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Objective: This paper presents a systematic review of diffusion MRI (dMRI) and
tractography of cranial nerves within the posterior fossa. We assess the effectiveness
of the diffusion imaging methods used and examine their clinical applications.

Methods: The Pubmed, Web of Science and EMBASE databases were searched from
January 1st 1997 to December 11th 2017 to identify relevant publications. Any study
reporting the use of diffusion imaging and/or tractography in patients with confirmed
cranial nerve pathology was eligible for selection. Study quality was assessed using the
Methodological Index for Non-Randomized Studies (MINORS) tool.

Results: We included 41 studies comprising 16 studies of patients with trigeminal
neuralgia (TN), 22 studies of patients with a posterior fossa tumor and three studies
of patients with other pathologies. Most acquisition protocols used single-shot echo
planar imaging (88%) with a single b-value of 1,000 s/mm? (78%) but there was
significant variation in the number of gradient directions, in-plane resolution, and
slice thickness between studies. dMRI of the trigeminal nerve generated interpretable
data in all cases. Analysis of diffusivity measurements found significantly lower
fractional anisotropy (FA) values within the root entry zone of nerves affected
by TN and FA values were significantly lower in patients with multiple sclerosis.
Diffusivity values within the trigeminal nerve correlate with the effectiveness of surgical
treatment and there is some evidence that pre-operative measurements may be
predictive of treatment outcome. Fiber tractography was performed in 30 studies
(73%). Most studies evaluating fiber tractography involved patients with a vestibular
schwannoma (82%) and focused on generating tractography of the facial nerve
to assist with surgical planning. Deterministic tractography using diffusion tensor
imaging was performed in 93% of cases but the reported success rate and accuracy
of generating fiber tracts from the acquired diffusion data varied considerably.
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Conclusions: dVRI has the potential to inform our understanding of the microstructural
changes that occur within the cranial nerves in various pathologies. Cranial nerve
tractography is a promising technique but new avenues of using dMRI should be explored
to optimize and improve its reliability.

Keywords: MRI—magnetic resonance imaging, diffusion MRI (dMRI), tractography, cranial nerves, brain tumors,

trigeminal neuralgia (TN)

INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a non-invasive
magnetic resonance imaging (MRI) technique that is able to
provide a quantitative assessment of a tissue’s microstructure.
dMRI is sensitive to the displacement of water subject to
thermally driven Brownian motion and can reveal a tissue’s
orientational organization (Le Bihan et al, 2001; Basser and
Jones, 2002; Jellison et al, 2004). Fiber tractography is a
three-dimensional reconstruction of the dMRI data enabling
visualization of neural tracts and the brain’s connectivity (Mori
and van Zijl, 2002; Parker and Alexander, 2005; Gong et al.,
2009). Diffusion tensor imaging (DTI) was the initial model
to describe the orientational information in dMRI data; it has
become a well-established method for imaging the brain’s white
matter tracts and is now an essential tool in neuroimaging
analysis and diagnosis (Assaf and Pasternak, 2008; Ciccarelli
et al., 2008). White matter fiber tractography is routinely used
in preoperative surgical planning (Nimsky et al., 2005; Yogarajah
et al., 2009; Duncan et al., 2016) and may also be incorporated
into the neuronavigation system to guide surgery intraoperatively
(Coenen et al., 2001; Nimsky et al., 2005; Nowell et al., 2015).

More recently, there has been growing clinical interest in
utilizing tractography of the cranial nerves in order to assist
clinical diagnosis of various neurological pathologies and to
inform the surgical planning of neurosurgical procedures such
as brain tumor surgery. There are twelve sets of paired cranial
nerves (CN I-XII) that typically relay information between the
brain and regions of the head and neck and are numbered
according to their rostral-caudal position when viewing the brain.
The first two cranial nerves—the olfactory [CN I] and optic
nerves [CN II] are both sensory nerves, composed of afferent
fibers relaying smell and vision, respectively, entering the brain
within the anterior and middle cranial fossae. The remaining
ten cranial nerves (the oculomotor [CN III], trochlear [CN
IV], trigeminal [CN V], abducens [CN VI], facial [CN VII],
vestibulocochlear [CN VIII], glossopharyngeal [CN IX], vagus
[CN X], spinal accessory [CN XI], and hypoglossal [CN XII])
emerge from the brainstem and course through the posterior
fossa and fluid cisterns before exiting the skull (Matsuno et al.,
1988). Diftusion MRI and tractography of the cranial nerves in
this region is technically challenging due to the nerves’ small size
(typically 1-5mm in maximal diameter) and their anatomical
location within cerebrospinal fluid (CSF) and close to tissue-air
and tissue-bone interfaces (Figure 1).

This paper provides a systematic review of the clinical
applications of dMRI and tractography of the cranial nerves

within the posterior fossa (CN III-XII). Its aim is to inform
clinical readers who are unfamiliar with this imaging modality
of the technique’s clinical potential, but technical readers with an
interest in diffusion imaging form a secondary readership. To aid
the reader’s understanding, we begin with a brief summary of the
biological and physical basis of diffusion MRI and tractography.
This is followed by a critical summary and appraisal of different
imaging techniques employed that will be of interest to both
clinical and technical readers. Finally, we review the effectiveness
of these advanced imaging techniques in the context of cranial
nerve imaging, examining the various clinical applications for
this emerging technology.

BASIC PRINCIPLES OF DIFFUSION
IMAGING AND TRACTOGRAPHY

Diffusion MRI

Diffusion-weighted MRI creates image contrast based on the
relative diffusion of water molecules in tissue. In water, water
molecules are able to diffuse freely, and diffusion is equal in all
directions (termed isotropic diffusion). However, the diffusion
of water molecules inside organic tissues is often anisotropic
(Tanner, 1979) as a result of a tissues cellular microstructure.
In white matter tracts and cranial nerves, diffusion is primarily
restricted by axonal membranes, and myelin sheaths causing
restricted diffusion perpendicular to the length of the axon with
the direction of maximum diffusivity being parallel to the axonal
orientation (Moseley et al., 1990).

To sensitize the MRI signal to diffusion, a diffusion-weighting
magnetic gradient is applied along a certain axis. Acquiring
multiple dMRI images with different diffusion-weighting
magnetic gradient orientations can then provide information on
the orientation of maximum diffusion. Information concerning
the tissue’s anisotropy was first described within the diffusion
tensor framework, which is an abstract mathematical model of
diffusion in three-dimensional space (Basser et al., 1994). The
tensor model consists of a 3 x 3 matrix derived from diffusivity
measurements in at least six non-collinear directions. The
diagonal elements (Dyy, Dyy, D) of the tensor represent the
diffusion coeflicients measured in a frame of reference along each
of the principal (x-, y-, and z-) directions. The off-diagonal terms
reflect correlation between each pair of principal directions.
Conceptually, a diffusion tensor may be visualized as an ellipsoid
where the principal major axis is orientated in the direction
of maximum diffusivity (Basser et al., 1994). The ellipsoid is
characterized by three orthogonal eigenvectors (g1, €2, and €3)
and its shape determined by three eigenvalues (\i, X3, and
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FIGURE 1 | Imaging of upper (a-d) and lower (e-h) pons. (a,e) High contrast T2-weighted images illustrating the trigeminal nerve (white 5-pointed star) and the facial
and vestibulocochlear nerves (white 6-pointed star). [acquired with a ZOOMit sequence and a 0.5 x 0.5 x 0.5 mm voxel size]. (b,f) mean b0 diffusion weighted image.
(c,g) mean b1000 diffusion weighted image. (d,h) Diffusion-encoded-color map. Note the green anterior trigeminal projections from the brainstem in (d) and the red
right-left projections of the CN VII/VIII complex in (h) [more pronounced on the subject’s right-hand side].

X3). The eigenvectors represent the major, medium, and minor
principal axes of the ellipsoid and the eigenvalues represent the
diftusivities in these three directions, respectively (Mori et al.,
1999; Basser et al., 2000).

Specific quantitative diffusivity metrics may be calculated
from the tensor including axial (AD), radial (RD), and mean
diffusivities (MD), as well as a composite metric, fractional
anisotropy (FA). The local fiber orientation may also be visualized
in a directionally-encoded color (DEC) map of the diffusion
tensor that is based on the orientation of the diffusion tensor’s

first eigenvector (e1). These maps are generated by mapping
the major eigenvector’s directional components in the x-, y-,
and z-planes into RGB color channels and weighting the color
brightness by FA.

Fractional anisotropy (FA) is a measure of the coherence of the
underlying microstructure and has been shown to correlate both
with axonal counts (Schmierer et al., 2007; Gouw et al., 2008)
and myelin content (Schmierer et al.,, 2007). Mean diftusivity
(MD) detects the overall diffusion coefficient and is an index
proportional to free water and a sensitive marker of inflammation
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(Werring et al, 1999; Beaulieu, 2002). Another measure of
average diffusion is the Apparent Diffusion Coefficient (ADC);
the difference being that the ADC is usually derived from the
DWTI data directly while MD is derived from the tensor fitting
on the DWI data. However, as evidenced by the studies included
in this review, this terminology is not always strictly followed.
Axial diftusivity (AD) indicates diffusion along the main axis of
the ellipsoid and radial diffusivity (RD) is a measure of diffusion
along the other two orthogonal directions. Animal studies have
shown that the AD and RD are good predictors of axonal loss
and demyelination, respectively (Song et al., 2002, 2003; Budde
et al., 2007) and these have been used as surrogate in vivo
markers to illustrate axonal integrity (AD) and myelin damage
(RD) (Concha et al., 2006; Kraus et al., 2007; Naismith et al.,
2009). Despite a high sensitivity to microstructural changes, these
quantitative metrics are also affected by factors not incorporated
in the diffusion tensor model; such as crossing fibers and other
complex fiber architecture, or partial voluming—reducing their
specificity (Alexander et al., 2001; Vos et al., 2011, 2012). For a
more detailed introduction to DTI and other advanced diffusion
methods, readers are referred to a review by Tournier et al.
(2011).

Tractography

The brain’s white matter tracts are composed of bundles of axons
that share a similar destination and may be delineated using
tractography or fiber-tracking algorithms (Parker and Alexander,
2005; Assaf and Pasternak, 2008; Ciccarelli et al., 2008; Gong
et al,, 2009). Similarly, peripheral nerves are comprised of axons
that connect the central nervous system to an end organ. As
diffusion imaging and tractography methods have advanced, this
technique has been applied to reconstruct ever smaller white
matter structures including the cranial nerves.

Tractography uses the voxel-wise information provided by
diffusion MRI to infer connections between adjacent voxels
that may belong to the same tract to reconstruct the white
matter architecture in 3D (Mori and van Zijl, 2002; Lazar
et al., 2003). The commonest type of tractography algorithm,
deterministic tractography, delineates white matter pathways by
using an in-line propagation technique whereby data within
each voxel directs the tracts subsequent extension. Deterministic
tractography is reliant upon three elements: the identification
of a suitable starting position to initiate the algorithm (the
seed point); continued propagation of the track along the
estimated fiber orientation; and the termination of the track when
appropriate criteria are met (Mori and van Zijl, 2002; Tournier
et al, 2011). Selecting an appropriate seed point is typically
performed by the operator but other methods such as selecting
the seed point based on functional MR data exist (Tournier et al.,
2011). Deterministic DTI tracking uses the first eigenvector of
the diffusion tensor to provide a suitable estimate of the fiber
orientation within each voxel and then propagates the track
according to a fixed user-specified step-size. The most common
way of terminating a track is to set a threshold based on a measure
of diffusion anisotropy (typically FA) such that if the anisotropy
falls below a certain value (e.g., FA < 0.2), the track is not allowed
to propagate any further.

Probabilistic tractography aims to address the problem of
uncertainty of directional information by creating multiple
streamlines from a selected distribution of possible fiber
orientations with the results presented in the form of a
probability distribution, rather than a single “best fit” (Behrens
et al., 2007; Tournier et al., 2011). Most probabilistic methods
are based on the same underlying model as their deterministic
counterparts and so are affected by the same limitations;
however, they are able to provide an estimate of the “precision”
with which a tract has been reconstructed (Tournier et al.,
2011). Several studies examining large matter tracts have
demonstrated advantages of using probabilistic tracking over
standard deterministic tracking (Farquharson etal., 2013; Li et al.,
2013; Lilja et al.,, 2014; Mandelli et al., 2014) and Rueckriegel
et al. recently described the benefits of probabilistic tracking to
depict the auditory pathway in cases of vestibular schwannoma
(Rueckriegel et al., 2016).

METHODS

The Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) Statement was used in the preparation of this
manuscript (Moher et al., 2009) and the study was registered with
PROSPERO: an international prospective register of systematic
reviews (CRD117068).

A structured search of the Pubmed, Web of Science and
EMBASE databases was undertaken over a 20-year period.
The last date of the search was December 11th, 2017. Two
independent researchers applied the search criteria using the
Boolean search terms:

1 (diffusion tensor imaging OR diffusion MRI OR diffusion
tensor tracking OR tractography OR fiber tracking OR fiber
tracking)

AND

2 (oculomotor nerve OR trochlear nerve OR trigeminal
nerve OR abducens nerve OR facial nerve OR vestibular
nerve OR vestibulocochlear nerve OR cochlear nerve OR
vestibulocochlear complex OR facial-vestibulocochlear complex
OR glossopharyngeal nerve OR vagus nerve OR accessory nerve
OR hypoglossal nerve OR cranial nerve)

Reference lists of included articles were also reviewed, and
expert opinion sought, to identify further eligible publications.

Eligibility for inclusion in the systematic review included
peer-reviewed  publications in  which  English-language
manuscripts were available through electronic indexing
comprising:

1. Clinical studies of patients with associated cranial nerve
pathology.

2. Diftusion MRI and/or fiber tractography of lower cranial
nerve(s) has been performed.

3. The diffusion imaging technique used has been described.

4. The imaging success rate is reported.

Full articles were obtained and further assessed for eligibility
and any discrepancy was resolved through mutual review and
involvement of the senior author.
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In total, 805 articles were identified through the database
searches and an additional record was identified through
other sources. Following removal of duplicate and non-English
language studies, 534 manuscript titles and abstracts were
screened. After applying the eligibility criteria 48 full text articles
were reviewed and a further 7 articles were excluded. In all,
41 studies satisfied the inclusion criteria and were included in
further qualitative analysis (Figure 2).

Data extraction was performed using a table with a predefined
set of criteria including:

1. Study design.

2. Study group characteristics, including the number of patients,
duration of symptoms (in cases of trigeminal neuralgia),
tumor characteristics (where applicable), and treatment
modality.

3. Imaging acquisition details, including hardware, data specifics
(including sequence(s), number of directions (number of
signal averages), acquired voxel size, b-value(s), scan time),
and software.

4. Diffusion processing methods, including region of
interest, fiber tractography method (type [deterministic
or probabilistic], number of ROI(s), Fractional anisotropy
threshold.

5. Effectiveness of dMRI analysis, including success rate in
generating tractography results and diffusivity measurements
of the target cranial nerve(s). In surgical cases, the method and
results of any intraoperative validation was also noted.

6. Key findings.

The methodological quality of the included studies was assessed
by using the Methodological Index for Non-Randomized Studies
(MINORS) scoring system for observational studies (Slim et al.,
2003). Observational studies include comparative studies such as
case-control and cohort designs, and patient series which may
or may not involve comparisons between groups. All studies are
scored on the following criteria: (1) A stated aim of the study;
(2) Inclusion of consecutive patients; (3) Prospective collection
of data; (4) Endpoint appropriate to the study aim; (5) Unbiased
evaluation of endpoints; (6) Follow-up period appropriate to the
major endpoint; (7) Loss to follow-up not exceeding 5%; (8)
Prospective calculation of the study sample size. Comparative
studies are also scored with respect to; (9) An adequate control
group; (10) Contemporary groups; (11) Baseline equivalence
of groups; (12) Adequate statistical analyses. Rating scores out
of 16 and 24 for non-comparative and comparative studies,
respectively, were generated by the lead author. Studies of greater
quality, i.e., those with a higher MINORS score, were given
greater weighting in the subsequent qualitative synthesis.

RESULTS

Forty-one studies satisfied the inclusion criteria and underwent
qualitative analysis, including 20 case series, 15 non-randomized
case-control studies, 4 cohort studies and 2 case reports. A
maximum of 959 participants were included across all studies
(ranging from 1 to 150 subjects per study), if multiple studies

form a single institution did not include overlapping patient
groups. Twenty-two studies focused on imaging the cranial
nerves in relation to a posterior fossa tumor (Taoka et al., 2006;
Chen et al, 2011; Gerganov et al, 2011; Roundy et al., 2012;
Zhang et al., 2013, 2017; Choi et al., 2014; Ulrich et al., 2014; Wei
etal., 2015, 2016; Yoshino et al., 2015a,b, 2016; Borkar et al., 2016;
Hilly et al., 2016; Ma et al.,, 2016; Song et al., 2016; Behan et al.,
2017; d’Almeida et al., 2017; Li et al., 2017; Zolal et al., 2017a,b),
16 studies imaged the trigeminal nerve in patients with trigeminal
neuralgia (Herweh et al., 2007; Fujiwara et al., 2011; Leal et al,,
2011; Lutz et al,, 2011, 2016; Hodaie et al., 2012; Liu et al., 2013;
Wilcox et al.,, 2013; DeSouza et al., 2014, 2015; Lummel et al,,
2015; Chen, D. Q. et al., 2016; Chen, S. T. et al.,, 2016; Lin et al.,,
2016; Neetu et al.,, 2016; Hung et al., 2017) and the remaining 3
studies evaluated DTI and tractography of the cranial nerves in
various other pathologies including the cochlear nerve in cases of
unilateral deafness (Vos et al., 2015), and the trigeminal nerve
in patients with herpetic keratouveitis (Rousseau et al., 2015)
and short lasting unilateral neuralgiform headache attacks with
conjunctival injection and tearing (SUNCT) (Coskun et al., 2017)
(Tables 1-3).

Study Quality

The quality of the included studies was variable (Tables 1-4). In
general, the prospective comparative studies evaluating DTT and
tractography in patients with trigeminal neuralgia were of high
methodological quality. The most common type of comparative
study encountered here were case-control studies in which the
non-affected side provided the control group to which the
affected side was compared. Very few studies involving patients
with posterior fossa tumors included consecutive patients or
unbiased assessments of study endpoints but there were notable
high-quality papers involving patients with posterior fossa
tumors and these have been given higher weighting in our
discussion (Taoka et al., 2006; Gerganov et al, 2011; Zhang
et al.,, 2013, 2017; Yoshino et al., 2015b; Li et al,, 2017; Zolal
etal., 2017a). All four cohort studies compared different methods
of acquiring tractography data in patients with posterior fossa
tumors. One of the listed case reports illustrating the use of
tractography in a patient with a petroclival meningioma was
contained within a larger technical paper comparing DTT with a
more advanced multi-fiber model (HDFT: high definition fiber
tractography; Yoshino et al, 2016). However, this advanced
method was only used in one illustrative case that satisfied this
study’s inclusion criteria so the article was listed as a case report
and assessed using the MINORS scoring for non-comparative
studies. None of the studies included in this review documented
a prospective calculation of study size.

Image Acquisition and Processing

A variety of different MR scanners manufactured by Siemens,
GE and Philips were used in the acquisition of the diffusion
data. Thirty-seven studies (90%) were performed using 3T
machines with the remaining 4 studies using 1.5T scanners.
Most acquisition protocols used single-shot echo planar imaging
(88%) with a single b-value of 1,000 s/mm? (78%) but the
number of gradient directions, in-plane resolution, and slice
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FIGURE 2 | PRISMA flow diagram of article selection.

No diffusion imaging of cranial nerves = 4
Asymptomatic subjects or unrelated pathology = 2
Missing diffusion imaging methods = 1

thickness varied considerably (Tables1-3). The acquisition
time was documented in a minority of studies (39%); scan
time varied greatly but was typically longer in studies that
used multi-shot imaging acquisition (Chen, S. T. et al., 2016;
Lutz et al., 2016). Various software packages were employed
for the post-processing and tractography, including MatLab
(The MathWorks, Inc., Natick, MA), dTV (http://www.medimg.
info.hiroshima-cu.ac.jp/dTV.IL.15g/about.htm) (Masutani et al.,
2003), 3D Slicer (https://www.slicer.org) (Norton et al., 2017),
DTI- and DSI-Studio (http://dsi-studio.labsolver.org) (Yeh
et al., 2013), MedINRIA (https://med.inria.fr) (Toussaint et al.,
2007), SPM8 (https://www.fil.ion.ucl.ac.uk/spm) (Friston, 2007),
iPLAN (Brainlab iPlan, Heimstetten, Germany), trackvis (http://
www.trackvis.org) (Wang et al., 2007), StealthViz (Medtronic
Planning Station S7, Louisville, US), DynaSuite Neuro (in vivo
Corp.; Gainesville, USA), FSL (http://www.fmrib.ox.ac.uk/fsl)
(Jenkinson et al, 2012), TEEM toolkit (https://github.com/
sinkpoint/hodaie-teem) (Qazi et al., 2009), ExploreDTT (www.
exploredti.com) (Leemans et al., 2009) and MRtrix3 (http://
www.mrtrix.org) (Tournier et al, 2012), in addition to the
hardware manufacturer’s own software suites including Leonardo
syngo (Siemens), FuncTool (GE), and FiberTrak (Philips)
software. All studies selected regions of interest manually
and most did so by using fused anatomical and diffusion
images (ROIs selected using fused anatomical/diffusion imaging:
51%, diffusion imaging alone: 17%, method not specified:
32%).

Analysis of Diffusivity Measurements

Analysis of diffusivity measurements focused on regions of the
trigeminal nerve in all but one study. In the remaining study,
diffusion metrics of the cochlea nerve were studied in patients
with unilateral deafness, and compared to the patient’s unaffected
side and values in the nerves of healthy control subjects (Vos
etal., 2015).

Analysis of the Trigeminal Nerve in Patients
With Trigeminal Neuralgia (TN)

Sixteen non-randomized comparative studies evaluated the
diffusion metrics of the trigeminal nerve in patients with
trigeminal neuralgia (TN) (Table 1). Twelve studies included
healthy volunteers as a control group (Herweh et al., 2007;
Fujiwara et al., 2011; Leal et al., 2011; Liu et al., 2013; Wilcox et al.,
2013; DeSouza et al., 2014, 2015; Lummel et al., 2015; Chen, D. Q.
et al,, 2016; Lin et al., 2016; Neetu et al., 2016; Hung et al., 2017)
and 4 studies compared the patient’s own affected and unaftected
sides (Lutz et al., 2011, 2016; Hodaie et al., 2012; Chen, S. T. et al.,
2016). Two studies also included analysis of trigeminal neuralgia
in patients with Multiple Sclerosis (MS) (Lummel et al., 2015;
Chen, D. Q. et al, 2016), two studies evaluated patients with
non-neurovascular compression TN (n-NVC-TN) (Lin et al.,
2016; Neetu et al., 2016) and one study included patients with
painful trigeminal neuropathy and painful temporomandibular
disorders (TMD) (Wilcox et al., 2013). Analysis of diffusivity
measurements was possible in all cases. Ten studies compared

Frontiers in Neuroscience | www.frontiersin.org

February 2019 | Volume 13 | Article 23


http://www.medimg.info.hiroshima-cu.ac.jp/dTV.II.15g/about.htm
http://www.medimg.info.hiroshima-cu.ac.jp/dTV.II.15g/about.htm
https://www.slicer.org
http://dsi-studio.labsolver.org
https://med.inria.fr
https://www.fil.ion.ucl.ac.uk/spm
http://www.trackvis.org
http://www.trackvis.org
http://www.fmrib.ox.ac.uk/fsl
https://github.com/sinkpoint/hodaie-teem
https://github.com/sinkpoint/hodaie-teem
www.exploredti.com
www.exploredti.com
http://www.mrtrix.org
http://www.mrtrix.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shapey et al.

Cranial Nerve dMRI and Tractography

values in the root entry zone (REZ) (Herweh et al., 2007; Leal
et al, 2011; Lutz et al., 2011, 2016; Liu et al., 2013; Wilcox et al.,
2013; DeSouza et al., 2014; Lummel et al., 2015; Lin et al., 2016;
Neetu et al., 2016), two studies focused on changes within the
cisternal segment (Fujiwara et al., 2011; Chen, S. T. et al., 2016)
and one study evaluated changes at both locations (Chen, D. Q.
etal., 2016).

Fractional Anisotropy in TN

In the 10 studies that measured the FA in the REZ of patients
with TN caused by neurovascular compression, 8 (80%) found
significantly lower FA values on the affected side compared to
the unaffected side (Leal et al., 2011; Lutz et al., 2011, 2016; Liu
et al,, 2013; DeSouza et al., 2014; Lummel et al., 2015; Chen, D.
Q. et al,, 2016; Neetu et al., 2016). The other two studies failed to
demonstrate a statistical difference between sides (Herweh et al.,
2007; Wilcox et al., 2013) but there was a trend toward lower
FA values in TN-affected nerves (Herweh et al., 2007) in one of
the studies. Only two studies examined diffusivity values in the
cisternal segment of affected and unaffected nerves; one found no
difference in FA values (Fujiwara et al., 2011) whereas the other
found significantly higher FA values in the cisternal segment of
affected nerves (Chen, D. Q. et al,, 2016). Chen et al were also
the only group to compare diffusivity values in the REZ and
cisternal segment and found that TN-affected nerves appeared
to have higher FA in the cisternal segment and lower FA in the
REZ when compared to the patient’s unaffected side (Chen, D. Q.
et al., 2016).

Apparent Diffusion Coefficient and Mean Diffusivity in
TN

Seven studies (44%) examined changes in ADC values within
TN-affected nerves; four (57%) found ADC to be significantly
higher in the REZ of affected nerves (Leal et al., 2011; Lummel
etal., 2015; Chen, S. T. et al., 2016; Neetu et al., 2016) whereas the
remaining three studies found no difference (Fujiwara etal., 2011;
Lutz et al., 2011, 2016). Five studies (31%) examined changes in
MD; four found significantly higher MD values in the REZ of
idiopathic TN-affected nerves (Liu et al., 2013; DeSouza et al.,
2014, 2015; Chen, D. Q. et al., 2016) and one found no statistical
difference (Wilcox et al., 2013); however, two of the studies only
demonstrated a statistically higher MD value when the REZ
of affected nerves was compared to healthy controls with no
statistical difference noted when compared to the unaffected side
of patients with TN (DeSouza et al., 2014, 2015).

Radial and Axial Diffusivity in TN

Six studies (75%) reported RD and AD values in the affected
and unaffected nerves of patients with idiopathic TN (Liu et al.,
2013; DeSouza et al., 2014, 2015; Chen, D. Q. et al., 2016; Chen,
S. T. et al, 2016; Lin et al., 2016) and a further two studies
studied changes in these diffusivity metrics in patients following
treatment (Hodaie et al., 2012; Hung et al., 2017). All five studies
that examined changes in the REZ of TN-affected nerves reported
significantly higher RD values in the REZ compared to the nerves
of healthy controls (Liu et al., 2013; DeSouza et al., 2014, 2015;
Chen, D. Q. et al,, 2016; Lin et al.,, 2016) but significantly lower

RD values were observed in the cisternal segments of affected
nerves (Chen, D. Q. et al, 2016; Chen, S. T. et al., 2016).
No significant differences were observed in the RD values of
TN-affected nerves when compared to the unaffected side in
two studies (DeSouza et al., 2014, 2015). Within the REZ it is
likely that a change in RD is the main driver of a reduced FA
which most likely represents a decrease in axonal integrity rather
than a reduced alignment or coherence however further work
is required to establish the nature of changes seen within the
cisternal segment.

Fewer studies observed a statistically significant difference in
AD values: three studies observed higher AD values in the REZ
of TN-affected nerves when compared to the nerves of healthy
controls and two studies observed no difference in AD values (Liu
et al., 2013; Lin et al,, 2016). There were no significant changes
reported in AD when the REZ of affected nerves were compared
to the unaffected side in patients with idiopathic TN but two
studies demonstrated significantly higher AD values when TN-
affected nerves were compared with the REZ of the nerves of
healthy controls (DeSouza et al., 2014, 2015). One of these studies
also analyzed changes in the cisternal segment of the nerve and
demonstrated significantly lower AD values in the TN-affected
nerves when compared to the unaffected side (Chen, D. Q. et al.,
2016).

Diffusivity Changes in Patients With Multiple
Sclerosis and TN

In patients with MS-associated TN, Lummel et al. found that FA
was significantly lower and ADC higher in the REZ of both the
TN-affected and unaffected sides when compared to unaffected
side of patients with idiopathic TN or healthy controls (Lummel
et al., 2015). Chen et al examined different diffusivity values
in various nerve segments of patients with idiopathic and MS-
associated TN (Chen, D. Q. et al,, 2016). They demonstrated
FA values were significantly lower in the peri-lesional segments
of TN-affected nerves compared to the unaffected side of MS-
associated TN patients and significantly lower than the nerves of
patients with idiopathic TN and healthy controls. No significant
differences were noted in other diffusivity values (MD, RD, or
AD) within the peri-lesional segments of MS-associated TN
nerves compared to the nerves of patients with idiopathic TN or
healthy controls but AD and RD were shown to be significantly
higher in the REZ of patients with both idiopathic and MS-
associated TN (Chen, D. Q. et al., 2016).

Diffusivity Changes in Patients With TN Following
Treatment

Five studies examined differences in the diffusion characteristics
of patients’ affected trigeminal nerves before and after treatment
including microvascular decompression (MVD) (Fujiwara et al.,
2011; DeSouza et al.,, 2015; Hung et al., 2017), Gamma Knife
stereotactic radiosurgery (GK SRS) (Hodaie et al., 2012; DeSouza
et al., 2015; Hung et al., 2017) and radiofrequency ablation
(RFA) (Chen, S. T. et al., 2016). All four studies with diffusivity
data from the REZ demonstrated lower FA values in the
nerves of those patients who responded to treatment (Fujiwara
et al, 2011; Hodaie et al., 2012; DeSouza et al., 2015; Hung
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et al., 2017) with a trend toward FA reduction demonstrated
in the cisternal segment following effective treatment (Chen,
S. T. et al, 2016). Effective treatment also appears to reduce
other diffusivity changes seen in TN-affected nerves (Hodaie
et al,, 2012; DeSouza et al.,, 2015). Most recently, Hung et al
demonstrated that treatment outcomes may be predicted by
alterations in pre-surgical diffusivity measurements with long-
term treatment responders having lower cisternal AD and MD
values and non-responders having lower FA values in the REZ
and higher AD values in the pontine segment (Hung et al., 2017).

Analysis of the Trigeminal Nerve in Other
Pathologies

Rousseau et al. examined the potential impact of recurrent
HSV and VSV keratitis on the axonal architecture of trigeminal
nerves by assessing changes in the diffusivity metrics of patients’
trigeminal nerves (Rousseau et al., 2015). They discovered FA
to be significantly lower in the REZ of trigeminal nerves on
the ipsilateral side to the affected event and demonstrated that
the asymmetry was more than the intra-individual variability in
controls (Rousseau et al., 2015). No such significant differences
were observed in ADC values.

Coskun et al. reported diffusivity analysis in 2 patients with
SUNCT, again demonstrating FA to be lower on the affected side
(Coskun et al., 2017). ADC values were higher in the affected side
in one patient with no difference observed in the other (Coskun
et al., 2017).

Analysis of the Cochlear Nerve

Vos et al. assessed diffusivity changes in the cochlear nerves of
patients with profound unilateral sensorineural hearing loss (Vos
et al., 2015). Here, the authors assumed any changes in DTI
metrics of the vestibulocochlear nerve would reflect changes in
the cochlear nerve as it is the largest nerve and no changes are
expected in the facial or vestibular nerves in unilateral deafness.
They reported no significant difference in diffusivity values
between patients’ deaf-sided and healthy-sided cochlear nerves
but there was a small but significant reduction in FA values in
both cochlear nerves in patients compared with normal-hearing
controls (Vos et al., 2015).

Fiber Tractography

Fiber tractography of one or more cranial nerves was performed
in 30 studies (73%). All 22 studies involving patients with brain
tumors focused on generating tractography of the surrounding
cranial nerves. Eighteen of those (82%) involved patients with a
vestibular schwannoma (Figure 3) but cranial nerve tractography
was also assessed in patients with trigeminal schwannomas
(Wei et al, 2016), meningiomas (Ma et al, 2016; Yoshino
et al, 2016; Behan et al., 2017; d’Almeida et al., 2017; Zolal
et al., 2017a), brainstem cavernomas (Ulrich et al., 2014) and
other unspecified cerebellopontine angle tumors (Roundy et al.,
2012). Given the functional importance of preserving the facial
nerve during surgery, almost all tumor studies (21/22, 95%)
included tractography of CN VII or the VII/VIII complex,
but tractography of other cranial nerves within the posterior
fossa has also been demonstrated including CN IV (Ma et al,

Frontiers in Neuroscience | www.frontiersin.org

15

February 2019 | Volume 13 | Article 23


https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Shapey et al.

Cranial Nerve dMRI and Tractography

2016; Yoshino et al., 2016), CN V (Chen et al., 2011; Ulrich
et al, 2014; Wei et al, 2016; Yoshino et al, 2016; Behan
et al., 2017; Zolal et al., 2017a) and CN VI (Ulrich et al,
2014; Yoshino et al., 2016). Eight non-tumor studies reported
tractography results; seven studies detailed tractography of the
trigeminal nerve (Fujiwara et al., 2011; Hodaie et al., 2012;
DeSouza et al., 2014; Rousseau et al., 2015; Chen, D. Q. et al,,
2016; Coskun et al., 2017; Hung et al,, 2017) [five of which
were in patients with TN (Fujiwara et al, 2011; DeSouza
et al.,, 2014; Chen, D. Q. et al,, 2016; Hung et al., 2017)] with
the other study focusing on the cochlea nerve (Vos et al,
2015).

A deterministic method of generating fiber tractography was
used in the majority of studies (93%). The reported success
rate in generating fiber tracts of the cranial nerves within the
posterior fossa varied considerably (0-100% success) but was not
lower in those studies imaging smaller nerves [100% success rate
was reported in all studies imaging trochlear (Ma et al., 2016;
Yoshino et al.,, 2016) or abducens nerve (Ulrich et al., 2014;
Yoshino et al., 2016)]; however, further studies are needed to
confirm this observation. Zolal et al. recently published their
experience using probabilistic methods (Zolal et al., 2017a,b).
One of their studies provided a comparison of both techniques
and appeared to suggest that probabilistic tracking was more
effective at depicting the cranial nerves (Zolal et al., 2017a). In
15 studies (50%), a single region of interest (ROI) was used to
seed the tractography, whereas 12 studies (40%) used a two ROls,
one to seed and one to select [methods not specified in 3 studies].
Details of thresholding was available in 25 of the 30 studies
that performed tractography. A variety of fixed FA thresholds
(range 0.02-0.20) were chosen in 16/25 studies (64%) (Taoka
et al.,, 2006; Chen et al., 2011; Fujiwara et al., 2011; Gerganov
et al,, 2011; Hodaie et al.,, 2012; Roundy et al., 2012; Zhang et al.,
2013; DeSouza et al., 2014; Rousseau et al., 2015; Borkar et al.,
2016; Chen, D. Q. et al., 2016; Hilly et al., 2016; Ma et al., 2016;
Song et al., 2016; Behan et al., 2017; Hung et al.,, 2017) with a
variable approach to selecting the FA threshold used in the other
9 studies (36%) (Choi et al., 2014; Wei et al., 2015; Yoshino
et al,, 2015a,b, 2016; Li et al.,, 2017; Zhang et al., 2017; Zolal
etal., 2017a,b), including the two studies that employed diffusion
spectrum imaging (DSI).

In studies that involved patients undergoing surgery,
fiber tractography of the facial nerve was correlated with
the surgeon’s intraoperative finding in 19 studies (86%)
but the reported accuracy of facial nerve tractography was
extremely variable (17-100%) (Table 3). The accuracy of the
tractography was assessed by the operating surgeon inspecting
and documenting the location of the nerve in relation to
the tumor and was usually assisted by the use of qualitative
electrophysiological monitoring (79% of studies). Recently, Li et
al also managed to quantitatively correlate electrophysiological
results by registering the points of stimulation with the patient’s
tractography results using an intraoperative neuronavigation
system (Li et al., 2017). Several studies reported patients’ post-
operative facial nerve status but none of them evaluated the
effectiveness of using fiber tractography to prevent facial nerve
injury.

DISCUSSION

There is a clinical need to improve the visualization of cranial
nerves within the posterior fossa, particularly in the context of
pathology, and to enable detailed analysis of the affected nerves’
microstructure. In normal anatomy, the visualization of cranial
nerves from the brainstem to the skull base is currently optimized
on high contrast T2 sequences (Figure 1) but it is still extremely
difficult to image the cranial nerves as they traverse the skull,
and in patients with associated compressive tumor pathology
our experience is that anatomical T2 imaging cannot depict
the course of adjacent nerves. The prospect of obtaining 7T
MR imaging in the routine clinical setting should improve the
ability to reliably visualize the larger cranial nerves such as the
oculomotor (CN III), trigeminal (CN V) and vestibulocochlear
(CN VIII) through the brain’s cisterns but anatomical constraints
are still likely to impede the visualization of smaller nerves
beyond the skull base and in the context of associated pathology
such as compressive brain tumors. Consequently, the current
focus of this review is to examine the effectiveness of utilizing
diffusion MRI to image the cisternal segments of the cranial
nerves within the posterior fossa.

Forty-one studies met the study’s inclusion criteria and
were qualitatively analyzed. The methodological quality of the
included studies varied considerably but the available evidence
demonstrates that it is possible to acquire diffusion MRI data
using a variety of clinical scanners and process this data with
various software packages, none of which were shown to be
more, or less, effective in this respect. Most clinical studies
examining the use of diffusion MRI in patients with cranial nerve
pathologies have either focused on performing DTI analyses
of the trigeminal nerve in patients with trigeminal neuralgia
or generating DTI-based tractography of the cranial nerves in
patients with posterior fossa tumors.

Trigeminal Neuralgia

Sixteen studies evaluated diffusivity changes in the trigeminal
nerve of patients suffering from trigeminal neuralgia. The
trigeminal nerve is the largest cranial nerve within the
posterior fossa and all studies successfully managed to acquire
diffusion MRI data of adequate quality for tractography and/or
quantitative DTI analysis. Ten studies examined changes in
FA within the REZ of the trigeminal nerve compared to the
patient’s unaffected side; lower FA values demonstrated within
the REZ of TN-affected nerves in all ten studies and a statistically
significant decrease observed in 80% (Table 1). However, due
to the heterogeneous way data was presented in the various
studies, it was not possible to quantitatively calculate the expected
difference in FA values between TN-affected and unaffected
nerves. A variety of other diffusivity metrics were also analyzed
by different studies but no conclusive statements may be drawn
from the current evidence given the small number of studies
involved and the varying formats in which results were presented.
It appears that RD values within the REZ of TN-affected are
significantly higher than the unaffected nerves of healthy control
subjects (Liu et al., 2013; DeSouza et al., 2014, 2015; Chen, D.
Q. et al,, 2016; Chen, S. T. et al., 2016; Lin et al.,, 2016) but
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courtesy of (Behan et al., 2017) (CC-BY license).

FIGURE 3 | Comparison of cranial nerve fiber tractography methods in patients with posterior fossa tumors. Streamlines are displayed overlaid on a T1 anatomical
image. Color triangles indicate particular anatomical landmarks: blue: cranial nerves, green: superior cerebellar fibers, yellow: brainstem nuclei. (a—c) Tractography of
the trigeminal nerve (CN V) in a patient with a left-sided petroclival meningioma; (d-f) Tractography of the facial-vestibulocochlear bundle (CN VII/VIII) in a patient with a
left sided vestibular schwannoma. (a,d) single diffusion tractography, (b,e) extended streamline tractography, (c,f) constrained spherical deconvolution. Images

De Souza et al. found no significant difference when comparing
values with the patient’s unaffected side (DeSouza et al., 2014,
2015). Likewise, mixed results were reported in the small number
of studies that examined differences in AD values in patients with
trigeminal neuralgia.

Interesting observations were noted in the studies that
compared diffusivity values in different segments of the nerve
(Fujiwara et al., 2011; Chen, D. Q. et al., 2016; Hung et al., 2017)
and in the two studies that compared the diffusion metrics of
affected trigeminal nerves in patients with MS-associated TN
and idiopathic trigeminal neuralgia (Lummel et al., 2015; Chen,
D. Q. et al,, 2016). In particular, further work is needed to
establish whether TN-affected nerves do indeed have a higher
FA in the cisternal segment and lower FA in the REZ compared
to unaffected nerves (Chen, D. Q. et al, 2016) and whether
alterations in pre-surgical diffusivity measurements may be used
as a predictive tool to prognosticate surgical response (Hung
et al, 2017). In light of Hung et al’s recent findings that
treatment outcomes may be predicted by alterations in pre-
surgical diffusivity measurements it would also be worthwhile
evaluating if patients with different diffusion signatures respond
differently to different treatment modalities. If so, diffusion
metrics may also be used to guide treatment choice as well as
prognosticating an individual patient’s response.

Cranial Nerve Tractography in Patients

With Posterior Fossa Tumors

Taoka et al. (2006) were the first to demonstrate the feasibility
of using preoperatively-acquired DTI fiber tractography to
delineate the course of the VII-VIII cranial nerve complex
around a vestibular schwannoma. Since their initial work a
further 21 studies have assessed the effectiveness of generating
cranial nerve tractography in patients with posterior fossa
tumors, the majority of whom had a vestibular schwannoma
(82%). Nearly all studies used a deterministic tractography
approach. Varying numbers of ROIs were used to select the
fiber tracts and different methods of selecting an FA threshold
were employed (Table 3). Overall, the success rate in generating
tractography was extremely variable (0-100% success rate) and
correlation with the surgeon’s finding was also inconsistent (17-
100% accuracy across all studies). However, it is important
to note that failure to generate any fiber tracts was only
demonstrated in one study using standard DTI acquisition
and when Roundy et al. performed higher resolution diffusion
imaging, tractography was successfully generated in all patients
(Roundy et al., 2012). Similarly, a 17% accuracy rate was reported
by Yoshino et al. when standard DTT was used but this increased
to 67% when DTI was combined with multifused CE-FIESTA
images (Yoshino et al, 2015a). Excluding these results, the
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success rate of generating cranial nerve tractography in patients
with a posterior fossa tumor rises to 82-100%, similar to that
reported by Ung et al. in their brief review of the literature
(Ung et al,, 2016); however, intraoperative accuracy remains
inconsistent (30-100%).

In recent years, several groups have attempted to improve the
accuracy of cranial nerve tractography by various means. Wei
et al. described a method of “superselective” tracking whereby
optimal maps only containing bundles of axons with the lowest
density, originating from the brainstem were selected in order to
better delineate the anatomical relationship between the bundle
and surrounding tissues (Wei et al., 2015). Various FA values
were also used to identify the maximal FA value of each fiber.
A similar method was replicated in two recent studies with good
results (Li et al., 2017; Zhang et al., 2017) although this technique
is very time consuming and still does not allow one to specifically
distinguish the facial nerve from within the facial-vestibular (CN
VII-VIII) complex. Furthermore, manual fiber selection and ad-
hoc threshold manipulations are mainly based on investigator
expectation of the anatomical position of the nerve, and as Zolal
et al. highlighted in their recent article (Zolal et al., 2017a),
such a method weakens the claims about reliable cranial nerve
detection.

Two studies used diffusion spectrum imaging to generate
fiber tractography of the cranial nerves (Yoshino et al., 2016;
Zolal et al., 2017a), which is one of a number of more complex
diffusion techniques that has been developed to address some
of the limitations of the diffusion tensor model. DSI requires
many more gradient directions along multiple b-values and a
higher maximum b-value to generate the desired orientation
information and as such is challenging to do in a clinical setting.
Yoshino et al suggested that DSI may have the potential to
distinguish the facial nerve from the vestibulocochlear nerve and
accurately detect cranial nerve position (Yoshino et al., 2016)
although this was not demonstrated in the current study. Zolal
et al. subsequently compared the depiction of cranial nerves
I, III, V, and the VII4+VIII complex using both deterministic
and probabilistic methods in a cohort of 30 healthy subjects
obtained from the Kirby Repository (KR) and HCP databases
(Zolal et al., 2017a). In both instances, for tracking the VII-VIII
complex, ROIs were set at the brainstem and in the internal
auditory meatus. This study confirmed that using diffusion MRI
data with higher angular resolution and overall better quality
led to better depictions of the nerves, confirming the finding
previously reported by Roundy et al. (2012). Yoshino et al first
described this method of gradually increasing the FA threshold
in 2015 in deterministic fiber tracking (Yoshino et al., 2015a)
and similar results were obtained in the studies utilizing DSI.
Probabilistic index of connectivity (PICo maps) were created
for each of the nerves, and to find the optimal probability
threshold, the PICo maps were filtered at threshold values of
0.05-0.95 in steps of 0.05. Zolal et al. concluded that probabilistic
tracking with a gradual PICo threshold increase is more effective
at depicting the cranial nerves than the previously described
deterministic tracking because it eliminates the erroneous fibers
without manual intervention. A small limitation of this method
is the increased computational time required in using the
probabilistic method (30 min per nerve vs. 15 min per nerve for

deterministic tracking) but in our opinion, such a difference is
unlikely to impact clinical use given that image processing and
fiber tractography is rarely required in real-time.

Recently, Behan et al compared three distinct reconstruction
methods to generate tractography of the cranial nerves in patients
with associated posterior fossa tumors, including conventional
diffusion tensor tractography, a two-tensor reconstruction
method (eXtended streamline tractography, XST), and a fiber
orientation distribution-based method (constrained spherical
deconvolution, CSD) (Figure 3) (Behan et al., 2017). They found
that XST and CSD-based reconstruction methods produced more
detailed projections of CN V and CN VII/VII compared to DTI
tractography but CSD-based methods appeared to generate more
invalid streamlines. Consequently, the authors favored using XST
to visualize the cranial nerves in patients with posterior fossa
tumors however a reliable and accurate method to separately
depict the facial nerve in these patients is still required.

In a separate article, Zolal et al. used probabilistic tracking
to generate preoperative tractography of the facial-cochlear
complex in 21 patients undergoing vestibular schwannomas
surgery with the accuracy determined intraoperatively by
surgical inspection and the use of qualitative electrophysiological
monitoring (Zolal et al., 2017a). Preoperative tractography
was accurate in 81% of cases but many of the results
also contained false-positive pathways, typically dorsal to the
tumor. Probabilistic tractography is highly reliant on proper
thresholding to achieve high-quality reconstruction of biological
pathways and, consequently, tend to generate more invalid
fiber bundles compared to deterministic tractography methods
(Maier-Hein et al., 2017). In their study, Zolal et al speculated that
this was because probabilistic tracking preferentially tracks large
axonal bundles which in the case of patients with a vestibular
schwannoma includes the larger vestibulocochlear nerve.

LIMITATIONS

The present systematic review was limited by various factors.
Firstly, given the variety of ways diffusion data was presented
and the small numbers of available studies, it was not possible
to perform a meta-analysis and quantitatively analyse the data
to draw any firm conclusions concerning diffusivity changes
observed in the trigeminal nerve of patients with TN. Secondly,
studies evaluating cranial nerve tractography were of mixed
methodological quality and used a variety of acquisitions,
limiting our discussion to a qualitative report of a small number
of higher quality studies.

CONCLUSION

Current work suggests that fiber tractography has the ability
to delineate the course of individual nerves within the
posterior fossa. Further work is required to incorporate
cranial nerve tractography into the intraoperative workflow
and new avenues of using diffusion MRI should be explored
to optimize and improve its reliability. In particular, new
techniques of delineating the facial nerve from the VII-VIII
complex should be examined and validated with the use of
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quantitative intraoperative electrophysiological measurements.
Diffusion MRI has the potential to inform our understanding
of the microstructural changes that occur within the cranial
nerves in various pathologies and may eventually be able to assist
clinicians to deliver individualized treatment plans.
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