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Predicting progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD)
is clinically important. In this study, we propose a dual-model radiomic analysis with
multivariate Cox proportional hazards regression models to investigate promising risk
factors associated with MCI conversion to AD. T1 structural magnetic resonance
imaging (MRI) and 18F-Fluorodeoxyglucose (FDG) positron emission tomography (PET)
data, from the AD Neuroimaging Initiative database, were collected from 131 patients
with MCI who converted to AD within 3 years and 132 patients with MCI without
conversion within 3 years. These subjects were randomly partition into 70% training
dataset and 30% test dataset with multiple times. We fused MRI and PET images
by wavelet method. In a subset of subjects, a group comparison was performed
using a two-sample t-test to determine regions of interest (ROIs) associated with MCI
conversion. 172 radiomic features from ROIs for each individual were established using a
published radiomics tool. Finally, L1-penalized Cox model was constructed and Harrell’s
C index (C-index) was used to evaluate prediction accuracy of the model. To evaluate
the efficacy of our proposed method, we used a same analysis framework to evaluate
MRI and PET data separately. We constructed prognostic Cox models with: clinical
data, MRI images, PET images, fused MRI/PET images, and clinical variables and
fused MRI/PET images in combination. The experimental results showed that captured
ROIs significantly associated with conversion to AD, such as gray matter atrophy in
the bilateral hippocampus and hypometabolism in the temporoparietal cortex. Imaging
model (MRI/PET/fused) provided significant enhancement in prediction of conversion
compared to clinical models, especially the fused-modality Cox model. Moreover, the
combination of fused-modality imaging and clinical variables resulted in the greatest
accuracy of prediction. The average C-index for the clinical/MRI/PET/fused/combined
model in the test dataset was 0.69, 0.73, 0.73 and 0.75, and 0.78, respectively.
These results suggested that a combination of radiomic analysis and Cox model
analyses could be used successfully in survival analysis and may be powerful tools for
personalized precision medicine patients with potential to undergo conversion from MCI
to AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of
progressive, neurodegenerative, and irreversible dementia, with
prevalence doubling approximately every 5 years after 65 years of
age (Hurd et al., 2013). Since AD may progress for many years
before cognitive symptoms appear, and cognitive deficits are
evident before the onset of comprehensive dementia syndrome,
growing attention has focused on mild cognitive impairment
(MCI) as an intermediate state between normal cognition and
AD (Brooks and Loewenstein, 2010). Early diagnosis of AD
is difficult, with efforts focused on through assessment of the
earliest cognitive and neuropathological changes associated with
early AD. Significant challenges exist in identifying cases of
MCI over time with potential to progress to AD. However,
the neuropathological correlates of MCI are heterogeneous
(Schneider et al., 2009) and not all cases of MCI progress to
dementia. Furthermore, not all cases of dementia will result
in a diagnosis of AD (Petersen et al., 2009). Therefore, it
is necessary gain greater understanding of the specific risk
factors and biomarkers that predict progression from MCI
to AD.

Currently, structural and functional neuroimaging are used to
predict development of AD from MCI (Devanand et al., 2007;
Schneider et al., 2009; Gomar et al., 2011; Caroli et al., 2012; Vos
et al., 2012; Prestia et al., 2013b; Richard et al., 2013; Teipel et al.,
2013; Frölich et al., 2017; Pagani et al., 2017). Measurement of
markers derived from magnetic resonance images (MRI) such
as brain morphological changes (Schneider et al., 2009) and
reduced hippocampal volumes (Devanand et al., 2007; Gomar
et al., 2011; Vos et al., 2012; Prestia et al., 2013b; Teipel et al.,
2013) have proven to have predictive value. A previous study
used cortical thickness in the right anterior cingulate and middle
frontal gyri as predictive features of conversion from MCI to AD,
with an accuracy of 75% (Peters et al., 2014). Various studies
have shown that MCI patients exhibit metabolic changes that
can be detected using 18F-fluorodeoxyglucose (FDG) positron
emission tomography (PET) (Caroli et al., 2012; Liu et al., 2017;
Pagani et al., 2017). Regional variations in glucose metabolism
correlate with cognitive impairment (Haense et al., 2008). FDG
PET hypometabolism is also associated with progression from
pre-MCI to MCI (Caselli et al., 2008) and from amnestic MCI
(aMCI) to AD (Anchisi et al., 2005). In addition, FDG PET
is the only technique that significantly improved the predictive
value of demographic covariates with regard to development
of AD (Shaffer et al., 2013; Ito et al., 2015). Specifically, FDG
PET accurately predicted progression of MCI to AD in 70
and 83% of cases in two studies (Landau et al., 2010; Chen
et al., 2011; Ito et al., 2015). Although these results were
statistically significant, these results were not accurate enough
to warrant use in clinical diagnosis. To identify MCI patients
at imminent risk of conversion, a multimodal approach has
been used, resulting in prediction of MCI conversion to AD
with relatively high accuracy (Arbizu et al., 2013; Ewers et al.,
2014; Moradi et al., 2015; Liu et al., 2017). Medical image fusion
was used to combine complementary information provided by
different brain imaging technologies to identify biomarkers to

aid in MCI recognition and classification based on different
aspects of brain changes. Liu et al. (2017) found that combined
neuroimaging factors derived from MRI and FDG PET images,
together with clinical variables, can effectively predict the time to
progression from MCI to AD. Research performed by Dickerson
and Wolk (2013) showed that prediction of time-to-event in
a survival model was accomplished by combination of the
MRI biomarkers of AD cortical thickness and cerebrospinal
fluid (CSF). However, the aforementioned markers used in
these methods were mostly low-level features incapable of
providing accurate diagnostic results due to neuropathological
heterogeneity of brain tissue related to conversion of MCI to AD.
To improve diagnostic accuracy of prediction of conversion of
MCI to AD, radiomics, a recently developed method, may show
promise.

Radiomics was recently developed as a diagnostic and
auxiliary detection technique for oncological studies (Aerts
et al., 2014; Vallières et al., 2015; Cameron et al., 2016; Zhou
et al., 2017). This technique is characterized by extraction
and analysis of large amounts of advanced and high-order
quantitative features with high-throughput from medical images
using a large number of automated feature extraction algorithms
(Kumar et al., 2012). These radiomic features may help to
effectively diagnose disease and reveal in-depth information
not readily apparent in standard imaging analyses which may
aid in development of personalized and accurate medical plans
(Kumar et al., 2012; Gillies et al., 2015; Panth et al., 2015).
Radiomics has been applied to various cancers, such as glioma
(Li et al., 2018), lung cancer (Aerts et al., 2014; Tang et al.,
2018), hepatocellular carcinoma (Cozzi et al., 2017), rectal cancer
(Meng et al., 2018), head and neck cancer (Aerts et al., 2014;
M. D. Anderson Cancer Center Head and Neck Quantitative
Imaging Working Group, 2018), and breast cancer (Cameron
et al., 2016). Although most radiomics research studies focused
mainly on oncology, this methodology has recently extended
to a large number of (Yu et al., 2016) medical applications
(Gillies et al., 2015). Recently, radiomics has been used to evaluate
other diseases, such as autism spectrum disorders (Chaddad
et al., 2017), attention deficit hyperactivity disorder (Sun et al.,
2017), and xerostomia (Gabryś et al., 2018). The purpose of
this study was to use radiomics to predict conversion from
MCI to AD. We believe that advanced radiomic features could
fully account for brain tissue heterogeneity in patients with
MCI, allowing for identification of patients likely to convert
to AD.

The present study aimed to investigate risk factors identified
by radiomics analysis and to evaluate their effects on MCI
conversion to AD by combining MRI and FDG PET imaging
combined with radiomics analysis. Two main goals of this
study were to: (1) determine which radiomic features derived
from fused MRI and PET images are related to disease
progression, lending support to clinical decision-making; (2)
compare predictive accuracy of MCI conversion to AD
using radiomic features derived from fused MRI and PET
images to improve predictive accuracy of conversion using
radiomic features derived from only MRI or FDG PET
alone.

Frontiers in Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 1045

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01045 January 11, 2019 Time: 12:55 # 3

Zhou et al. Dual-Model Radiomic Biomarkers Predict MCI-to-AD

FIGURE 1 | The overall framework of the experimental process in this study.

MATERIALS AND METHODS

Figure 1 summarizes the framework of the experimental design
in our study. We first preprocessed the collected MRI data
(segmentation, normalization, and smoothing) and PET data
(normalization and smoothing). We used the image fusion
algorithm to fuse the spatial and frequency characteristics of the
MRI and FDG PET data. After image fusion, we performed SPM
analysis based on a voxel-wise two-sample t-test statistical model
of the fused images to determine MCI conversion-related ROIs.
Subsequently, a series of radiomic and contrast features were
extracted from the ROIs. The top radiomic features associated
with MCI conversion were selected. Based on these selected
radiomic features, we constructed Cox proportional hazards
regression models to examine the diagnostic value of candidate
predictors.

Subjects
The FDG PET and T1-weighted structural MRI scans used in our
study were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database1. ADNI was launched in 2003 by
the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), PET,
other biological markers, and clinical and neuropsychological
assessment can be combined to measure progression of MCI and
early AD.

We collected image data from ADNI 1, ADNI 2, and ADNI
GO cohorts in the ADNI database using the following inclusion
criteria: (1) Participants were diagnosed with MCI at baseline;
(2) Participants must have had both MRI and PET scans at the
time of data collection; (3) For MCI non-converters, participants
were evaluated for at least 3 years (including a 3 years time point)
from the time of initial data collection (for MCI converters, the
evaluation time may be less than 3 years). Scan data for MCI
non-converters were collected at baseline and these participants
did not convert to AD during the 3 years follow-up period. Scan
data for MCI converters were not all collected at baseline. Since
few MCI converters had both MRI and PET scans at baseline, we
collected the scan data at time points at which both MRI and PET

1http://adni.loni.usc.edu/

scans were collected. Participants with a bidirectional change of
diagnosis (MCI to AD, and back to MCI) within the follow-up
period were excluded.

The MRI and PET scan data were collected for 131 MCI
converters (MCI-c) and 132 MCI non-converters (MCI-nc). 73
individuals of the 131 MCI-c had MRI and PET scan data at
baseline, and the remaining 58 individuals were non-baseline
data, the time between baseline and MR/PET scan data range
from 6 to 72 months (median = 18 months, mean = 21.2 months).
Scan data for all MCI-nc were collected at baseline. Clinical and
demographic characteristics of the data set are shown in Table 1.
As expected, the apolipoprotein E (APOE) ε4 positive rate was
significantly different for MCI-c versus MCI-nc.

Image Preprocessing
18F-Fluorodeoxyglucose (FDG) Positron Emission
Tomography (PET)
The PET acquisition process is detailed in the online information
of the ADNI project. In 207 cases, dynamic 3D scans with
six 5-min frames were acquired 30 min after injection of

TABLE 1 | Demographic and statistics of clinical assessments at time of data
collection.

MCI-c MCI-nc

(n = 131) (n = 132)

Median (IQR) Mean (SD) Median (IQR) Mean (SD)

Sex (M/F) 78/53 66/66

Age (years) 74.4 (8.9) 73.8 (6.9) 72.3 (12.3) 72.1 (7.8)

MMSE 27.0 (3.0) 26.7 (2.0) 28.0 (2.0) 28.0 (1.6)

APOE ε4
positive rate

54.2% 31.1%

A subset of all subjects

MCI-c MCI-nc

(n = 81) (n = 82)

Sex (M/F) 44/37 36/46

Age (years) 74.5 (8.4) 73.3 (7.1) 74.8 (12.4) 73.9 (7.8)

MMSE 27.0 (3.0) 27.0 (1.8) 28.0 (2.0) 27.7 (1.7)

APOE ε4
positive rate

56.8% 28.1%

MCI-c, MCI converters; MCI-nc, MCI non-converters; IQR, interquartile range; SD,
standard deviation.
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185 ± 18.5 MBq FDG. In the remaining cases (n = 56), patients
were scanned for a static 30-min acquisition period. In the
case of dynamic scans, all frames were motion-corrected to
the first frame and then summed to create a single image
file.

Individual PET scan preprocessing was performed by
statistical parametric mapping (SPM12) software (Wellcome
Department of Imaging Neuroscience, Institute of Neurology,
London, United Kingdom) using Matlab2016b (Mathworks Inc,
Sherborn, MA, United States). Scans from each subject were
spatially normalized into Montreal Neurological Institute (MNI)
space with linear and non-linear 3D transformations. The
normalized PET images were then smoothed by a Gaussian
filter of 8 mm full-width at half-maximum (FWHM) over a
3D space to blur the individual anatomical variations and to
increase the signal-to-noise ratio for subsequent analysis. Finally,
given that the difference in the FDG uptake value of each
individual, the smoothed image was normalized to the range of
0 to 255.

Magnetic Resonance Imaging (MRI)
T1-weighted structural MRI scans were preprocessed using
SPM12. Native MRI scans were registered into stereotaxic space
by applying rigid-body transformations. The registered images
were segmented into gray matter (GM), white matter (WM), and
CSF tissue probability maps with priori tissue maps as reference
through a unified segmentation algorithm. The density map was
provided by the International Consortium for Brain Mapping
(ICBM), which provided the probability distribution of GM,
WM, and CSF in standard spatial 2 mm × 2 mm × 2 mm.
GM images were spatially normalized to the standard MNI
space. Finally, the normalized GM images were smoothed with
8 mm × 8 mm × 8 mm FWHM to ensure the same resolution
as preprocessed PET images. For MRI and PET image fusion, the
smoothed GM image was also normalized to the range of 0 to 255.

MRI and PET Image Fusion
Medical image fusion is the process of registering and combining
multiple images from single or multiple imaging modalities to
improve imaging quality. Additional information obtained from
fused images can be used to more accurately locate abnormalities
to increase clinical applicability of medical images for the purpose
of diagnosis and assessment of medical problems (James and
Dasarathy, 2014). 3D discrete wavelet transform (DWT) was used
for image fusion of PET and MRI to combine the spatial and
frequency characteristics of the two modalities (Vallières et al.,
2015). After data pre-processing, MRI and PET had the same
resolution. We applied the 3D DWT to the MRI and PET volumes
up to one decomposition level using wavelet basis function
symlet8. We then averaged the spatially corresponding wavelet
coefficients of all PET and MRI sub-bands to obtain a single set
of fused wavelet coefficients. Finally, we applied the 3D inverse
DWT to the set of fused wavelet coefficients to obtain a fused
MRI/PET volume. We chose the wavelet basis function symlet8
based on previous research showing that this algorithm produced
fused textures with the best predictive value (Carrier-Vallières,
2013).

Identify MCI Conversion-Related ROIs
In this study, we focused on identification of MCI conversion-
related regions-of-interest (ROIs). To control the sampling
variability, we used the stratified sampling method to randomly
select a subset of 81 MCI-c and 82 MCI-nc closely matched in
age and sex. Table 1 provides the information of demographic
and statistics of clinical assessments at time of data collection for
the subset subjects. After image fusion, we performed a voxel-
wise two-sample t-test between MCI-c and MCI-nc from the
subset subjects using SPM12. This analysis compared differences
in normalized volumes by applying proportional scaling to
minimize the effects of inter-subject variability in global volumes.
A significance threshold based on spatial extent using a cluster
probability of a false discovery rate (FDR) corrected P ≤ 0.01
and spatial extent >50 voxels was applied to the effects of
interest, and surviving voxels were retained for further analyses.
Significantly different brain regions were localized using the
software xjView9.62. These regions were treated as ROIs in
subsequent studies.

Radiomics Analysis
Radiomics analysis was based on a published radiomics tool
developed3 by Vallières et al. (2015). In this tool, a large
number of texture features extraction and wavelet band-pass
filtering algorithms were implemented. The extracted feature
were previously demonstrated to be useful in prediction and
diagnosis of AD (Pai et al., 2012; Sørensen et al., 2013; Hwang
et al., 2016; Dolph et al., 2017). Wavelet band-pass filtering was
used to decompose the ROIs of each image into different wavelet
domains. We applied different weights to bandpass sub-bands
(LHL, LHH, LLH, HLL, HHL, and HLH) of the ROIs, compared
to low- and high-frequency sub-bands (LLL and HHH) in the
wavelet domain. The ratio of the weight was defined by R and
the values of R were 1/2, 2/3, 1(no wavelet filtering), and 3/2.
Subsequently, in each wavelet domain (R = 1/2, 2/3, 1, and 3/2),
a total of 43 texture features were extracted using 3D analysis
for each individual: 3 histogram-based textures, 9 texture features
from the Gray-Level Co-occurrence Matrix (GLCM), 13 texture
features from the Gray-Level Run-Length Matrix (GLRLM), 13
texture features from the Gray-Level Size Zone Matrix (GLSZM),
and 5 texture features from the Neighborhood Gray-Tone
Difference Matrix (NGTDM) (Supplementary Table S1 provides
a list of radiomic texture features). The details of these procedures
were previously described (Vallières et al., 2015, 2017; Zhou et al.,
2017). Finally, a total of 172 radiomic features were extracted for
each individual.

Cox Model Analysis
For each individual, the baseline time was the time the imaging
data was collected, and the endpoint was the time of AD
diagnosis for MCI-c or the last follow-up time point for MCI-
nc. None of the 131 McI-c were censored for reasons such
as missing interviews and 132 MCI-nc without conversion
within 3 years, the censoring rate was equal to 50.2%. Cox

2http://www.alivelearn.net/xjview
3https://github.com/mvallieres/radiomics
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proportional hazards regression models were calculated in R4

employing the ‘glmnet’ and ‘survival’ packages (Friedman et al.,
2010; Simon et al., 2011; Therneau and Grambsch, 2013). Given
that the sampling variability that comes with grouping the
training dataset and test dataset, the randomized cross validation
method was used to randomly partition into 70% training dataset
and 30% test dataset with multiple times (500 times). In each
simple random sampling, L1-penalized Cox model based on the
least absolute shrinkage and selection operator (LASSO) was
trained and the top features were selected from the training
dataset. Regularization parameters were selected by 10-fold cross-
validation from the training dataset. The finalized model was
built with these selected parameters. The prediction accuracy
of the finalized model in the training dataset was evaluated by
Harrell’s Consistency C (C-index). We used an untouched test
dataset to rigorously evaluate the performance of our finalized
model. To validate the finalized model, it was independently
applied to the test dataset by calculating the prognostic index
(PI) for each individual (Royston and Altman, 2013). Here, the
PI is the sum of the product of the regression coefficients βi and
predictor variables xi (with i being the index for the order of
predictors in the model), as follows: PI = β1x1+...+βixi. Based
on the value of PI, the prediction accuracy could be evaluated
by C-index in the test dataset (van Houwelingen, 2000). To
check whether the relative risks of the finalized Cox model were
correctly specified, we performed a conventional Cox regression
in the test dataset with PI as single covariate to calculate the
new regression coefficient (in this paper, the term ‘new regression
coefficient’ was named as ‘relative risk stability’). We used the
principles as following: the model relative risk can be validated
by checking if this regression coefficient is equal to 1; if the
regression coefficient is equal to 1, the relative risk model is valid;
if regression coefficient is not equal to 1, there is a need for
calibration (van Houwelingen, 2000). The random partitioning
process was repeated 500 times. Then we calculated the mean and
(2.5, 97.25) percentiles of the corresponding indicators based on
the 500 experimental results.

Comparative Experiment
To evaluate the effectiveness of our proposed method, we used
same analysis frameworks as fused-modality images for MRI or
PET images, respectively, including: (1) identification of MCI
conversion-related ROIs based on MRI or PET images; (2) a total
of 172 radiomic features were extracted in the corresponding
ROIs for each individual; (3) the corresponding L1-penalized Cox
model was constructed and top radiomic features were selected.
As results, we examined five Cox models with: (1) clinical, (2)
PET imaging, (3) MRI imaging, (4) fused MRI/PET imaging,
and (5) combined (clinical variables combined with radiomic
features for fused MRI/PET imaging) models. For the clinical
model, sex, age, MMSE, and APOE ε4 genotype (positive or
negative for the presence of at least one ε4 allele) as predictors; for
the three imaging models, radiomic features were considered as
the predictors; for the combined model, the predictors included
both clinical variables (sex, age, MMSE, and APOE ε4 genotype)

4http://www.R-project.org/

and radiomic features derived from fused MRI/PET imaging. In
above five models, Cox models were all executed with L1 penalty.
Each Cox model was independently applied to test dataset to
validate the performance of each model. In this process, the
randomized cross validation method was also applied in 500
times. For each randomized cross validation, differences of the
evaluation indicators (C-index and relative risk stability) between
each pairs of five models were calculated. Finally, the mean
difference and (2.5, 97.25) percentiles for the corresponding
indicators were calculated among different models. In addition,
because ROIs identified in this study was based on a subset
(163 subjects) whereas the randomized cross validation of Cox
models were based on all 263 subjects, it may cause bias of
evaluation indicators. To evaluate whether this bias is huge,
we also constructed a new combined model throughout the
same analysis procedures with the rest 100 subjects not used for
ROIs selection and calculated evaluation indicators (C-index and
relative risk stability).

RESULTS

MRI/PET Image Fusion
Fusion of MRI and PET volumes was performed by a wavelet-
based fusion method. Before image fusion, the preprocessed MRI
and PET images were spatially normalized to the standard MNI
space and converted to the same resolution. Issues such as the loss
of details in image fusion caused by inconsistent image resolution
were thus avoided. Figure 2C shows an example fusion of MRI
(Figure 2A) and PET (Figure 2B) images. Visually, the fused
image effectively preserved the edges, textures, and anatomy of
multiple images. The resulting fused image was characterized as
“good” in terms of features from both images that improve the
quality of the imaging.

MCI Conversion-Related ROIs
A voxel-wise two-sample t-test statistical model was used to
identify MCI conversion-related ROIs in each imaging modality.
Figure 2F shows the projection map of volume difference
in MCI-c relative to MCI-nc using fused MRI/PET images.
As expected, statistical analysis comparing fused images was
able to capture most relevant regions. In MCI-c versus MCI-
nc, relative reduced volumes were mainly localized to the
temporoparietal cortex and the parahippocampal gyrus, and
extended to the precuneus/posterior cingulate cortex. Regions of
relative preservation included the frontal and parietal cortices,
bilateral brainstem, and the precentral gyrus. Supplementary
Table S4 details differences observed in this analysis.

Figure 2D shows SPM results based on MRI images
in MCI-c versus MCI-nc. These brain regions, summarized
in Supplementary Table S2, mainly comprised 11 clusters
that were related to conversion time. Relevant regions were
characterized mainly by reductions in the bilateral hippocampus,
parahippocampal gyrus, inferior frontal gyrus, anterior cingulate,
and a small area in the temporal lobe. Regions of relative
preservation included the precentral gyrus, frontal lobe, occipital
lobe, and the right thalamus.
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FIGURE 2 | Results of image fusion and MCI conversion-related ROIs. Example of fusion (C) of a T1-weighted structural MRI scan (A) and an FDG-PET scan (B);
results were generated using xjView9.6 Slice Viewer. (D) Projection map of the voxel-wise two-sample t-test of GM images conducted to assess differences between
MCI-c and MCI-nc. Relative reduced GM volume in MCI-c relative to MCI-nc was represented by ‘cool’ colors; relative increased GM volume in MCI-c relative to
MCI-nc was represented by ‘hot’ colors (p < 0.01 FDR corrected, extent threshold ≥50 voxels). (E) Projection map of metabolic difference in MCI-c relative to
MCI-nc using PET images. Relative reduced glucose metabolism was represented by ‘cool’ colors; Relative hypermetabolism was depicted by ‘hot’ colors (p < 0.01
FDR corrected, extent threshold ≥50 voxels). (F) Projection map of volume difference in MCI-c relative to MCI-nc using fused MRI/PET images. Relative reduced
volume was represented by ‘cool’ colors; relative increased volume was represented by ‘hot’ colors (p < 0.01 FDR corrected, extent threshold ≥50 voxels).

Figure 2E shows the projection map of metabolic differences
in MCI-c relative to MCI-nc based on PET images. In MCI-
c versus MCI-nc, an overall reduction in glucose metabolism
was observed in the temporoparietal cortex, extending to the
precuneus/posterior cingulate cortex. Relative increases (most
likely corresponding to regions with preserved metabolic activity)
were detected in frontal and parietal cortices, cerebellum,
bilateral brainstem, and precentral gyrus. Supplementary
Table S3 summarizes metabolic differences between MCI-c and
MCI-nc.

Cox Models
Radiomics analysis was used to extract a total of 172 high-order
quantitative features from the corresponding MCI conversion-
related ROIs for each individual in each image modality
(MRI/PET/fused). We used the LASSO algorithm to penalize
the Cox model. The optimal regularization parameters were
determined by 10-fold cross-validation on the training dataset.
Features with the corresponding regression coefficients not equal
to zero under the optimal regularization parameter were the
features that were ultimately selected. Table 2 reported the
top quantitative features selected by the corresponding Cox
model in the randomized cross validations in 500 times. For the
clinical model, APOE and MMSE were selected multiple times
as predictors associated with associated with MCI conversion.

For the Cox model constructed from MRI images, the selected
quantitative features included complexity, entropy, high-gray-
level zone emphasis (HGZE), busyness and coarseness. For the
Cox model constructed from PET images, the selected top five
quantitative features included variance, small zone emphasis
(SZE), correlation, small zone high-gray-level emphasis (SZHGE)
and AutoCorrelation. The predictive variables for constructing
the combined model were derived from the clinical features
combined with the radiomic features extracted from the fused
MRI/PET imaging. The selected top quantitative features in the
combined model and the Cox model constructed from fused
MRI/PET images included variance, large zone low-gray-level
emphasis (LZLGE), and zone-size non-uniformity (ZSN). MMSE
and APOE had also been selected many times in the combined
model.

The performance of the corresponding L1-penalized Cox
model based on the selected top features was evaluated on
the training dataset and the test dataset, respectively. First,
we examined the following model using training dataset: (1)
clinical model, (2) MRI model, (3) PET model, (4) fusion-
modality model and (5) a combined Cox model to investigate
a possible additive prognostic value of the clinical model
combined with the fusion-modality model. C-index was used to
evaluate the prediction accuracy of corresponding Cox model.
The average C-index of each model was compared in the
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TABLE 2 | The top quantitative features of each Cox model selected by randomized cross validations in 500 times.

Imaging model

MRI PET Fused

Name R Times Name R Times Name R Times

Complexity 3/2 494 Variance 1/2 475 Variance 2/3 450

Entropy 1/2 391 SZE 1/2 409 LRLGE 1/2 432

HGZE 1/2 321 Correlation 1/2 401 Strength 3/2 386

Busyness 1 269 SZHGE 1 397 ZSN 3/2 377

Coarseness 3/2 190 AutoCorrelation 3/2 253 LZLGE 1/2 364

Clinical model Combined model

Name R Times Name R Times

MMSE – 500 MMSE – 500

APOE – 498 APOE – 473

Sex – 299 Variance 2/3 446

Age – 256 LZLGE 1/2 423

ZSN 3/2 377

Name, feature name; R, weights to bandpass sub-bands in wavelet filtering; times, the number of times corresponding feature was selected from randomized cross
validations in 500 times; HGZE, high-gray-level zone emphasis; SZE, small zone emphasis; SZHGE, small zone high-gray-level emphasis; LRLGE, long-run Low-gray-level
emphasis; ZSN, zone-size non-uniformity; LZLGE, large zone low-gray-level emphasis.

randomized cross validations. Table 3 listed the prediction
performance comparisons for different models. Figure 3 showed
the comparison of performance differences between different
Cox regression models. The results showed that the prediction
performances of the imaging model (MRI/PET/fused) and the
combined model were better than the clinical model, and

TABLE 3 | Performance evaluation of Cox regression models in the randomized
cross validations.

Harrell’s C Harrell’s C Relative risk stability

Training dataset Test dataset Test dataset

Clinical
model

0.7066
(0.6723, 0.7391)

0.6920
(0.6087, 0.7731)

1.2597
(0.5779, 2.3207)

Imaging
model

MRI 0.7627
(0.7330, 0.7992)

0.7330
(0.6590, 0.7968)

1.2323
(0.6384, 1.9532)

PET 0.7755
(0.7382, 0.8114)

0.7331
(0.6623, 0.8009)

1.1839
(0.6953, 1.8686)

fused 0.8039
(0.7680, 0.8443)

0.7531
(0.6815, 0.8224)

1.1122
(0.6109, 1.7483)

Combined
model

0.8268
(0.7962, 0.8562)

0.7838
(0.7156, 0.8490)

1.1854 (0.6902,
1.9057)

Combined
model (100
subjects)

0.8431
(0.8233, 0.8598)

0.7930
(0.7212, 0.8193)

1.2827
(0.9143, 1.4893)

C-index: Harrell’s Consistency C, used to evaluate the prediction accuracy of the
Cox model. Relative risk stability: assessing the validity and value of the finalized
model, we validated the model through ‘calibration’ by performing a conventional
Cox regression in the test dataset with prognostic index (PI) as single covariate
to calculate the new regression coefficient (van Houwelingen, 2000). Relative risk
stability in the table indicates the new regression coefficient. The closer the value
of relative risk stability is to 1, the better the performance of the Cox model.
Combined model (100 subjects): the model was constructed using 100 subjects
not used for ROIs selection. The value of the bold italic represents the average of
the corresponding metrics in randomized cross validations. Parentheses represent
(2.5, 97.25) percentiles.

the differences in relative risk stability amongst models were
not obvious. In Table 3, the imaging model (MRI model
C-index = 0.7627; PET model C-index = 0.7755; fusion-
modality model C-index = 0.8039) showed higher accuracy
than the clinical model (C-index = 0.7066), which verified
the predictive value of radiomic features from images. The
fusion-modality model (C-index = 0.8039) had higher prediction
accuracy than the MRI model (C-index = 0.7627) and the PET
model (C-index = 0.7755). The PET model (C-index = 0.7755)
was slightly better than the MRI model (C-index = 0.7627).
Moreover, the combined model significantly increased the
prognostic value (clinical model C-index = 0.7066; combined
model C-index = 0.8268). A comparison of all models indicated
that the combined model was the best model. Supplementary
Table S5 listed the performance differences between relevant
pairs. Second, Cox models were validated on the test dataset,
and obtained PIs were used for survival analysis. Similar
to the training dataset, the imaging model (MRI model
C-index = 0.7330; PET model C-index = 0.7331; fusion-modality
model C-index = 0.7531) had a higher C-index than the clinical
model (C-index = 0.6920). The fusion model (C-index = 0.7531)
had higher prediction accuracy than the MRI model (C-
index = 0.7330) and the PET model (C-index = 0.7331) was also
found in the test dataset. The MRI model (C-index = 0.7330)
and the PET model (C-index = 0.7331) were very close in
prediction performance in the test dataset. The increase of the
prognostic value of the clinical model, when radiomic features
for fused MRI/PET images were added as predictors to yield
the combined model, was verified in the test dataset (clinical
model C-index = 0.6920; combined model C-index = 0.7838).
The combined model was better than the prediction performance
of all other models. Third, we checked whether the relative risk
of each Cox model was correctly specified. The obtained PIs
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FIGURE 3 | The medians and interquartile ranges of differences in performance assessment indicators between relevant pairs. (A) Comparison of C-index
differences between relevant pairs in the training dataset. (B) Comparison of C-index differences between relevant pairs in the test dataset. (C) Comparison of
differences of relative risk stability between relevant pairs in the test dataset.

as single covariate were used to perform a conventional Cox
regression to obtain new regression coefficient. The closer the
value of regression coefficient was to 1, the better the performance
of the Cox model. In the combined model, fusion-modality
model and PET model, the regression coefficients turned out to
be 1.1854, 1.1122, and 1.1839, respectively; which were slightly
larger than 1. Such results indicated that the relative risks of these
models were correctly specified, especially in the fusion-modality
model. In the clinical model and MRI model, the regression
coefficients were 1.2597 and 1.2323, respectively. The regression
coefficients indicated that the performance of the imaging model
(MRI/PET/fused) and the combined model were better than the
clinical model. Finally, the combined model based on the 100
subjects not used for ROIs selection performed similar to the
combined model based on all subjects in the test dataset (0.7853
vs. 0.7930 in C-index). This meant that the bias resulted from
ROIs was slight in our method.

DISCUSSION

In this study, we applied radiomics analysis methods to
extract radiomic features in MCI conversion-related ROIs. Then,
multivariate Cox proportional hazard regression models were
generated to evaluate the influence of radiomic predictors of
interest on time to onset of AD dementia among individuals
with MCI. Our findings indicated that a combination of radiomic
analysis and Cox model analyses could be used for MCI
conversion prediction.

MCI Conversion-Related Topography
In our study, regions of structural atrophy and functional
metabolic abnormalities associated with MCI conversion as
defined by SPM analysis were also reported in previous studies
(Jack et al., 2000; Habeck et al., 2008; Desikan et al., 2010; De
Oliveira et al., 2011; Devanand et al., 2012; Prestia et al., 2013a;
Zeifman et al., 2015; Mattis et al., 2016; Liu et al., 2017). Based
on MRI, MCI conversion-related ROIs were characterized mainly
by reductions in the bilateral hippocampus, parahippocampal
gyrus, inferior frontal gyrus, anterior cingulate, and a small area
in the temporal lobe; regions of relative preservation included

the precentral gyrus, frontal lobe, occipital lobe, and the right
thalamus. The latter most likely corresponds to preserved GM
volume, given that proportional scaling by global uptake was
performed. The main brain regions related to MCI conversion
identified in the current study were consistent with those
reported in the literature Predicting (Jack et al., 2000; Desikan
et al., 2010; Devanand et al., 2012; Prestia et al., 2013a; Zeifman
et al., 2015; Korolev et al., 2016; Liu et al., 2017). Previous
reports showed that GM atrophy was associated with increased
risk of progression to AD (Tapiola et al., 2008; Devanand et al.,
2012; Prestia et al., 2013a; Zeifman et al., 2015). Jack et al.
reported that hippocampal atrophy correlated with AD-related
changes in clinical status (Jack et al., 2000). Zeifman et al.
(2015) demonstrated that three brain regions were significantly
associated with time to AD: the mesial temporal lobe, the anterior
hippocampus extending into the amygdala, and the posterior
cingulate gyrus. In addition, Desikan et al. (2010) found that
automated MRI measurement of the medial temporal cortex
accurately and reliably predicted time to AD progression for
individuals with MCI. Using PET, we found that conversion
to AD is characterized by significant metabolic decrease in the
temporoparietal cortex, extending to the precuneus/posterior
cingulate cortex, while frontal and parietal cortices, cerebellum,
bilateral brainstem, and precentral gyrus showed increased
metabolic activity. These results were consistent with previously
published hypo- and hypermetabolic regions identified in AD
(Habeck et al., 2008; Teune et al., 2014; Mattis et al., 2016; Liu
et al., 2017). We also analyzed the same groups of subjects with
SPM t-test using fused MRI/PET imaging, which resulted in
overlapping regions of reduction and preservation of GM volume
with MRI imaging alone or hypo- and hypermetabolism with
PET imaging alone. These results showed that the fused image
could retain additional information from each single modality
image (James and Dasarathy, 2014).

Radiomic Features
Recently, radiomic analysis has been successfully used to identify
imaging biomarkers for diseases besides cancer, especially AD
(De Oliveira et al., 2011; Zhang et al., 2012; Anandh et al., 2015;
Chincarini et al., 2016; Chaddad et al., 2017; Sun et al., 2017; Feng
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et al., 2018). Feng et al. (2018) identified hippocampal radiomic
features as potential biomarkers for clinical evaluation of AD,
indicating that texture may serve as a prognostic neuroimaging
biomarker for early cognitive impairment (Sørensen et al., 2016).
A texture analysis study found texture differences in the corpus
callosum and thalamus in MRI images of patients with mild AD
and aMCI. Zhang et al. (2012) demonstrated that 3D texture
could be used as a possible diagnostic marker of AD using
T1-weighted MR images.

Radiomics mainly includes the following steps: (1) acquisition
of high-quality images; (2) identification of regions of interest,
which are segmented with operator edits, then rendered in
3D; (3) extraction of quantitative features from these rendered
volumes for analysis with other data (such as clinical and genomic
data) to develop diagnostic, predictive, or prognostic models for
outcomes of interest (Gillies et al., 2015). Since a key step in
implementation of radiomics involves segmentation of lesions
(Kumar et al., 2012; Gillies et al., 2015), it is necessary to
use statistical analyses to determine ROIs. After SPM analysis,
the ROIs mask was obtained and features were extracted from
these ROIs. In total, 172 radiomic features were extracted for
each subject in each image modality (MRI/PET/fused), including
intensity, texture, and wavelet features. Recent radiomics studies
evaluated shape features (Kumar et al., 2012; Aerts et al., 2014;
Gillies et al., 2015; Vallières et al., 2015; Huang et al., 2016;
Zhou et al., 2017) because the target areas, such as tumor areas,
were segmented manually. However, these shapes were unified
by the ROIs mask in this study. Moreover, individual differences
in tumors were much greater than differences in normal brain
tissue. For brain MRI studies, preprocessing steps generally
include spatial registration and normalization. In this study, we
followed this preprocessing process, which further reduced the
effects of shape differences. Therefore, our feature set did not
contain shape features.

The top quantitative features in the MRI imaging modality,
which included entropy, complexity and coarseness, etc.,
exhibited the most significant alterations associated with MCI
conversion. In probability theory and statistics, energy derived
from GLCM is one of the histogram parameters that are
concerned with information content of an image and describes
the complexity of the image (Haralick et al., 1973). Complexity
and coarseness derived from GLRLM could reflect the degree
of association between different pixels in the same brain region
(Amadasun and King, 1989). Significant differences in the
above features indicate that brain structural impairments in
MCI-c might result in complicated and altered distributions
of voxel values within the MCI conversion-related regions.
This inference was supported by previous studies (Feng et al.,
2018). In the PET model, fusion-modality model and combined
model, the corresponding top quantitative features were selected,
respectively. These features captured both the local and more
global texture patterns associated with MCI conversion in the
training dataset and could re-predict the risk of MCI conversion
in the test dataset. These quantitative image features are generally
difficult to spot by manual inspection, but computerized methods
can effectively identify such features. These features were most
highly correlated with the time of onset and outcome of MCI

conversion in each imaging modality, demonstrating the value of
high-order quantitative image features for clinical diagnosis and
prognosis.

Cox Proportional Hazards Regression
Model
In Cox model analysis, the clinical Cox model was constructed
to include only clinical variables. The results showed that
APOE ε4 gene can be used as risk predictors to predict MCI
conversion. Many studies have suggested that the APOE ε4
gene is a significant genetic risk factor for sporadic and late
onset familial AD (Furney et al., 2011; Trachtenberg et al., 2012;
Murphy et al., 2013; Risacher et al., 2015). Liu et al. (2017)
demonstrated that individuals with MCI who had a positive
APOE ε4 status at baseline were at higher risk for converting to
AD within 3 years. In our study, the imaging Cox model with
radiomic features was comprehensive, and provided significant
enhancement in prognosis of conversion compared to the clinical
model, especially the fusion-modality Cox model. Harrell’s C and
relative risk stability were used to evaluate the performance of the
prediction. The Cox model constructed based on top radiomic
features derived from the fused MRI/PET images resulted in a
higher Harrell’s C and a more stable relative risk. This finding
indicated that radiomic features from fused image modality were
with more predictive value than single-modality for estimating
risk associated with MCI progression. It may be because the
Cox model of the fusion-modality incorporated complementary
information between both PET and MRI images. Other studies
have also demonstrated that Cox models based on multimodal
images exhibit superior predictive and diagnostic value compared
to single modality models (Jack et al., 2010; Chen et al., 2011;
Dickerson and Wolk, 2013; Liu et al., 2017). In our study, the
combination of imaging and clinical variables provided the best
predictive data, similar to a study by Liu et al. (2017). This
suggests that inclusion of multiple types of risk factors increases
the predictive power of the Cox model for estimating the risk
associated with MCI progression (Chen et al., 2016; Korolev et al.,
2016). Furthermore, radiomics analysis could be applied to a
new patient on a single-case basis. The benefit of the current
study is the ability to combine significant radiomic features with
clinical variables to obtain a quantifiable prognostic index for
conversion of MCI to AD on an individual basis, which may be
a particularly attractive approach for single-patients predictions
and very important for clinical purposes.

LIMITATIONS AND FURTHER
CONSIDERATIONS

Although use of radiomic features as predictive factors in pre-
diagnosis of AD has been explored in the present study, some
limitations exist. The first limitation of this study is the relatively
short follow-up period for participants with MCI. Individuals
with MCI were followed for 3 years, consistent with previous
studies of MCI. Furthermore, a proportion of MCI images did
not have baseline data for both MRI and FDG PET imaging
available at the time of study. Future studies will consider
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multimodal data from a larger number of MCI-c subjects whose
long-term visits may help improve performance of our predictive
model (Chen et al., 2016). Second, considering the small number
of experimental subjects, we did not use another independent
subject to validate MCI conversion-related ROIs, besides a subset
of our experimental subjects. Finally, there was a smoothing step
in preprocessing, which may affect calculation of features and
definition of ROIs. This is a routine step in other AD studies,
so we followed this principle (Devanand et al., 2007; Schneider
et al., 2009; Gomar et al., 2011; Vos et al., 2012; Prestia et al.,
2013b; Teipel et al., 2013; Duan et al., 2017). In future research,
the target region should be extracted separately for each person
using a more accurate method, such as manual segmentation, in
a manner similar to oncological radiomics studies (Gillies et al.,
2015).

CONCLUSION

In summary, the findings of the present investigation
suggest that a combination of radiomic analysis and Cox
model analyses could be successfully used in survival data
analysis to predict MCI to AD progression. Furthermore,
our findings indicated that top risk factors derived from
fused MRI/PET neuroimaging, together with clinical variables,
can effectively predict MCI conversion. The simplicity of
acquisition of radiomic features and high-throughput nature
demonstrate the power of this technique for development of
personalized precision medicine for the population affected
by AD.
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Gabryś, H. S., Buettner, F., Sterzing, F., Hauswald, H., and Bangert, M. (2018).
Design and selection of machine learning methods using radiomics and
dosiomics for normal tissue complication probability modeling of xerostomia.
Front. Oncol. 8:35. doi: 10.3389/fonc.2018.00035

Gillies, R. J., Kinahan, P. E., and Hricak, H. (2015). Radiomics: images are
more than pictures, they are data. Radiology 278, 563–577. doi: 10.1148/radiol.
2015151169

Gomar, J. J., Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., Goldberg,
T. E., and Alzheimer’s Disease Neuroimaging Initiative (2011). Utility of
combinations of biomarkers, cognitive markers, and risk factors to predict
conversion from mild cognitive impairment to Alzheimer disease in patients
in the Alzheimer’s disease neuroimaging initiative. Arch. Gen. Psychiatry 68,
961–969. doi: 10.1001/archgenpsychiatry.2011.96

Habeck, C., Foster, N. L., Perneczky, R., Kurz, A., Alexopoulos, P., Koeppe,
R. A., et al. (2008). Multivariate and univariate neuroimaging biomarkers of
Alzheimer’s disease. Neuroimage 40, 1503–1515. doi: 10.1016/j.neuroimage.
2008.01.056

Haense, C., Buerger, K., Kalbe, E., Drzezga, A., Teipel, S., Markiewicz, P., et al.
(2008). CSF total and phosphorylated tau protein, regional glucose metabolism
and dementia severity in Alzheimer’s disease. Eur. J. Neurol. 15, 1155–1162.
doi: 10.1111/j.1468-1331.2008.02274.x

Haralick, R. M., Shanmugam, K., and Dinstein, I. H. (1973). Textural features for
image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621. doi: 10.1109/
TSMC.1973.4309314

Huang, Y., Liu, Z., He, L., Chen, X., Pan, D., Ma, Z., et al. (2016). Radiomics
signature: a potential biomarker for the prediction of disease-free survival in
early-stage (I or II) non-small cell lung cancer. Radiology 281, 947–957. doi:
10.1148/radiol.2016152234

Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J., and Langa, K. M.
(2013). Monetary costs of dementia in the United States. N. Engl. J. Med. 368,
1326–1334. doi: 10.1056/NEJMsa1204629

Hwang, E. J., Kim, H. G., Kim, D., Rhee, H. Y., Ryu, C. W., Liu, T., et al. (2016).
Texture analyses of quantitative susceptibility maps to differentiate Alzheimer’s
disease from cognitive normal and mild cognitive impairment. Med. Phys.
43:4718. doi: 10.1118/1.4958959

Ito, K., Fukuyama, H., Senda, M., Ishii, K., Maeda, K., Yamamoto, Y., et al. (2015).
Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET:
a multicenter study. J. Alzheimers Dis. 45, 543–552. doi: 10.3233/JAD-141338

Jack, C. R. Jr., Wiste, H. J., Vemuri, P., Weigand, S. D., Senjem, M. L., Zeng, G.,
et al. (2010). Brain beta-amyloid measures and magnetic resonance imaging
atrophy both predict time-to-progression from mild cognitive impairment to
Alzheimer’s disease. Brain 133, 3336–3348. doi: 10.1093/brain/awq277

Jack, C. R., Petersen, R., Xu, Y., O’brien, P., Smith, G., Ivnik, R., et al. (2000). Rates
of hippocampal atrophy correlate with change in clinical status in aging and
AD. Neurology 55, 484–490. doi: 10.1212/WNL.55.4.484

Frontiers in Neuroscience | www.frontiersin.org 11 January 2019 | Volume 12 | Article 1045

https://doi.org/10.1001/archneur.62.11.1728
https://doi.org/10.1007/s00259-013-2458-z
https://doi.org/10.1007/s00259-013-2458-z
https://doi.org/10.1186/alzrt52
https://doi.org/10.1109/TBME.2015.2485779
https://doi.org/10.2967/jnumed.111.094946
https://doi.org/10.1001/archneurol.2008.1
https://doi.org/10.1186/s12868-017-0373-0
https://doi.org/10.1016/j.neuroimage.2011.01.049
https://doi.org/10.1016/j.neuroimage.2011.01.049
https://doi.org/10.1371/journal.pone.0154406
https://doi.org/10.1016/j.neuroimage.2015.10.065
https://doi.org/10.1016/j.neuroimage.2015.10.065
https://doi.org/10.1186/s12885-017-3847-7
https://doi.org/10.3174/ajnr.A2232
https://doi.org/10.1016/j.neurobiolaging.2010.04.023
https://doi.org/10.1016/j.neurobiolaging.2010.04.023
https://doi.org/10.1016/j.neuroimage.2012.01.075
https://doi.org/10.1016/j.neuroimage.2012.01.075
https://doi.org/10.1212/01.wnl.0000256697.20968.d7
https://doi.org/10.1212/01.wnl.0000256697.20968.d7
https://doi.org/10.3389/fnagi.2013.00055
https://doi.org/10.1109/IJCNN.2017.7966129
https://doi.org/10.1109/IJCNN.2017.7966129
https://doi.org/10.1016/j.brainres.2016.11.019
https://doi.org/10.1016/j.nicl.2013.10.018
https://doi.org/10.3389/fnagi.2018.00290
https://doi.org/10.3389/fnagi.2018.00290
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1186/s13195-017-0301-7
https://doi.org/10.3233/JAD-2011-0044
https://doi.org/10.3233/JAD-2011-0044
https://doi.org/10.3389/fonc.2018.00035
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1001/archgenpsychiatry.2011.96
https://doi.org/10.1016/j.neuroimage.2008.01.056
https://doi.org/10.1016/j.neuroimage.2008.01.056
https://doi.org/10.1111/j.1468-1331.2008.02274.x
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1148/radiol.2016152234
https://doi.org/10.1056/NEJMsa1204629
https://doi.org/10.1118/1.4958959
https://doi.org/10.3233/JAD-141338
https://doi.org/10.1093/brain/awq277
https://doi.org/10.1212/WNL.55.4.484
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01045 January 11, 2019 Time: 12:55 # 12

Zhou et al. Dual-Model Radiomic Biomarkers Predict MCI-to-AD

James, A. P., and Dasarathy, B. V. (2014). Medical image fusion: a survey of the
state of the art. Inf. Fusion 19, 4–19. doi: 10.1016/j.inffus.2013.12.002

Korolev, I. O., Symonds, L. L., Bozoki, A. C., and Alzheimer’s Disease
Neuroimaging Initiative (2016). Predicting progression from mild cognitive
impairment to Alzheimer’s dementia using clinical, MRI, and plasma
biomarkers via probabilistic pattern classification. PLoS One 11:e0138866. doi:
10.1371/journal.pone.0138866

Kumar, V., Gu, Y. H., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., et al.
(2012). Radiomics: the process and the challenges. Magn. Reson. Imaging 30,
1234–1248. doi: 10.1016/j.mri.2012.06.010

Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P., et al. (2010).
Comparing predictors of conversion and decline in mild cognitive impairment.
Neurology 75, 230–238. doi: 10.1212/WNL.0b013e3181e8e8b8

Li, Y., Liu, X., Qian, Z., Sun, Z., Xu, K., Wang, K., et al. (2018). Genotype prediction
of ATRX mutation in lower-grade gliomas using an MRI radiomics signature.
Eur. Radiol. 28, 2960–2968. doi: 10.1007/s00330-017-5267-0

Liu, K., Chen, K., Yao, L., and Guo, X. (2017). Prediction of mild cognitive
impairment conversion using a combination of independent component
analysis and the Cox model. Front. Hum. Neurosci. 11:33. doi: 10.3389/fnhum.
2017.00033

M. D. Anderson Cancer Center Head, and Neck Quantitative Imaging Working
Group (2018). Investigation of radiomic signatures for local recurrence using
primary tumor texture analysis in oropharyngeal head and neck cancer patients.
Sci. Rep. 8:1524. doi: 10.1038/s41598-017-14687-0

Mattis, P. J., Niethammer, M., Sako, W., Tang, C. C., Nazem, A., Gordon,
M. L., et al. (2016). Distinct brain networks underlie cognitive dysfunction
in Parkinson and Alzheimer diseases. Neurology 87, 1925–1933. doi: 10.1212/
WNL.0000000000003285

Meng, Y., Zhang, Y., Dong, D., Li, C., Liang, X., Zhang, C., et al. (2018). Novel
radiomic signature as a prognostic biomarker for locally advanced rectal cancer.
J. Magn. Reson. Imaging doi: 10.1002/jmri.25968 [Epub ahead of print].

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., and Alzheimer’s Disease
Neuroimaging Initiative (2015). Machine learning framework for early MRI-
based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104,
398–412. doi: 10.1016/j.neuroimage.2014.10.002

Murphy, K. R., Landau, S. M., Choudhury, K. R., Hostage, C. A., Shpanskaya, K. S.,
Sair, H. I., et al. (2013). Mapping the effects of ApoE4, age and cognitive status
on 18F-florbetapir PET measured regional cortical patterns of beta-amyloid
density and growth. Neuroimage 78, 474–480. doi: 10.1016/j.neuroimage.2013.
04.048

Pagani, M., Nobili, F., Morbelli, S., Arnaldi, D., Giuliani, A., Öberg, J., et al. (2017).
Early identification of MCI converting to AD: a FDG PET study. Eur. J. Nucl.
Med. Mol. Imaging 44, 2042–2052. doi: 10.1007/s00259-017-3761-x

Pai, A., Sørensen, L., Darkner, S., Suhy, J., Oh, J., Chen, G., et al.
(2012). Hippocampal texture provides volume independent information for
Alzheimer’s diagnosis. Alzheimers Dement. 8:P15. doi: 10.1016/j.jalz.2012.05.
045

Panth, K. M., Leijenaar, R. T., Carvalho, S., Lieuwes, N. G., Yaromina, A.,
Dubois, L., et al. (2015). Is there a causal relationship between genetic changes
and radiomics-based image features? An in vivo preclinical experiment with
doxycycline inducible GADD34 tumor cells. Radiother. Oncol. 116, 462–466.
doi: 10.1016/j.radonc.2015.06.013

Peters, F., Villeneuve, S., and Belleville, S. (2014). Predicting progression to
dementia in elderly subjects with mild cognitive impairment using both
cognitive and neuroimaging predictors. J. Alzheimers Dis. 38, 307–318. doi:
10.3233/JAD-130842

Petersen, R. C., Roberts, R. O., Knopman, D. S., Boeve, B. F., Geda, Y. E., Ivnik,
R. J., et al. (2009). Mild cognitive impairment ten years later. Arch. Neurol. 66,
1447–1455. doi: 10.1001/archneurol.2009.266

Prestia, A., Caroli, A., Herholz, K., Reiman, E., Chen, K., Jagust, W. J., et al.
(2013a). Diagnostic accuracy of markers for prodromal Alzheimer’s disease in
independent clinical series. Alzheimers Dement. 9, 677–686. doi: 10.1016/j.jalz.
2012.09.016

Prestia, A., Caroli, A., Van Der Flier, W. M., Ossenkoppele, R., Van Berckel, B.,
Barkhof, F., et al. (2013b). Prediction of dementia in MCI patients based on
core diagnostic markers for Alzheimer disease. Neurology 80, 1048–1056. doi:
10.1212/WNL.0b013e3182872830

Richard, E., Schmand, B. A., Eikelenboom, P., and Van Gool, W. A. (2013). MRI
and cerebrospinal fluid biomarkers for predicting progression to Alzheimer’s
disease in patients with mild cognitive impairment: a diagnostic accuracy study.
BMJ Open 3:e002541. doi: 10.1136/bmjopen-2012-002541

Risacher, S. L., Kim, S., Nho, K., Foroud, T., Shen, L., Petersen, R. C., et al. (2015).
APOE effect on Alzheimer’s disease biomarkers in older adults with significant
memory concern. Alzheimers Dement. 11, 1417–1429. doi: 10.1016/j.jalz.2015.
03.003

Royston, P., and Altman, D. G. (2013). External validation of a Cox prognostic
model: principles and methods. BMC Med. Res. Methodol. 13:33. doi: 10.1186/
1471-2288-13-33

Schneider, J. A., Arvanitakis, Z., Leurgans, S. E., and Bennett, D. A. (2009). The
neuropathology of probable Alzheimer disease and mild cognitive impairment.
Ann. Neurol. 66, 200–208. doi: 10.1002/ana.21706

Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K. R., Calhoun, V. D.,
Coleman, R. E., et al. (2013). Predicting cognitive decline in subjects at risk
for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and
PET biomarkers. Radiology 266, 583–591. doi: 10.1148/radiol.12120010

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths
for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39,
1–13. doi: 10.18637/jss.v039.i05

Sørensen, L., Igel, C., Liv Hansen, N., Osler, M., Lauritzen, M., Rostrup, E., et al.
(2016). Early detection of Alzheimer’s disease using M RI hippocampal texture.
Hum. Brain Mapp. 37, 1148–1161. doi: 10.1002/hbm.23091

Sørensen, L., Pai, A., Igel, C., and Nielsen, M. (2013). Hippocampal texture predicts
conversion from MCI to Alzheimer’s disease. Alzheimers Dement. 9, 581–581.
doi: 10.1016/j.jalz.2013.05.1155

Sun, H., Chen, Y., Huang, Q., Lui, S., Huang, X., Shi, Y., et al. (2017).
Psychoradiologic utility of MR imaging for diagnosis of attention deficit
hyperactivity disorder: a radiomics analysis. Radiology 287, 620–630. doi: 10.
1148/radiol.2017170226

Tang, C., Hobbs, B., Amer, A., Li, X., Behrens, C., Canales, J. R., et al. (2018).
Development of an immune-pathology informed radiomics model for non-
small cell lung cancer. Sci. Rep. 8:1922. doi: 10.1038/s41598-018-20471-5

Tapiola, T., Pennanen, C., Tapiola, M., Tervo, S., Kivipelto, M., Hänninen, T.,
et al. (2008). MRI of hippocampus and entorhinal cortex in mild cognitive
impairment: a follow-up study. Neurobiol. Aging 29, 31–38. doi: 10.1016/j.
neurobiolaging.2006.09.007

Teipel, S. J., Grothe, M., Lista, S., Toschi, N., Garaci, F. G., and Hampel, H. (2013).
Relevance of magnetic resonance imaging for early detection and diagnosis of
Alzheimer disease. Med. Clin. 97, 399–424. doi: 10.1016/j.mcna.2012.12.013

Teune, L. K., Strijkert, F., Renken, R. J., Izaks, G. J., de Vries, J. J., Segbers, M., et al.
(2014). The Alzheimer’s disease-related glucose metabolic brain pattern. Curr.
Alzheimer Res. 11, 725–732. doi: 10.2174/156720501108140910114230

Therneau, T. M., and Grambsch, P. M. (2013). Modeling Survival Data: Extending
the Cox Model. Berlin: Springer Science & Business Media.

Trachtenberg, A. J., Filippini, N., Ebmeier, K. P., Smith, S. M., Karpe, F., and
Mackay, C. E. (2012). The effects of APOE on the functional architecture of the
resting brain. Neuroimage 59, 565–572. doi: 10.1016/j.neuroimage.2011.07.059

Vallières, M., Freeman, C. R., Skamene, S. R., and El Naqa, I. (2015). A radiomics
model from joint FDG-PET and MRI texture features for the prediction of
lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 60,
5471–5496. doi: 10.1088/0031-9155/60/14/5471

Vallières, M., Kay-Rivest, E., Perrin, L. J., Liem, X., Furstoss, C., Aerts, H. J.,
et al. (2017). Radiomics strategies for risk assessment of tumour failure in
head-and-neck cancer. Sci. Rep. 7:10117. doi: 10.1038/s41598-017-10371-5

van Houwelingen, H. C. (2000). Validation, calibration, revision and combination
of prognostic survival models. Stat. Med. 19, 3401–3415. doi: 10.1002/1097-
0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2

Vos, S., Van Rossum, I., Burns, L., Knol, D., Scheltens, P., Soininen, H., et al. (2012).
Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with
MCI. Neurobiol. Aging 33, 2272–2281. doi: 10.1016/j.neurobiolaging.2011.12.
017

Yu, K.-H., Zhang, C., Berry, G. J., Altman, R. B., Ré, C., Rubin, D. L., et al.
(2016). Predicting non-small cell lung cancer prognosis by fully automated
microscopic pathology image features. Nat. Commun. 7:12474. doi: 10.1038/
ncomms12474

Frontiers in Neuroscience | www.frontiersin.org 12 January 2019 | Volume 12 | Article 1045

https://doi.org/10.1016/j.inffus.2013.12.002
https://doi.org/10.1371/journal.pone.0138866
https://doi.org/10.1371/journal.pone.0138866
https://doi.org/10.1016/j.mri.2012.06.010
https://doi.org/10.1212/WNL.0b013e3181e8e8b8
https://doi.org/10.1007/s00330-017-5267-0
https://doi.org/10.3389/fnhum.2017.00033
https://doi.org/10.3389/fnhum.2017.00033
https://doi.org/10.1038/s41598-017-14687-0
https://doi.org/10.1212/WNL.0000000000003285
https://doi.org/10.1212/WNL.0000000000003285
https://doi.org/10.1002/jmri.25968
https://doi.org/10.1016/j.neuroimage.2014.10.002
https://doi.org/10.1016/j.neuroimage.2013.04.048
https://doi.org/10.1016/j.neuroimage.2013.04.048
https://doi.org/10.1007/s00259-017-3761-x
https://doi.org/10.1016/j.jalz.2012.05.045
https://doi.org/10.1016/j.jalz.2012.05.045
https://doi.org/10.1016/j.radonc.2015.06.013
https://doi.org/10.3233/JAD-130842
https://doi.org/10.3233/JAD-130842
https://doi.org/10.1001/archneurol.2009.266
https://doi.org/10.1016/j.jalz.2012.09.016
https://doi.org/10.1016/j.jalz.2012.09.016
https://doi.org/10.1212/WNL.0b013e3182872830
https://doi.org/10.1212/WNL.0b013e3182872830
https://doi.org/10.1136/bmjopen-2012-002541
https://doi.org/10.1016/j.jalz.2015.03.003
https://doi.org/10.1016/j.jalz.2015.03.003
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1186/1471-2288-13-33
https://doi.org/10.1002/ana.21706
https://doi.org/10.1148/radiol.12120010
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1002/hbm.23091
https://doi.org/10.1016/j.jalz.2013.05.1155
https://doi.org/10.1148/radiol.2017170226
https://doi.org/10.1148/radiol.2017170226
https://doi.org/10.1038/s41598-018-20471-5
https://doi.org/10.1016/j.neurobiolaging.2006.09.007
https://doi.org/10.1016/j.neurobiolaging.2006.09.007
https://doi.org/10.1016/j.mcna.2012.12.013
https://doi.org/10.2174/156720501108140910114230
https://doi.org/10.1016/j.neuroimage.2011.07.059
https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.1038/s41598-017-10371-5
https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
https://doi.org/10.1016/j.neurobiolaging.2011.12.017
https://doi.org/10.1016/j.neurobiolaging.2011.12.017
https://doi.org/10.1038/ncomms12474
https://doi.org/10.1038/ncomms12474
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01045 January 11, 2019 Time: 12:55 # 13

Zhou et al. Dual-Model Radiomic Biomarkers Predict MCI-to-AD

Zeifman, L. E., Eddy, W. F., Lopez, O. L., Kuller, L. H., Raji, C., Thompson,
P. M., et al. (2015). Voxel level survival analysis of grey matter volume and
incident mild cognitive impairment or Alzheimer’s disease. J. Alzheimers Dis.
46, 167–178. doi: 10.3233/JAD-150047

Zhang, J., Yu, C., Jiang, G., Liu, W., and Tong, L. (2012). 3D texture analysis
on MRI images of Alzheimer’s disease. Brain Imaging Behav. 6, 61–69. doi:
10.1007/s11682-011-9142-3

Zhou, H., Vallières, M., Bai, H. X., Su, C., Tang, H., Oldridge, D., et al.
(2017). MRI features predict survival and molecular markers in diffuse
lower-grade gliomas. Neuro Oncol. 19, 862–870. doi: 10.1093/neuonc/
now256

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Zhou, Jiang, Lu, Wang, Zhang, Zuo and the Alzheimer’s Disease
Neuroimaging Initiative. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2019 | Volume 12 | Article 1045

https://doi.org/10.3233/JAD-150047
https://doi.org/10.1007/s11682-011-9142-3
https://doi.org/10.1007/s11682-011-9142-3
https://doi.org/10.1093/neuonc/now256
https://doi.org/10.1093/neuonc/now256
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Dual-Model Radiomic Biomarkers Predict Development of Mild Cognitive Impairment Progression to Alzheimer's Disease
	Introduction
	Materials and Methods
	Subjects
	Image Preprocessing
	18F-Fluorodeoxyglucose (FDG) Positron Emission Tomography (PET)
	Magnetic Resonance Imaging (MRI)
	MRI and PET Image Fusion

	Identify MCI Conversion-Related ROIs
	Radiomics Analysis
	Cox Model Analysis
	Comparative Experiment

	Results
	MRI/PET Image Fusion
	MCI Conversion-Related ROIs
	Cox Models

	Discussion
	MCI Conversion-Related Topography
	Radiomic Features
	Cox Proportional Hazards Regression Model

	Limitations and Further Considerations
	Conclusion
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


