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A brain-computer interface (BCI) translates brain signals into commands for the control

of devices and for communication. BCIs enable persons with disabilities to communicate

externally. Positive and negative affective sounds have been introduced to P300-based

BCIs; however, how the degree of valence (e.g., very positive or positive) influences the

BCI has not been investigated. To further examine the influence of affective sounds in

P300-based BCIs, we applied sounds with five degrees of valence to the P300-based

BCI. The sound valence ranged from very negative to very positive, as determined by

Scheffe’s method. The effect of sound valence on the BCI was evaluated by waveform

analyses, followed by the evaluation of offline stimulus-wise classification accuracy. As a

result, the late component of P300 showed significantly higher point-biserial correlation

coefficients in response to very positive and very negative sounds than in response to

the other sounds. The offline stimulus-wise classification accuracy was estimated from a

region-of-interest. The analysis showed that the very negative sound achieved the highest

accuracy and the very positive sound achieved the second highest accuracy, suggesting

that the very positive sound and the very negative sound may be required to improve

the accuracy.

Keywords: BCI, BMI, P300, EEG, affective stimulus

1. INTRODUCTION

A brain-computer interface (BCI), also referred to as a brain-machine interface (BMI), translates
human brain signals into commands that can be used to control assistive devices or communicate
externally with others (Wolpaw et al., 2000, 2002). For instance, BCIs are used to help persons
with disabilities interact with the external world (Birbaumer and Cohen, 2007). BCIs decode
brain signals obtained by invasive measurements such as electrocorticography or by non-invasive
measurements such as scalp electroencephalography (EEG) (Pfurtscheller et al., 2008). One of the
most successful BCIs utilizes EEG signals in response to stimuli – i.e., event-related potentials
(ERPs). In particular, when a subject discriminates a rarely encountered stimulus from a frequently
encountered stimulus, the ERP elicits a positive peak at around 300 ms from stimulus onset; this
peak is named the P300 component. ERPs with P300 have been applied to BCIs, and such a system
is called a P300-based BCI (Farwell and Donchin, 1988).

Early studies of the P300-based BCI commonly used visual stimuli. For instance, Farwell and
Donchin (1988) proposed a visual P300-based BCI speller that intensified letters in a 6 × 6 matrix
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by row or by column (row-column paradigm). Townsend et al.
(2010) proposed an improved P300 speller that highlighted letters
in randomized flashing patterns derived from a checkerboard,
which was called the checkerboard paradigm. Ikegami et al.
(2014) developed a region-based two-step P300 speller that could
use the Japanese Hiragana syllable, and took advantage of a
green/blue flicker and region selection. In addition, facial images
(e.g., famous faces and smiling faces) were applied to visual
P300-based BCIs, which resulted in innovative improvement
(Kaufmann et al., 2011; Jin et al., 2012, 2014). Although visual
P300-based BCIs have been improved, and have shown to be
effective in clinical studies, they still depend on the eye condition
and can be affected by whether the eyes are open or closed,
limited eye gaze, or limited sight. Therefore, it is important that
other sensory modalities be studied and improved upon.

In addition to visual stimuli, other modalities, for example
auditory stimuli, have been studied. In an early study of auditory
P300-based BCIs, auditory stimuli, such as the sound of the word
“yes,” “no,” “pass,” and “end” were assessed in a BCI developed by
Sellers and Donchin (2006). Klobassa et al. (2009) examined the
use of bell, bass, ring, thud, chord, and buzz sounds. Moreover,
by pairing numbers with letters using a visual support matrix,
Furdea et al. (2009) succeeded in spelling letters by counting
audibly pronounced numbers. In addition, beep sounds were
used as auditory stimuli and the effects of pitch, duration, and
sound source direction were assessed by Halder et al. (2010).
Höhne et al. (2010) developed a two-dimensional BCI that varied
in sound pitch and location of sound source. Although the
auditory BCI is advantageous because it is independent of eye
gaze, auditory BCIs have shown worse performance than visual
BCIs in several studies (Sellers and Donchin, 2006; Wang et al.,
2015), and it is clear that improvements to the auditory BCI are
required. Thus, we focused on improving auditory stimuli for
BCIs in the current study.

The auditory P300-based BCI can be improved by using
sophisticated stimuli. Schreuder et al. (2010) demonstrated that
presenting sounds from five speakers in different locations
resulted in better BCI performance than that obtained using
a single speaker. Additionally, Höhne et al. (2012) evaluated
spoken or sung syllables as natural auditory stimuli, and
compared to the artificial tones, found that the use of
natural stimuli improved the users’ ergonomic ratings and the
classification performance of the BCI. Simon et al. (2014) also
applied natural stimuli of animal sounds. Guo et al. (2010)
employed sound involving spatial and gender properties together
with discriminating properties of sounds (active mental task),
which served to enhance the late positive component (LPC) and
N2. Recently, Huang et al. (2018) explored the use of dripping
sounds and found that the BCI classification accuracy was higher
than when beeping sounds were used. We previously applied
sounds with two degrees of valence (positive and negative) to the
auditory P300-based BCI (Onishi et al., 2017). We confirmed the
enhancement of the late component of P300 in response to those
stimuli. However, how degrees of valence (e.g., very positive or
positive) influence the P300-based BCI remains unknown.

This study aimed to clarify how degrees of valence in
sounds influence the auditory P300-based BCIs. Five sounds with

different degrees of valence were applied to the P300-based BCI:
very negative, negative, neutral, positive, and very positive. We
hypothesized that the valence should exceed a certain degree
because the amplitude of P300 was not in proportion to the
emotion (Steinbeis et al., 2006). Since the auditory P300 BCI
requires a larger amount of training data, and can cause fatigue
when applied to the BCI separately, we applied these sounds to
the BCI together. The influence caused by the sound valences
was then analyzed offline with cross-validation. To confirm
the valence of those sounds, the Scheffe’s method of paired
comparison was applied. We also performed a waveform analysis
using the point-biserial correlation coefficient to reveal ERP
components that contributed to the classification. Based on the
waveform analysis, a region-of-interest (ROI) was identified,
and then specially designed cross-validation was performed to
estimate offline stimulus-wise classification accuracy. The online
performance of the BCI and its preliminary feature extraction
process has previously been demonstrated; however, the effect of
these affective sounds was not evaluated (Onishi and Nakagawa,
2018). Therefore, in the current study, the influence of affective
auditory stimuli on the BCI was evaluated based on the waveform
analysis and the stimulus-wise classification accuracy. In contrast
to our previous study (Onishi et al., 2017), which revealed
whether affective sound is effective to the BCI, the current study
aimed to clarify how degrees of valence influence the BCI. The
name of the late component seen in our previous study (Onishi
et al., 2017) is not consistent within the literature; P300, P3b,
P600, late positive component, or late positive complex are used
(Finnigan et al., 2002). In the current study, we used the term late
component of P300 in reference to those ERP components.

2. METHODS

2.1. Subjects
Eighteen healthy subjects aged 20.6 ± 0.8 (9 females and 9
males) participated in this study. All participants were right-
handed as assessed by the Japanese version of the Edinburgh
Handedness Inventory (Oldfield, 1971). All subjects gave written
informed consent before the experiment. This experiment was
approved by the Internal Ethics Committee at Chiba University
and conducted in accordance with the approved guidelines.

2.2. Stimuli
Five cat sounds, representing five different valences (very
negative, negative, neutral, positive, and very positive), were
prepared. Sounds were cut to 500 ms, then rises and falls of
the sounds were linearly faded in and out. The root-mean-
square of each sound was equalized. Detailed conditions of sound
processing were presented in Table 1. The sound was emitted
through ATH-M20x headphones (Audio-Technica Co., Japan)
via audio interface UCA222 (Behringer GmbH, Germany).

Degrees of valence for these sounds were rated and verified
using Ura’s variation of the Scheffe’s method (Scheffé, 1952;
Nagasawa, 2002). We used this method instead of visual analog
scale because it provides more reliable ratings using the paired
comparison of sounds. Specifically, a computer first randomly
selected two sounds (sounds A and B) out of the five sounds.
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TABLE 1 | Properties of affective sounds.

No. Valence

label

Sound name Source Trimming

sample

1 Very negative cat-fight http://taira-komori.jpn.org/ 64,910

2 Negative Cat_Meowing_2-

Mr_Smith-780889994

http://soundbible.com/ 12,000

3 Neutral cat6 http://pocket-se.info/ 2,769

4 Positive catvoice http://taira-komori.jpn.org/ 882

5 Very positive kitty http://pocket-se.info/ 112

Second, a subject listened to sound A, and then sound B, only
once. After listening to sounds A and B, the subject rated which
sounded more positive by reporting ±3 (+3: B is very positive,
0: neutral, −3: very negative). Participants answered the degrees
of valence for a total of 20 sound pairs. The degrees of valence
were statistically tested using the analysis of variance (ANOVA).
The ANOVA was modeled for Ura’s variation of the Scheffe’s
method, which contains factors of the average of ratings, the
individual difference of the ratings, the combination effect, the
average of the order effect, and the individual difference of the
order effect. Note that the main objective is to reveal the main
effect of the averaged ratings, and the others are optional factors.
See more detail in (Nagasawa, 2002). The analysis was followed
by a comparison of the differences of ratings between each pair
using a 99% confidence interval.

2.3. EEG Recording
EEG signals were recorded using MEB-2312 (Nihon-Kohden,
Japan). EEG electrodes were placed at C3, Cz, C4, P3, Pz, P4,
O1, and O2 (Onishi et al., 2017) according to the international
10–20 system. The ground electrode was at the forehead and the
reference electrodes were at the mastoids. A hardware bandpass
filter (0.1–50 Hz) and a notch filter (50 Hz) were applied by the
EEG system. The EEG was digitized using a USB-6341 (National
Instruments Inc., USA). The sampling rate of the EEG analysis
was 256 Hz. Data acquisition, stimulation, and signal processing
were completed using MATLAB (Mathworks Inc., USA).

The experiment consisted of a training part and a testing
part (see Figure 1). Each part contained five sessions. In each
session, participants completed five runs. At the beginning of the
run, participants were instructed to silently count the number
of occurrences of a particular target sound, which was emitted
in sequence with other non-target sounds (see Figure 2). Five
sounds were then provided in pseudo-random order and each
stimulus was repeated 10 times. The stimulus onset asynchrony
was 500 ms. EEG signals were recorded during the task. In
the testing sessions, outputs were estimated by analyzing EEG
signals, and the output was fed back to the subject. For calculating
the feedback, smoothing (4 sample window), Savitzky-Golay
filter (5th order, 81 sample window), and downsampling (64
Hz) were applied before the classification by the stepwise linear
discriminant analysis (SWLDA) (Krusienski et al., 2006). The
online classification accuracy was 84.1% (Onishi and Nakagawa,
2018). Between sessions, subjects were asked to take a rest for a

FIGURE 1 | Structure of the experiment. EEG data were recorded during the

training and testing parts. Each part consisted of five sessions. In every

session, five runs were conducted. Participants were asked to select a sound

during a run (see Figure 2).

FIGURE 2 | Procedure and the mental task used during a run. The BCI

system first asks the participant to count the appearance of a sound (e.g., 2:

negative cat sound). All five sounds are then presented in a pseudo-random

order. Participants are required to count silently when the designated sound is

emitted. At the end of the run, the system estimates which sound was

counted based on the EEG signal recorded during the task. The estimated

output was fed back to the subject only in the test runs.

few minutes (depending on tiredness). Each sound was selected
as a target once in every session. To avoid the effect of tiredness,
we applied five sounds together to the BCI, then effects of
valences were analyzed offline.

2.4. Waveform Analysis
Averaged ERP waveforms for each sound were estimated from
the ERP data recorded during the training and testing runs
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during which a sound was set as the target. The non-target
averaged waveforms for each sound were also estimated. All data
were preprocessed by applying the baseline removal estimated
from –100 to 0 ms waveforms; a software bandpass filter
(Butterworth, 6th order, 0.1–20 Hz) was also applied. ERPs that
exceeded 80µV were removed.

In order to reveal which ERP components contributed to the
EEG classification, the point-biserial correlation coefficients (r2

values) were estimated (Tate, 1954; Blankertz et al., 2011; Onishi
et al., 2017). The point-biserial correlation coefficient is defined
as follows:

r : =
√
N2 · N1

N2 + N1

µ2 − µ1

σ
, (1)

where N2 and N1 indicate the number of data in target (2) and
non-target (1) classes, µ2 and µ1 are the mean value of target
and non-target, and the σ denotes the standard deviation of a
sample in a channel. The point-biserial correlation coefficient is
equivalent to Pearson correlation between the amplitude of the
ERP (continuous measured variable) and classes (dichotomous
variable). The squared r (r2) was used for the waveform analysis.
It becomes higher as the difference of mean values between
classes is larger and the standard deviation is smaller.We used the
method instead of traditional ERP component statistics because
it provides rich spatio-temporal information. The r2 values were
evaluated using a test of no correlation and p values were
corrected using Bonferroni’s method. If the r2 value was not
significant, the value was presented as a zero.

2.5. Classification
The offline stimulus-wise classification accuracy (Onishi et al.,
2017) was computed using stimulus-wise leave-one-out cross-
validation (LOOCV). First, training and testing runs, in which
a sound was designated as a target, were selected from all 50
runs. Therefore, ten runs were selected in total by the procedure.
Second, one run was selected as a testing run and the others as
training runs. Third, a supervised classifier was trained on the
ERP data during the training runs and then the test data were
classified as correct or incorrect. The above two processes were
repeated for all 10 runs. The classification accuracy for a sound
was calculated as the percentage of correct answers during the 10
runs. We employed this LOOCV to evaluate the influence of each
stimulus from the limited amount of data.

We applied baseline removal estimated from –100 to 0 ms
waveforms and a software bandpass filter (Butterworth, 6th order,
0.1–20 Hz). They were not downsampled in order to compare the
results of waveform analysis and classification. Then they were
vectorized before applying classification. We used the SWLDA
classifier (Krusienski et al., 2006). In summary, given the weight
vector of SWLDA w and the preprocessed EEG data of i-th
stimulus number in s-th stimulus sequence (repetition) xs,i, the
output î can be estimated as

î = arg max
i∈I

S∑

s=1

w · xs,i, (2)

where S ∈ {1, 2, ..., 10} denotes the maximum number of stimuli
used during the offline analysis, and I ∈ {1, 2, ..., 5} indicates the
list of stimulus numbers (see Table 1). The offline stimulus-wise
classification accuracy was calculated #correct runs/#total runs
fixing S. The thresholds of the stepwise method were pin =
0.1 and pout = 0.15. Training data that exceeded 80µV were
removed. Testing data that showed over 80µV amplitude were
set to zero to reduce the influence of outliers. The stimulus-
wise classification accuracy was statistically tested by the two-way
repeated-measures ANOVA, where the factors are the type of
stimulus and the number of stimulus sequences (repetitions).

To identify how the components seen in the waveform
analysis contributed to the classification, we calculated the
stimulus-wise classification accuracy by applying a ROI. The
ROI analysis is especially used in fMRI studies to clarify which
area of the brain was activated (Brett et al., 2002; Poldrack,
2007). Since ERP studies focus on ERP components spread
over channels, spatio-temporal ROI selection was applied in this
study. Specifically, the ROI in this study was set to C3, Cz, and
C4 in the 400–700 ms. The effect caused by the ROI was the
same among comparison conditions. The similar analysis has
been applied in P300-based BCI studies to reveal the effect of
ERP components (Guo et al., 2010; Brunner et al., 2011). We
decided to apply the ROI to reveal the effect of sound valence in
response to results of waveform analysis because the automatic
feature selection does not ensure which component to select and
cannot support the conclusion.

3. RESULTS

3.1. Subjective Reports
Since the valences of the selected sounds were not confirmed,
their valences were verified using Ura’s variation of Scheffe’s
method. Figure 3 shows the valence of each sound. Valences
of stimulus 1 to 5 in Table 1 were rated –1.48, –0.72, 0.20,
0.75, and 1.24, respectively. The rated valence was analyzed
by the ANOVA. It revealed the significant main effects of the
average of ratings, the individual difference of the ratings, and
the combination effects (p < 0.01). No significant main effect
was seen in factors of the average of order effect (p = 0.074)
and the individual difference of the order effect (p = 0.509).
Table 2 shows the 99% confidence intervals of valence estimated
by Scheffe method. Since any pairs do not contain zero between
upper and lower limits, all valence scores were significantly
different from each other (p < 0.01, see Table 1). The result
implies that the valences of the sounds were labeled properly, and
they were distributed so that they are different from each other.

3.2. Waveform Analysis
The valence of the affective sounds modulated the late
component of the P300 amplitude with respect to valence.
Figure 4 shows the averaged target and nontarget ERP
waveforms obtained at Cz for each sound (waveforms for
all channels were also presented in Figures S1–S5). The peak
amplitude of the component was lowest in the neutral auditory
stimulus (stimulus 3), while the peak was greatest for very
negative and very positive auditory stimuli (stimulus 1 and 5,
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FIGURE 3 | The degree of valence was measured using the Scheffe’s method.

Arrows numbered 1–5 indicate affective scale values for each sound.

TABLE 2 | The 99% confidence intervals of valence estimated by Scheffe method.

Stimulus pair Lower limit Upper limit

1, 2 –1.00 –0.76

1, 3 –1.93 –1.68

1, 4 –2.47 –2.23

1, 5 –2.97 –2.72

2, 3 –1.17 –0.93

2, 4 –1.72 –1.47

2, 5 –2.21 –1.97

3, 4 –0.79 –0.54

3, 5 –1.28 –1.04

4, 5 –0.74 –0.49

FIGURE 4 | Grand-averaged ERPs for each stimulus recorded from Cz.

respectively). To know the contribution to the classification and
the statistical analysis, the point-biserial correlation coefficient
analysis was applied.

The point-biserial correlation coefficients (r2 values) provided
in Figure 5 indicate how each auditory stimulus in a channel
contributes to the classification. A test of no correlation was
applied to each value, then the r2 values were set to zero if the
point-biserial correlation was insignificant. The r2 values increase
around channels C3, Cz, and C4 at approximately 400–700 ms,
which corresponds to the late component of P300 (Figure 4).

FIGURE 5 | Contribution of each feature to the classification accuracy. This

contribution was estimated based on r2 values.

FIGURE 6 | Offline stimulus-wise classification accuracy and standard error for

each auditory stimulus. These were calculated based on ERP data in the ROI

(400–700 ms in C3, Cz, and C4). The number of stimulus sequences

(repetitions) was fixed to 10 times.

3.3. Stimulus-Wise Classification Accuracy
The ROI for the classification was set to C3, Cz, and C4
in the 400–700 ms since the r2 values indicated obvious
changes induced by auditory stimuli. Figure 6 shows the
stimulus-wise classification accuracy for each sound when the
auditory stimuli were each presented 10 times. We found that
the very negative sound demonstrated the highest accuracy,
the very positive sound demonstrated the second highest
accuracy, and the positive sound demonstrated the lowest
accuracy. Figure 7 represents the classification accuracy for all
10 stimulus sequences. Two-way repeated-measures ANOVA
revealed significant main effects of type of stimulus [F(4,68) =
2.82, p < 0.05] and the number of stimulus sequences [F(9,153) =
48.24, p < 0.001]. The post-hoc pairwise t-test revealed that
the very negative sound demonstrated the highest accuracy (p <

0.001), and the very positive sound showed higher accuracy than
the positive sound (p < 0.01). In summary, the very negative
sound or the very positive sound showed high accuracy.

4. DISCUSSION

To clarify how degrees of valence influence the auditory P300-
based BCIs, we applied five affective sounds to an auditory P300-
based BCI: very negative, negative, neutral, positive, and very
positive. Those sounds had significantly different valence from
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FIGURE 7 | Offline stimulus-wise classification accuracy in 1–10 sequences

using a fixed ROI.

each other. ERP analysis revealed that the very negative and very
positive sounds showed high r2 values or the late components of
P300. The very negative sound demonstrated significantly higher
stimulus-wise classification accuracy than the other sounds. The
very positive sound demonstrated the second highest accuracy,
which was significantly higher than the positive sound. These
results suggest that highly negative or highly positive affective
sounds improve the accuracy. As hypothesized, a certain degree
of valence is required to influence the BCI.

Our findings show that the very positive sound improved
the stimulus-wise classification accuracy, which is in line with
our previous study (Onishi et al., 2017). Additionally, we
also demonstrated that the very negative sound improved this
accuracy. In our previous study, the negative sound and its
control demonstrated similar scores on the affective degree
of valence, and therefore, no accuracy difference was found.
Considering that these two sounds were scored as negative on the
valence scale, the results of the current study is consistent with
our previous findings.

This study included only one sound for each valence in
order to minimize the variance caused by sounds, and to avoid
fatigue. This implies that the results may be sound-specific due
to the physical properties of sounds. However, it is unlikely that
the effect of affective valence was sound-specific given that the
stimuli used in this study were different from those used in our
previous study (Onishi et al., 2017). Though different physical
properties of sounds were evaluated in those two studies, the
results obtained were consistent. Moreover, the P300 amplitude

is known to vary with emotional value, which further validates
our findings (Johnson, 1988; Kok, 2001).

This study demonstrated that the r2 values for the late
components of P300 displayed by the very positive or very
negative sounds were highest around 400–700 ms and centered
around the Cz channel. These results were not a simple response
to the modality. Wang et al. (2015) examined the r2 values
associated with simple visual gray-white number intensification
pronounced number sound, and their combination, and found
that the auditory stimuli showed significant r2 values in fronto-
cortical brain regions between 250 and 400 ms, which contradicts
our results, while their visual stimuli enhanced the r2 values
mainly around the occipital and parietal brain regions between
300 and 400 ms. Furthermore, they reported that auditory
and visual stimuli combined enhanced r2 values in the large
area including parietal area around 300–450 ms. A variety
of sounds have been assessed by the point-biserial correlation
coefficient. The r2 values elicited by drums, bass, and keyboard
sounds were high within the occipital, parietal, and vertex
brain regions between 300 and 600 ms (Treder et al., 2014).
Dripping sounds showed Cz channel activity with r2 values
of the P300 (250 to 400 ms) greater than those elicited by
beeping sounds (Huang et al., 2018). Japanese vowels, on the
other hand, elicited Cz channel activity centered on r2 values,
although different vowels were not presented (Chang et al.,
2013). These studies imply that the r2 values of non-affective
auditory BCIs were different from that of affective auditory BCIs.
A facial image study demonstrated that upright and inverted
facial images resulted in an early peak of r2 values around 200
ms, although a salient peak was not found for upright facial
images (Zhang et al., 2012). A few studies have analyzed affective
stimuli using the point-biserial correlation coefficient. One such
study analyzed emotional facial images and found large r2 values
at around 400–700 ms, which is also referred to as the late
component of P300 or late positive potential (LPP) (Zhao et al.,
2011). Affective sounds in our previous study resulted in a
late component of P300 at around 300–700 ms; however, this
peak was centered around parietal and occipital brain regions
(Onishi et al., 2017). These findings suggest that the affective
sounds show high r2 values of the late component of P300.
Moreover, the BCI response to affective stimuli may be common
amongst modalities given that BCI responses to affective auditory
stimuli were similar to those of affective visual stimuli. The
effects of multimodal affective stimuli have not been evaluated
for use in a BCI, but they would likely elicit ERPs different from
those elicited by unimodal stimuli because the brain regions
with significant r2 values were different between different types
of stimuli.

As the degree of valence moves away from zero, the
r2 values rapidly increased, implying that the components
contributing to classification are not simply in proportion to
the valence. A similar tendency was confirmed in previous
studies. Steinbeis et al. (2006) evaluated the effect of emotional
music on ERPs, focusing on the expectancy violation of
chords. The results showed that the amplitude of P300 was
enhanced; however, the change was not in proportion to
the expectancy. To obtain a late component of P300 with
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higher r2 values, the degree of valence may need to exceed a
certain threshold.

The stimulus-wise classification accuracy estimated within
the ROI was highest when presenting the very positive and
the very negative sounds; however, accuracy was lowest when
using the positive sound. These results were unexpected given
the amplitudes of late component of P300 and r2 values. The
accuracy may not directly reflect the change of peak amplitude
of the component or r2 values since the stepwise method was
applied in addition to target and non-target waveform variance.

Due to experimental constraints, we have estimated the
stimulus-wise classification accuracy in response to the ROI using
LOOCV. Therefore, we should consider the risk of overfitting
because a portion of the information in the test data is used
for the spatio-temporal feature selection in LOOCV. The offline
stimulus-wise classification accuracy in this study was less than
the online classification accuracy (84.1%). Thus, the obvious
inflation of the accuracy cannot be confirmed. This tendency is in
line with similar previous studies (Guo et al., 2010; Brunner et al.,
2011). The overfitting is caused easily when the dimension is
high (Blankertz et al., 2011). We think that the current analysis is
hard to suffer from overfitting because the simple linear classifier
(SWLDA) is further simplified by reducing the spatio-temporal
selection using ROI.Moreover, the effect of ROI was controlled in
the comparison by equally applying it to all compared conditions.

This study employed all five sounds and evaluated specially
designed cross-validation in order to reveal the effect of affective
sounds with different degrees of valence. This result can be used
for the sound selection for the standard auditory P300-based BCI.
When designing multi-command auditory P300-based BCI, very
positive or very negative sounds should be employed as much as
possible to use the enhanced P300 component, while the neutral
sounds should be replaced with the very positive or very negative
sounds. However, the mutual effects that occur when employing
varieties of sounds in the BCI must be clarified in future studies.

In future studies, methods for classifying auditory BCIs
will be necessary. In our previous study, we evaluated the

ensemble convoluted feature extraction method, which took
advantage of the averaged ERPs of each sound (Onishi and
Nakagawa, 2018). Recently, an algorithm based on tensor
decomposition for auditory P300-based BCI was proposed
(Zink et al., 2016). This algorithm does not require subject-
specific training, which improves the utility of the BCIs. These
approaches may help establish a more reliable affective auditory
P300-based BCI.

5. CONCLUSION

To clarify how the degrees of valence influence the auditory P300-
based BCIs, five sounds with very negative, negative, neutral,
positive, and very positive sounds were applied to the P300-
based BCI. The very positive and very positive sounds showed
higher point-biserial correlation coefficients of late component
of P300. In addition, the stimulus-wise classification accuracy of
sounds is high for the very positive and very positive sounds.
These results imply that the accuracy is not in proportion to the
valence; However, it improved when utilizing very positive or
very negative sounds.
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