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Background: A growing body of evidence has demonstrated that cerebrovascular
function abnormality plays a key role in occurrence and worsening of Alzheimer’s disease
(AD). Reduction of cerebral blood flow (CBF) is a sensitive marker to early perfusion
deficiencies in AD. As one of the most important therapies in complementary and
alternative medicine, manual acupuncture (MA) has been used in the treatment of AD.
However, the moderating effect of MA on CBF remains largely unknown.

Objective: To investigate the effect of MA on the behavior and CBF of SAMP8 mice.

Methods: SAMP8 mice were randomly divided into the AD, MA, and medicine (M)
groups, with SAMR1 mice used as the normal control (N) group. Mice in the M group
were treated with donepezil hydrochloride at 0.65 µg/g. In the MA group, MA was
applied at Baihui (GV20) and Yintang (GV29) for 20 min. The above treatments were
administered once a day for 15 consecutive days. The Morris water maze and arterial
spin labeling MRI were used to assess spatial learning and memory in behavior and CBF
respectively.

Results: Compared with the AD group, both MA and donepezil significantly decreased
the escape latency (p < 0.01), while also elevating platform crossover number and
the percentage of time and swimming distance in the platform quadrant (p < 0.01 or
p < 0.05). The remarkable improvement in escape latency in the MA group appeared
earlier than the M group, and no significant statistical significance was observed
between the N and MA group with the exception of days 5 and 10. The CBF in the
prefrontal lobe and hippocampus in the MA group was substantially higher than in the
AD group (p < 0.05) with the exception of the right prefrontal lobe, with similar effects
of donepezil.

Conclusion: Manual acupuncture can effectively improve the spatial learning, relearning
and memory abilities of SAMP8 mice. The increase in CBF in the prefrontal lobe and
hippocampus could be an important mechanism for the beneficial cognitive effects of
MA in AD.

Keywords: manual acupuncture, Alzheimer’s disease, behaviors, cerebral blood flow, MRI, hippocampus,
prefrontal lobe, Morris water maze
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease of the
central nervous system characterized by a progressive loss of
memory and cognitive impairment with high prevalence, high
morbidity rate, and substantial medical costs. The main clinical
manifestations include memory disorders, aphasia, apraxia,
agnosia, incapacity for discernment, and changes in personality
and behavior. AD is the most common causes of dementia,
accounting for 70% of patients with dementia (Mayeux and
Stern, 2012; Reitz and Mayeux, 2014). Forty-seven million people
worldwide were living with dementia in 2015, and this number
will reach 74.7 million in 2030. The global costs of dementia have
increased from US$ 604 billion in 2010 to US$ 818 billion in 2015,
an increase of 35.4% (Prince et al., 2015). With aging populations,
the increasing financial and social burdens of AD establish it as a
critically urgent public health concern (Jones et al., 2017).

A growing body of evidence indicates that cerebrovascular
function abnormality plays a key role in the prevalence
and severity of AD, and is also considered as a primary
pathological feature of AD (Mazza et al., 2011; Li et al., 2014;
Lourenco et al., 2017). Neurotoxins and ischemia-hypoxia caused
by blood–brain barrier (BBB) dysfunction and oligemia can
directly induce neuronal injury and synaptic dysfunction and
promote amyloid-β (Aβ) accumulation by elevating amyloid
precursor protein (APP) expression and reducing Aβ clearance,
resulting in a neuroinflammatory response and initiation of
the neurodegenerative process, eventually leading to dementia
(Zlokovic, 2011; Sagare et al., 2012; Nelson et al., 2016). In terms
of cerebral hypo-perfusion, reduction of cerebral blood flow
(CBF) is a sensitive marker for the early perfusion deficiencies of
AD (Lacalle-Aurioles et al., 2014; Mattsson et al., 2014; Wierenga
et al., 2014). The robust association between reduced CBF and
cognitive impairment underscores its critical role in the diagnosis
and monitoring of AD (Hays et al., 2016; Wood, 2016; Leeuwis
et al., 2017). Improving cerebrovascular function has become an
important treatment strategy in AD (Thomason et al., 2013; Acost
et al., 2017).

There are currently no effective medical treatments for AD
(Selkoe, 2012; Hickman et al., 2016). In the decade from 2002
to 2012, the failure rates in clinical trials of AD treatments
approached 100% (Vos et al., 2013). Manual acupuncture (MA),
which is one of the most important alternative complementary
treatments for AD, has positive outcomes due to its economic
efficiency, convenience, and low rate adverse effects (Zhou et al.,
2015). Research has demonstrated that MA can ameliorate
symptoms, and improve the quality of life (Zeng et al., 2013; Jia
et al., 2017; Zhou et al., 2017). In addition, MA has established
benefits in improving sleep quality of patients with AD (Kwok
et al., 2013; Simoncini et al., 2015). Mechanistic studies of
MA have demonstrated that MA can not only affect functional
activities in AD related brain areas (Wang et al., 2012; Tan
et al., 2017; Zheng et al., 2018) and the default mode network
(Liang et al., 2014; Wang et al., 2014a), but can also increase
glucose uptake in the hippocampus (Jiang et al., 2015; Cao et al.,
2017). However, the effects of MA on CBF in AD are unclear.
Considering that CBF plays a central role in the pathogenesis and

development of AD, it is vital to uncover how MA can impact the
regulation of CBF in AD model.

Although the effects of MA on rodent behavior in the Morris
water maze have been initially explored and the benign effects
of MA on spatial learning and memory has been confirmed
(Li et al., 2012; Dong W. et al., 2015; Luo et al., 2017), the
experimental designs of some prior studies possess significant
confounds. While studies have applied hidden platform and
probe trials, reversal and visible platform trials are rarely included
(Li et al., 2014, 2016; Wang et al., 2014b; Zhang et al., 2017).
It is not possible to effectively exclude potential differences in
motivational, visual and motor abilities, which makes it difficult
to support strong conclusions concerning the effectiveness of MA
as a behavioral intervention and compare its effects with drugs
commonly used to treat AD. This limits the ability of these studies
to guide clinical practice and associated mechanistic research.
Therefore, the moderating effect of MA on AD related behavior
in mouse models of AD requires additional study.

The current study explores the effects of MA on learning,
memory, and CBF with the Morris water maze and arterial
spin labeling (ASL) MRI in senescence-accelerated prone mouse
8 (SAMP8) and senescence-accelerated resistant mouse 1
(SAMR1), aiming to assess the interventional efficacy of MA in
AD and provide objective imaging evidence. This is the first time,
to the best of our knowledge, that a study has focused on the
CBF response after MA treatment in AD. Our data represent a
significant contribution to the identification of the effectiveness
of MA in improving cognitive ability and CBF in a mouse model
of AD.

MATERIALS AND METHODS

Experimental Animals
Since age-related impairment in learning is not apparent in
female SAMP8 mice (Flood et al., 1995), male SAMP8 and
SAMR1 mice strains were used. The mouse strains were
purchased from the Zhi Shan (Beijing) Academy of Medical
Science and tested by Chinese Academy of Medical Sciences
[Animal Lot: SCXK(Jing)2014-0011]. Both types of mice weighed
30.0 ± 2.0 g and were 8 months old. The animals were housed
in Experimental Animal Center of Beijing University of Chinese
Medicine at a controlled temperature (24 ± 2◦C) under a 12-
h dark/light cycle, with sterile drinking water and a standard
pellet diet available ad libitum. All mice were acclimatized to the
environment for 7 days prior to experimentation. Efforts were
made to minimize the number of animals used and the suffering
of the experimental animals.

Animal Grouping and Intervention
Thirty SAMP8 mice were divided into three groups (n = 10
per group): the AD group, the MA group, and the medicine (M)
group. Ten SAMR1 mice were used as the normal control (N)
group.

In the MA group, the mice were immobilized in mouse bags.
MA on Baihui (GV20) and Yintang (GV29) was applied for
20 min, with transverse puncturing at a depth of 2–3 mm. The
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disposable sterile acupuncture needles (0.25 mm × 13 mm)
(Beijing Zhongyan Taihe Medicine Company, Ltd.) were used.
During the MA on Baihui (GV20) and Yintang (GV29), twirling
manipulation was applied every 5 min and lasted 15 s each
time. Each needle was rotated bidirectionally within 90◦ at a
speed of 180◦/s. For the M group, donepezil hydrochloride tablets
(Eisai China, Inc., H20050978) were crushed and dissolved in
distilled water and were delivered to mice by oral gavage at a
dose of 0.65 µg/g (Geerts et al., 2005). The above treatments
were administered once a day for 15 consecutive days, with no
treatment of the N or AD groups. The mice in the N, AD, and
M groups received the same 20 min restriction as the MA group.
The duration of MA and selection of the acupoints was based on
findings from our previous studies (Jiang et al., 2015, 2016, 2018;
Cao et al., 2017; Ding et al., 2017). The above intervention lasted
throughout the Morris water maze test period.

The Morris Water Maze Test
At 24 h after the treatments for 15 consecutive days, mice in
each group were used for the Morris water maze test. To assess
learning and memory, the visible platform trial, hidden platform
trial, probe trial and the reversal trial were conducted in order
(Vorhees and Williams, 2006; Wu et al., 2016).

The Morris water maze consisted of a circular tank (diameter:
90 cm; height: 50 cm) filled with water to a depth of 30 cm,
maintained at 24 ± 1◦C, and rendered opaque with black ink.
A removable circular platform (diameter: 9.5 cm; height: 28 cm)
with the top surface 1 cm below the water was located inside
the pool. The maze was designated by two principal axes, each
line bisecting the maze perpendicular to one another. The end
of each line demarcated four cardinal points which were used
for four start locations: North (N), South (S), East (E), and
West (W). The pool area was conceptually divided into four
quadrants (NE, NW, SW, and SE) of equal size. Visual cues of
different shapes were placed on the tank wall of each quadrant
in plain sight of the mice. The experiment room was designed
to maintain sound insulation, with an indirect light source and
a low-light environment, and the remaining objects in this room
were kept in their original locations. The experimental conditions
were unchanged for the duration of the test. The data was
automatically collected by a video camera (TOTA-450d, Japan)
fixed to the ceiling and connected to a video recorder with an
automated tracking system (China Daheng Group, China).

Visible Platform Trial
The visible platform trial was used to exclude the influence of
motivational or sensorimotor factors upon learning and memory
performance on day 1. The platform was located 1 cm above the
water surface in the middle of quadrant, and each mouse was
released from one of four start locations and given 60 s to search
for the visible platform. At the end of each trial, each mouse was
placed on the platform or allowed to stay there for 10 s. Each
animal was subjected to sessions of four trials. Each subsequent
trial involved a different platform location and starting direction.
The time to find the platform was recorded as escape latency,
and the swimming speed was analyzed by EthoVision (3.1.16,
Noldus).

Hidden Platform Trial
The hidden platform trial was performed in order to assess
learning from days 2 to 6. The platform was positioned in the
middle of the SW quadrants. Mice were given a series of daily
trials using a semi-random set of start locations. The four start
locations were used with the restriction that one trial each day
was from each of the four positions. Each mouse was released
from one of four start locations and had 60 s to search for the
hidden platform. At the end of each trial, the mouse was placed
on the platform or allowed to stay there for 10 s, 4 trials per
day were performed for 5 consecutive days, with the visual cues
kept constant. The escape latency was recorded for subsequent
analysis.

Probe Trial
To assess reference memory, the probe trial was conducted on day
7. The platform was removed and each mouse was placed in the
pool once for 60 s. The starting location was the farthest quadrant
from the SW quadrant, the NE quadrant. The swimming distance
in the maze was recorded, and the platform crossover number,
swimming speed, and percentage of the swimming distance in the
platform quadrant were analyzed.

Reversal Trial
To evaluate the reversal learning ability, the reversal trial was
performed from days 8 to 11. The platform was positioned in the
middle of the NE quadrant, and the procedures for the reversal
trial were the same as used in the hidden platform trial.

Arterial Spin Labeling MRI
At 24 h after the Morris water maze, six mice in each group
were randomly selected and used for the ASL MRI. The
magnetic resonance tomograph “PharmaScan” US 70/16, 7.0
T, 300 MHz (Bruker, Ettlingen, Germany) was applied. During
the MRI scanning, mice were anesthetized with isoflurane
(3% for induction, 1–2% for maintenance) mixed with oxygen
(1 L/min), delivered through a nasal mask. Respiration rate was
monitored using an SA Instruments Model 1025 monitoring and
gating system (Stony Brook, NY, United States) and maintained
throughout the experimental period at 50–70 breaths per min
by adjusting isoflurane levels. Body temperature was maintained
at approximately 37◦C using a circulating water system (SC100-
S14P, Thermo Scientific).

The T2WI images were acquired with fast spin-echo
pulse sequence, repetition time (TR) = 3930 ms, echo
time (TE) = 35 ms, image size = 256 × 256, field of
view (FOV) = 20 min × 20 mm. The CBF images were
obtained from continuous ASL with echo-planar imaging
fluid-attenuated inversion recovery (EPI-FLAIR) sequences.
Acquisition parameters were TR/TE = 10000/79 ms, image
size = 256 × 256, FOV = 20 mm × 20 mm. The CBF images
were reconstructed with paravision version 5.1 software (Bruker,
PharmaScan, Germany). The bilateral CBF of the prefrontal
lobe and hippocampus were calculated and compared between
groups.
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Statistical Analysis
The statistical analysis was performed using the SPSS software,
version 17.0 (SPSS, Inc., Chicago, IL, United States), and the
data were expressed as the mean ± standard deviation. Two-
way ANOVA with repeated measures was used to analyze
group differences in the escape latency. A one-way ANOVA
followed by LSD multiple-range test was used to analyze group
differences in the visible platform, probe trial and CBF. For the
non-normally distributed data or for data with heterogeneous
variance, a Kruskal–Wallis test was used. Statistical significance
was set to p < 0.05 and high statistical significance was set to
p < 0.01.

RESULTS

Effect of MA on Spatial Learning
The results of the visible platform, hidden platform, and reversal
trial in the Morris water maze test are presented in Figure 1. In
the visible platform trial, there were no significant differences
in the escape latency or swimming speed among the groups.
In the hidden platform and reversal trial, the escape latency
of the N, MA, and M groups decreased gradually, but the AD
group maintained a long latency. There were no significant
group differences in the escape latency on day 2. Compared with
the N group, the escape latency in the AD group significantly
increased from days 3–6 to 8–11 (p < 0.01). The escape latency
in the MA and M groups were notably lower than the N group
on days 5 and 10 and from days 3–6 to 8–11, respectively
(p < 0.01 or p < 0.05). Compared with the AD group, the
escape latency in the MA and M groups were substantially
decreased from days 3–6 to 8–11 and from days 5–6 to 9–
11, respectively (p < 0.01). There were no significant group
differences in the swimming speed in the hidden platform and
reversal trial.

Effect of MA on Spatial Memory
The results of the probe trial in the Morris water maze test
are presented in Figure 2. The platform crossover number
and the percentage of time and swimming distance in the
SW quadrant in the AD group was significantly lower than
in the N group (p < 0.01), and the percentage of time
and swimming distance in the NE quadrant were significantly
increased (p < 0.01). The platform crossover number, the
percentage of time and swimming distance in the SW quadrant
in the MA and M groups were higher compared to the AD
group (p < 0.01 or p < 0.05), whereas the platform crossover
frequency was still lower than the N group (p < 0.01).
The percentage of time and swimming distance in the NE
quadrant in the MA and M groups were significantly lower
than the AD group (p < 0.01). No significant difference on
the swimming speed among the groups was observed. As for
search strategy, swimming activity was mostly concentrated in
the SW quadrant in the N, MA, and M group. In contrast,
the swimming activity of the AD group was mostly in the NE
quadrant.

The Effect of MA on CBF of Prefrontal
Lobe and Hippocampus
The effect of MA on CBF in the prefrontal lobe and hippocampus
are presented in Figures 3, 4. The bilateral CBF of the prefrontal
lobe and hippocampus in the AD group was significantly lower
compared to the N group (p < 0.01). Compared with the AD
group, bilateral CBF of the prefrontal lobe and hippocampus was
increased in the MA and M groups (p < 0.01 or p < 0.05), yet
levels in these groups were still substantially lower compared to
the N group (p < 0.01 or p < 0.05). There was no significant
difference in the CBF of the right prefrontal lobe between the MA
and AD groups.

DISCUSSION

As the classic behavioral experiment and de-facto standard for
testing hippocampal function in laboratory rodents, the Morris
water maze can effectively and objectively evaluate learning and
memory ability (Garthe and Kempermann, 2013). The Morris
water maze has advantages such as minimal training, a lack of
food deprivation, insensitivity to differences in body weight and
appetite, and repeated testing ability (Vorhees and Williams,
2014), and has been widely used in behavior testing related
to learning and memory in a broad range of neurobiology
topics. The results of the visible platform in this study indicate
an absence of differences in escape latency and swimming
speed among groups, supporting the presence of the identical
motivational, visual and motor abilities in the N, AD, MA, and
M groups. Also, no significant group differences in swimming
speeds in hidden platform, probe and reversal trial were noted.
Potential behavioral confounds of differences in the motivational,
visual and motor abilities of groups can be excluded.

The results of the hidden platform, probe trial and reversal
trial tests suggest that the escape latency in the AD group was
significantly longer than the N group from days 3 to 6 and from
days 8 to 11 (p < 0.01), whereas the platform crossover number,
percentage of time, and swimming distance in the SW quadrant
were decreased (p < 0.01). The results indicate a remarkable
decline in learning and memory ability in the AD group, in
agreement with the typical pathological progression AD. It
is worth noting that both percentage of time and swimming
distance in the SW quadrant in the AD group were approximately
20%, which is consistent with a previous study (Wang et al.,
2013). The reason for the variable distribution across the four
quadrants was related to the preference of AD group, which was
confirmed by the swimming activity in this group. The percentage
of the time and swimming distance in the NE quadrant in the
AD group were both higher compared to the N group (p < 0.01),
demonstrating impaired learning and memory abilities in the AD
group.

Both MA and donepezil significantly decreased the escape
latency and increased platform crossover number and percentage
of time and swimming distance in the SW quadrant (p < 0.01
or p < 0.05), indicating improvements in learning, memory and
reversal learning ability with MA which were equal to donepezil.
However, it should be noted that the specific effects of MA
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FIGURE 1 | The results of the visible platform, hidden platform, and reversal trial in each group (n = 10, mean ± SD). (A,B) Comparison of the escape latency and
swimming speed of all groups in the visible platform. One-way ANOVA was used. (C) Comparison of the escape latency of all groups in the hidden platform and
reversal trial. Two-way ANOVA with repeated measures was used. LSD-t was presented in Supplementary Tables 1, 2. (D) Comparison of the swimming speed of
all groups in the hidden platform and reversal trial. Two-way ANOVA with repeated measures was used. ♦♦P < 0.01, ♦P < 0.05 compared with the N group.
��P < 0.01 compared with the AD group.

differed compared to donepezil. In the hidden platform and
reversal trials, the significant decrease in escape latency in the
MA group occurred from days 3–6 to 8–11 (p < 0.01). Similar
changes were observed in the M group on days 5–6 to 9–11
(p < 0.01). Additionally, there were no significant differences in
escape latency between the N and MA groups with the exception

of days 5 and 10 (p < 0.01 or p < 0.05), and decreases in escape
latency between the N and M groups were observed from days
3–6 to 8–11 (p < 0.01 or p < 0.05). These results suggest that MA
tends to have a greater effect in improving spatial learning ability,
and presents therapeutic advantages of high efficacy. Considering
the other advantages of MA, including economic feasibility and

Frontiers in Neuroscience | www.frontiersin.org 5 January 2019 | Volume 13 | Article 37

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00037 January 29, 2019 Time: 16:59 # 6

Ding et al. Acupuncture Regulates Cerebral Blood Flow

FIGURE 2 | The results of the probe trial in each group (n = 10, mean ± SD). (A) Comparison of the platform crossover numbers of all groups. (B,C) Comparison of
the percentage of time and swimming distances in the SW quadrant of all groups. (D,E) Comparison of the percentage of time and swimming distances in the NE
quadrant of all groups. (F) Comparison of the swimming speed of all groups. (G–J) Swimming trajectories in the N, AD, MA and M groups, the water entry points
were shown by black square. One-way ANOVA followed by LSD multiple-range test was used except in the comparison of the platform crossover numbers, which
were analyzed by Kruskal–Wallis test. ∗p represents the post hoc analysis. ##p < 0.01.

FIGURE 3 | The results of the arterial spin labeling (ASL) MRI. (A) Perfusion FAIR-RARE images. (B) CBF images. The bilateral hippocampus and prefrontal lobe are
shown by red and green ellipses, respectively.

low risk of adverse effects, additional studies of the effects of MA
on AD should be encouraged.

The different pattern in improving spatial learning ability
may be attributed to the characteristics of multiple targets

of MA. The primary mechanism of donepezil is inhibiting
acetylcholinesterase activity. In contrast, the effects of MA on
AD involve multiple mechanisms, including anti-inflammatory
(Ding et al., 2017), anti-apoptotic (Guo et al., 2015, 2016),
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FIGURE 4 | The comparison of the CBF of all groups (n = 10, mean ± SD). (A,B) The bilateral prefrontal lobe. (C,D) The bilateral hippocampus. One-way ANOVA
followed by LSD multiple-range test was used except in the comparison of the left prefrontal lobe, which were analyzed by Kruskal–Wallis test. ∗p represents the
post hoc analysis. ##p < 0.01.

anti-antioxidant stress (Liu et al., 2013; Sutalangka et al., 2013),
and the regulation of Aβ production (Dong W.G. et al., 2015).
The multiple targets of MA may explain the difference with
donepezil in improving learning ability, and this characteristic
addresses the need for multi-modal therapies for AD (Ubhi and
Masliah, 2013). In general, the Morris water maze data in this
study further confirmed the efficacy and reliability of MA in
treating AD. The technical details, such as acupoints selection
and manipulation and arrangement of treatment provide valid
references for the clinical researchers.

The MRI results indicate that the CBF in prefrontal lobe
and hippocampus in the AD group was significantly lower
than the N group (p < 0.01), which parallel the pathological
changes in CBF in AD. This study, for the first time to
the best of our knowledge, confirmed that MA can increase
CBF in the prefrontal lobe and hippocampus (p < 0.01 or
p < 0.05). This effect of MA on CBF was equivalent to
donepezil, and the effect of donepezil on CBF reported in
this study is consistent with previous reports (Shimizu et al.,
2015; Iizuka and Kameyama, 2017). The prefrontal lobe and
hippocampus are necessary for spatial learning and memory,
and the hippocampus is the primary substrate of spatial
memory abilities and necessary for acquisition, retrieval and
consolidation/storage of spatial information (D’Hooge and De
Deyn, 2001; Curlik et al., 2014). The prefrontal-hippocampal

circuit comprises the major navigation system in the rodent
brain, where interconnections between the prefrontal cortex and
dorsal striatum are more important for motivational or goal-
directed aspects of spatial learning (Pooters et al., 2015). As
we mentioned above, a decrease in CBF can directly cause
ischemia and anoxia of the brain, resulting in neural injuries,
neurological disorders, and initiating the neurodegenerative
process. Therefore, we speculate that MA can protect against
neuronal damage, delay the process of neurodegeneration, and
maintain the structural and functional integrity of cognition
related brain regions through enhanced CBF in the prefrontal
lobe and hippocampus. Improving hemoperfusion of the brain
could be one important mechanism for the effects of MA
in AD.

As for potential mechanisms for how MA affects CBF,
although the mechanism of decreased CBF has not been fully
elucidated in AD, it was reported that structural and functional
impairment of the cerebral microvasculature is involved (Dorr
et al., 2012; Kimbrough et al., 2015). Therefore, the benign
regulation of CBF by MA may be mediated through protective
effects on cerebrovascular structure and function. Moreover,
several studies have confirmed that Aβ deposition is a significant
cause of cerebrovascular damage in AD (Hamel, 2015; Lai
et al., 2015; Giannoni et al., 2016; Hecht et al., 2018). Our
previous study also indicated that acupuncture can decrease the
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expression of Aβ and improve its clearance in the hippocampus
and prefrontal lobe (Jiang et al., 2016; Wang et al., 2016).
Therefore, we speculate that the benign regulation of CBF
by MA was achieved via alleviation of the cerebrovascular
impairment induced by Aβ. The effects of MA on Aβ-mediated
impairment in cerebral microvasculature and CBF deserve
further exploration.

It is worth noting that the CBF in the prefrontal lobes and
hippocampus in the MA and M groups were still significantly
lower than the N group (p < 0.01 or p < 0.05) despite
the improvements compared to the AD group (p < 0.01 or
p < 0.05). Researches showed that SAMP8 mice present age-
related deterioration in behavior, physiology, neuropathology,
and neurochemistry (Takeda, 2009). These mice exhibit Aβ

deposition in the hippocampus as early as 6 months that
progresses with age. In contrast, this process does not start in
SAMR1 mice until 15 months (Del Valle et al., 2010). Thus, we
speculate that the limited beneficial effects of MA and donepezil
on CBF are due to the advanced age of SAMP8 mice in this
study, suggesting that AD treatment should be initiated at an
early stage.

This study has some limitations in the following areas. Firstly,
there is a need for the optimization of MA in future studies,
especially with respect to intervention time and duration. The
limited effect of MA on CBF in this study suggests that early and
longer interventions are necessary. In addition, a larger sample
size and repeated behavioral measure before and after MA should
be considered for future studies. Due to the different patterns
of MA and donepezil in improving spatial learning ability in
this study, more work needs to be devoted to confirming and
clarifying the characteristics of the beneficial effects of MA in
treating AD.

In summary, this study reported the beneficial effects
of MA on spatial learning, reversal learning, and memory
in SAMP8 mice. These effects of MA were equivalent to
donepezil and present therapeutic advantages of high efficacy.
We confirmed, for the first time to the best of our knowledge,
that MA can effectively enhance CBF in the prefrontal lobes
and hippocampus. The potential protective effects of MA
on Aβ-mediated cerebrovascular impairment deserve further
exploration.
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