a platform capable of general
purpose computing. With a focus on frontend user interaction,
many packages have been written in JavaScript that support
the rapid implementation of interactive applications and
visualizations. WebFM in particular makes use of d3.js (Bostock,
2011) to provide a high-quality interactive visualization
of trial-averaged high gamma modulation directly on
the brain.

The key to taking advantage of these web-based technologies
is the implementation of BCI2000Web, which utilizes the
WebSocket API to transmit binary-formatted brain data
directly to the browser over TCP/HTTP, and which allows
direct communication to and from BCI2000. While the
experimental paradigms presented in conjunction with

WebFM utilized the native BCI2000 stimulus presentation
module to interact with the subject, the general-purpose
access to Operator scripting over WebSockets provided
by BCI2000Web easily lends itself to a different system
architecture, in which a browser application itself is responsible
for interacting with the subject and providing experimental
markers sent via WebSocket; this topology is depicted in
Figure 5. Several paradigm packages for BCI2000Web leveraging
this architecture have been authored to date. Some make
use of the WebSpeech API (Shires and Wennborg, 2012)
to do real-time speech tagging and segmentation for tasks
involving freely generated speech; another uses the WebMIDI
and WebAudio APIs (Wyse and Subramanian, 2013) to
register subject input on musical peripheral devices, and
perform high-performance audio synthesis in response.
Public JavaScript APIs allow for rich BCI interactions, and
experimental paradigms can pull upon web resources such
as Google Image search for providing varied and tailored
stimuli at run-time. Extending this idea, it is easy to envision
a system architecture in which users’ neural data is sent
to a browser application that communicates with a server
backend in real time, allowing cloud-based services to apply
sophisticated machine learning techniques that wouldn’t
be feasible otherwise on the client-side. Even further, one
could develop a browser-based application that transmits
multiple users’ neural data to each other’s clients, facilitating
brain-based communication.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

FIGURE 5 | A system diagram depicting an experiment implemented in browser JavaScript running on an independent mobile device. The mobile device is running

an experimenter-implemented web-page in fullscreen mode which communicates directly with BCI2000Web for event logging as well as the Signal Processing

module for receiving extracted neural control signals. A JavaScript package, bci2k.js, manages WebSocket connections that handle transmission of operator scripting

language commands and decodes neural control signals from a binary format. The mobile device is running a word reading paradigm (with the stimulus “HEALTH”

currently presented) that has defined asynchronous experimental states including markers for automated vocal transcription onsets using the WebSpeech API. A

query for system state is also relayed by the BCI2000Web server. The benefit of such an architecture is that the patient interface is separated from the bedside clinical

acquisition machine and can be left with the patient without concern of the patient manipulating the clinical datastream.

Cross-device compatibility is another advantage to using the
browser as a visualization and stimulus presentation platform.
Any browser-enabled device (smartphone, tablet, PC, or even
game console) can be used to present stimuli or visualize
output. Because of this “write-once, run-anywhere” development
process, WebFM can be used by clinicians to view mapping
results in real-time on their smartphones from outside the
patient’s room while ECoG functional mapping is being run
by technicians.

3.1. Drawbacks and Caveats
The rationale behind the division of processing using native
binaries and visualization using browser-interpreted javascript is
due to current limitations inherent to browsers. Browser-hosted
JavaScript is rapidly advancing as a next-generation efficient
computational platform with the advent of WebAssembly and
ASM.js (Herman et al., 2014), but at the time of writing it is
still too computationally demanding to perform real-time feature
extraction and signal processing in the browser. Furthermore,
browser access to low level computer hardware and connected
USB devices is only in the early development stages. Given these
limitations, BCI2000Web was designed to take advantage of the
device driver access and computational efficiency of the C++
code base that powers BCI2000 for acquisition device abstraction
and signal processing/feature extraction. This architecture frees
frontend developers from dealing with complicated signal

processing code in JavaScript, and instead enables them to focus
on user experience and design. In the future, a full-stack BCI2000
analog could be implemented directly within the browser, and
BCI2000Web is a glimpse of what that software could empower
for web developers with access to neural features.

A significant amount of the development effort for BCI2000

has been spent on implementing high-performance signal

processing and stimulus presentation software. Delivering audio-
visual stimuli to subjects with a consistent yet minimal latency is
a non-trivial task that BCI2000 has accomplished by interfacing
with low-level graphics drivers in a nuanced way. Operating
system version, bit-width (32 vs. 64), driver versions, compiler
optimizations, and varying hardware capabilities collude to make
this stimulus presentation problem a fragmented and moving
target—one which BCI2000 has historically hit with surprising
accuracy, achieving visual presentation latency on the order of
one to two frames at a 60 Hz monitor refresh rate and audio
latencies on par with modern audio production software (Wilson
et al., 2010). The BCI2000 core team encourage developers to
implement custom signal processing and stimulus presentation
paradigms within this BCI2000 environment using documented
C++ code templates in order to benefit from these optimizations.
That said, so long as tasks are designed properly and ground truth
stimulus and response signals are collected (e.g., screen mounted
photodiodes and patient facing microphones connected directly
to auxiliary inputs on the amplifier), it is still possible to collect

Frontiers in Neuroscience | www.frontiersin.org 8 February 2019 | Volume 12 | Article 1030

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

data of high scientific quality using the browser as the primary
stimulus presentation software even if its stimulus display and
communication latency are in question.

We benchmarked the visual timing performance of a
system with and without BCI2000Web modifications using the
procedure in Wilson et al. (2010) on a platform comprising
Windows 7 64 bit with BCI2000 r5688, Google Chrome
67.0.3396.99, and a 256 channel 1,000 Hz recording from a
Blackrock NeuroPort running with a 20 ms sample-block size;
a standard configuration for a moderate-to-high channel-count
ECoG recording running on an up-to-date clinical machine as
of the time of writing. An unmodified BCI2000 distribution on
this system exhibits a visual latency (t3v, as expressed in Wilson
et al., 2010) of 52 ms with a standard deviation of 8.0 ms.
With BCI2000Web sending neural signals to a browser via
WebSocket on the same acquisition machine, a mean visual
latency of 60 ms with a standard deviation 9.4 ms was observed.
Using the hospital wireless network to send neural signals
via WebSocket to a tablet PC running Windows 10 and the
same version of Chrome results in a visual latency of 62 ms
with a standard deviation of 13.4 ms. These latency metrics
indicate a minimal impact to timing performance when using
BCI2000Web. In many real-time BCI implementations, spectral
feature extraction occurs in windows of 128–256 ms with a
slide of 16–32 ms, and single-trial visual timing differences
fall well within one windowing period. BCIs reliant upon
time-domain features—in particular those that perform trial-
averaging of evoked response potentials—will be more sensitive
to these latency differences, and it is critically important to
run timing benchmarks for specific hardware/software/network
configurations in these circumstances. It should be noted that
these performance metrics are configuration-specific and are
likely to vary significantly across use cases; BCI2000Web comes
bundled with an A/V timing paradigm that can be used to collect
timing-test data, but analyses of these latencies and interpretation
of what constitutes sufficient performance is application specific
and is left to the end-user.

4. CONCLUSIONS

The development of a communication protocol that connects
one of the most widely adopted BCI research and development
suites with the power of modern browser technologies is expected
to accelerate the pace of development for BCI technologies.
Newer software developers, primarily taught using these modern
software development paradigms, can now develop new BCI
applications and neural signal visualizations while leveraging the
legacy and performance of native BCI2000 modules. We have
developed and presented a web-based ECoG functional brain
mapping tool using this technology, and we have successfully
deployed it at two sites with a cohort of 33 patients over two
years. BCI2000Web and WebFM together utilize the relative
strengths of a highly optimized C++ code base in BCI2000 and
the high level visualization libraries within modern browsers to

demonstrate a clinically useful and modern functional mapping
tool. We have also used BCI2000Web for ongoing, albeit
unpublished, BCI research projects, and we describe herein the
advantages and potential uses of BCI2000Web in future BCI
applications. This software is documented and released under
permissive free and open source software licenses, and is put
forward by the authors for use in the research and development
of BCIs and multi-site studies on the clinical efficacy of ECoG
functional mapping.

DATA AVAILABILITY STATEMENT

A standalone distribution of BCI2000Web is available on
GitHub (github.com/cronelab/bci2000web). This
distribution comes packaged with pre-compiled BCI2000
binaries that contain WSIOFilter taps for data access. The
bci2k.js package—which translates BCI2000 binary packets from
signal taps to usable data structures, and handles the Operator
scripting language protocol—can be installed with NPM (node
install bci2k); its codebase is available on GitHub
(github.com/cronelab/bci2k.js). WebFM can also be
found on GitHub (github.com/cronelab/webfm). All of
this software is available under free and open source licenses.

The data used in the live demo atwww.webfm.io is available
via the WebFM API: the subject’s brain image, base-64 encoded,
is located at www.webfm.io/api/brain/PY17N009;
the subject’s sensor geometry is located, in JSON format,
at www.webfm.io/api/geometry/PY17N009; the
high gamma activation data for the presented task (syllable
reading) is located at www.webfm.io/api/data/

PY17N009/SyllableReading.”

AUTHOR CONTRIBUTIONS

BCI2000Web was developed by GM with assistance from
MC. Testing and validation of BCI2000Web was performed
by CC. WebFM was developed by MC with assistance and
maintenance by CC and supervision by NC. Deployment
and testing of WebFM in the Johns Hopkins Epilepsy
Monitoring Unit was undertaken by GM, MC, and NC.
This report was prepared by GM and MC, with input
from NC.

FUNDING

Work on this article and the software presented therein has been
supported by the National Institutes of Health (R01 NS088606,
R01 NS091139).

ACKNOWLEDGMENTS

Wewould like to thankDr. Gerwin Schalk, Dr. Peter Brunner, Dr.
Juergen Mellenger, and the BCI2000 development community
for invaluable contributions to this work.

Frontiers in Neuroscience | www.frontiersin.org 9 February 2019 | Volume 12 | Article 1030

https://github.com/cronelab/bci2000web
https://github.com/cronelab/bci2k.js
https://github.com/cronelab/webfm
http://www.webfm.io
http://www.webfm.io/api/brain/PY17N009
http://www.webfm.io/api/geometry/PY17N009
http://www.webfm.io/api/data/PY17N009/SyllableReading
http://www.webfm.io/api/data/PY17N009/SyllableReading
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Milsap et al. BCI2000Web and WebFM

REFERENCES

Adenot, P., Raymond, T., Wilson, C., and Rogers C. (2018). Web Audio API

Specification, W3C Candidate Recommendation. Available online at: https://

www.w3.org/TR/webaudio/

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol.

57, 289–300.

Blume, W. T., Jones, D. C., and Pathak, P. (2004). Properties of after-discharges

from cortical electrical stimulation in focal epilepsies. Clin. Neurophysiol. 115,

982–989. doi: 10.1016/j.clinph.2003.11.023

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents. IEEE

Trans. Visual. Comput. Graph. 12, 2301–2309.

Brunner, P., Ritaccio, A. L., Lynch, T. M., Emrich, J. F., Wilson, J. A., Williams,

J. C., et al. (2009). A practical procedure for real-time functional mapping of

eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav.

15, 278-86. doi: 10.1016/j.yebeh.2009.04.001

Burg, J. P. (1968). “A new analysis technique for time series data,” in Paper

Presented at NATO Advanced Study Institute on Signal Processing (Enschede).

Cabello, R. et al. (2010). Three.js. Available online at: https://github.com/

mrdoob/three.js.”

Fette, I., and Melnikov, A. (2011). The Websocket Protocol. No. RFC 6455.

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781. doi: 10.1016/j.

neuroimage.2012.01.021

Hamberger, M. J. (2007). Cortical language mapping in epilepsy: a critical review.

Neuropsychol. Rev. 17, 477–489.

Heer, J., Kong, N., and Agrawala, M. (2009). “Sizing the horizon: the effects of chart

size and layering on the graphical perception of time series visualizations,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’09, (New York, NY: ACM), 1303–1312.

Herman, D., Wagner, L., and Zakai, A. (2014). asm.js-Working Draft. Available

online at: http://asmjs.org/spec/latest/

Kothe, C. (2016). Lab Streaming Layer. Available online at: https://github.com/

sccn/labstreaminglayer

Lachaux, J. P., Jerbi, K., Bertrand, O., Minotti, L., Hoffmann, D., Schoendorff, B.,

et al. (2007). BrainTV: a novel approach for online mapping of human brain

functions. Biol. Res. 40, 401–413.

Lesser, R. P., Lüders, H., Klem, G., Dinner, D. S., Morris, H. H., and Hahn, J.

(1984). Cortical afterdischarge and functional response thresholds: results of

extraoperative testing. Epilepsia 25, 615–621.

Liu, Y., Coon, W. G., Pesters, A. d., Brunner, P., and Schalk, G. (2015). The effects

of spatial filtering and artifacts on electrocorticographic signals. J. Neural Eng.

12:056008. doi: 10.1088/1741-2560/12/5/056008

Ojemann, G., Ojemann, J., Lettich, E., and Berger, M. (1989). Cortical language

localization in left, dominant hemisphere. An electrical stimulation mapping

investigation in 117 patients. J. Neurosurg. 71, 316–326.

Papademetris, X., Jackowski, M. P., Rajeevan, N., DiStasio, M., Okuda, H.,

Constable, R. T., et al. (2006). BioImage suite: an integrated medical image

analysis suite: an update. Insight J. 2006:209.

Prueckl, R., Kapeller, C., Potes, C., Korostenskaja, M., Schalk, G., Lee, K. H.,

et al. (2013). “cortiQ - Clinical software for electrocorticographic real-time

functional mapping of the eloquent cortex,” in 2013 35th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

6365–6368. doi: 10.1109/EMBC.2013.6611010

Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., et al. (2010).

OpenViBE: an open-source software platform to design, test, and use brain–

computer interfaces in real and virtual environments. Presence Teleoperat. Virt.

Environ. 19, 35–53. doi: 10.1162/pres.19.1.35

Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., and Wolpaw, J. R.

(2004). BCI2000: a general-purpose brain-computer interface (BCI) system.

IEEE Trans. Biomed. Eng. 51, 1034–1043. doi: 10.1109/TBME.2004.827072

Shires, G., and Wennborg H. (2012). Web Speech API Specification. W3C

Community Group Final Report. Available online at: https://w3c.github.io/

speech-api/

Vaughan, T. M., Heetderks, W. J., Trejo, L. J., Rymer, W. Z., Weinrich, M., Moore,

M.M. et al. (2003). Brain-computer interface technology: a review of the second

international meeting. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 94–109.

Vukicevic, V., Jones, B., Gilbert, K., and Wiemeersch, C. (2016). Webvr. World

Wide Web Consortium.

Wang, Y., Fifer, M. S., Flinker, A., Korzeniewska, A., Cervenka, M. C.,

Anderson, W. S., et al. (2016). Spatial-temporal functional mapping of

language at the bedside with electrocorticography. Neurology 86, 1181–1189.

doi: 10.1212/WNL.0000000000002525

Wilson, J. A., Mellinger, J., Schalk, G., and Williams, J. (2010). A procedure for

measuring latencies in brain-computer interfaces. IEEE Trans. Biomed. Eng. 57,

1785–1797. doi: 10.1109/TBME.2010.2047259

Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P.

H., Schalk, G., et al. (2000). Brain-computer interface technology: a review

of the first international meeting. IEEE Trans. Rehabil. Eng. 8, 164–173.

doi: 10.1109/TRE.2000.847807H

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,

T. M. (2002). Brain-computer interfaces for communication and control. Clin.

Neurophysiol. 113, 767–791.

Wyse, L., and Subramanian, S. (2013). The viability of the web browser

as a computer music platform. Computer Music J. 37, 10–23.

doi:10.1162/COMJa00213

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Milsap, Collard, Coogan and Crone. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2019 | Volume 12 | Article 1030

https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/webaudio/
https://doi.org/10.1016/j.clinph.2003.11.023
https://doi.org/10.1016/j.yebeh.2009.04.001
https://github.com/mrdoob/three.js
https://github.com/mrdoob/three.js
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://asmjs.org/spec/latest/
https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://doi.org/10.1088/1741-2560/12/5/056008
https://doi.org/10.1109/EMBC.2013.6611010
https://doi.org/10.1162/pres.19.1.35
https://doi.org/10.1109/TBME.2004.827072
https://w3c.github.io/speech-api/
https://w3c.github.io/speech-api/
https://doi.org/10.1212/WNL.0000000000002525
https://doi.org/10.1109/TBME.2010.2047259
https://doi.org/10.1109/TRE.2000.847807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	BCI2000Web and WebFM: Browser-Based Tools for Brain Computer Interfaces and Functional Brain Mapping
	1. Introduction
	1.1. ECoG Functional Mapping: A Testbed for Web Technologies

	2. Design and Implementation
	2.1. BCI2000Web
	2.2. WebFM: Browser-Based ECoG Functional Mapping
	2.2.1. Patients and Electrode Localization
	2.2.2. Software

	2.3. Deployment

	3. Discussion
	3.1. Drawbacks and Caveats

	4. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

