
ORIGINAL RESEARCH
published: 15 February 2019

doi: 10.3389/fnins.2019.00079

Frontiers in Neuroscience | www.frontiersin.org 1 February 2019 | Volume 13 | Article 79

Edited by:

Laura Marzetti,

Università degli Studi G. d’Annunzio

Chieti e Pescara, Italy

Reviewed by:

Robin A. A. Ince,

University of Manchester,

United Kingdom

Hasan Ayaz,

Drexel University, United States

*Correspondence:

Soheil Keshmiri

soheil@atr.jp

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 18 May 2018

Accepted: 25 January 2019

Published: 15 February 2019

Citation:

Keshmiri S, Sumioka H, Okubo M and

Ishiguro H (2019) An

Information-Theoretic Approach to

Quantitative Analysis of the

Correspondence Between Skin Blood

Flow and Functional Near-Infrared

Spectroscopy Measurement in

Prefrontal Cortex Activity.

Front. Neurosci. 13:79.

doi: 10.3389/fnins.2019.00079

An Information-Theoretic Approach
to Quantitative Analysis of the
Correspondence Between Skin Blood
Flow and Functional Near-Infrared
Spectroscopy Measurement in
Prefrontal Cortex Activity
Soheil Keshmiri 1*, Hidenobu Sumioka 1, Masataka Okubo 1 and Hiroshi Ishiguro 1,2

1Hiroshi Ishiguro Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan, 2Graduate

School of Engineering Science, Osaka University, Osaka, Japan

Effect of Skin blood flow (SBF) on functional near-infrared spectroscopy (fNIRS)

measurement of cortical activity proves to be an illusive subject matter with divided

stances in the neuroscientific literature on its extent. Whereas, some reports on its

non-significant influence on fNIRS time series of cortical activity, others consider its

impact misleading, even detrimental, in analysis of the brain activity as measured by

fNIRS. This situation is further escalated by the fact that almost all analytical studies

are based on comparison with functional Magnetic Resonance Imaging (fMRI). In

this article, we pinpoint the lack of perspective in previous studies on preservation

of information content of resulting fNIRS time series once the SBF is attenuated.

In doing so, we propose information-theoretic criteria to quantify the necessary and

sufficient conditions for SBF attenuation such that the information content of frontal

brain activity in resulting fNIRS times series is preserved. We verify these criteria through

evaluation of their utility in comparative analysis of principal component (PCA) and

independent component (ICA) SBF attenuation algorithms. Our contributions are 2-fold.

First, we show that mere reduction of SBF influence on fNIRS time series of frontal

activity is insufficient to warrant preservation of cortical activity information. Second,

we empirically justify a higher fidelity of PCA-based algorithm in preservation of the

fontal activity’s information content in comparison with ICA-based approach. Our results

suggest that combination of the first two principal components of PCA-based algorithm

results in most efficient SBF attenuation while preserving maximum frontal activity’s

information. These results contribute to the field by presenting a systematic approach to

quantification of the SBF as an interfering process during fNIRS measurement, thereby

drawing an informed conclusion on this debate. Furthermore, they provide evidence

for a reliable choice among existing SBF attenuation algorithms and their inconclusive

number of components, thereby ensuring minimum loss of cortical information during

SBF attenuation process.
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1. INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) time series of
brain cortical activity is subject to various systemic physiological
interferences, ranging from cardiac activity and respiration
(Orbig et al., 2000; Tonorov et al., 2000; Payne et al., 2003) to
motion artifacts (Cooper et al., 2012; Tak and Ye, 2014; Naseer
and Hong, 2015) and scalp-hemodynamic (Scholkmann et al.,
2014). While detection and correction strategies for most of these
physiological and systemic interferences are widely practiced,
effect of scalp-hemodynamic and skin blood flow (SBF) has
been subject to much divided perspective. Whereas, Takahashi
et al. (2011) argued that a major part of task-evoked changes
in blood oxygenation hemoglobins (1Oxy-Hb) in the forehead
is due to SBF, Sato et al. (2013) claimed that such changes are
highly correlated with blood oxygen level dependent (BOLD) of
functional magnetic resonance imaging (fMRI) and gray matter,
as opposed to SBF or other soft tissues. This, in part, helps
explain the lack of incorporation of analytical steps for SBF
attenuation in most recent studies (Liand et al., 2010; Cuiand
et al., 2011; Gagnonand et al., 2012; Fishbum et al., 2014; Ozawa
et al., 2014; Bakerand et al., 2016; Guand et al., 2017; Liu et al.,
2017) as well as NIRS-related analytical toolkits (Koh et al.,
2007; Huppertand et al., 2009; Strangmann, 2009; Ye et al., 2009;
Feketeand et al., 2011).

However, research suggests that systemic changes due to SBF
are unpreventable since they are the result of the activation of
the autonomic nervous system and/or varying blood pressure
in response to action (Lee et al., 2002; Scremin and Kenney,
2004). In fact, Sato et al. (2016) argued that scalp- and cerebral-
hemodynamic (in particular 1Oxy-Hb) increase in a task-
related manner, implying their similar temporal profiles. In
light of these observations, the field has witnessed a growing
number of research on SBF attenuation approaches. One class
of SBF filters has considered the direct measurements from
short source-detector distances (e.g., ≤ 2.0 cm) to attenuate the
effect of scalp-hemodynamic on channels with longer distance
(e.g., 3.0 cm ≤ d ≤ 4.5 cm) (Zhang et al., 2009; Gagnon
et al., 2011, 2012, 2014; Saager et al., 2011; Haeussinger et al.,
2014), where d stands for source-detector distance. Another
family of such filters has been built upon the assumption that
scalp-hemodynamic changes are more global than cerebral-
hemodynamic, thereby introducing mathematically founded
techniques for SBF removal. For instance, Zhang et al. (2005)
assumed the orthogonality between the spatial interference
and the spatial evoked activation subspaces to derive principal
components from resting periods, thereby eliminating such
components from task period as representatives of SBF. This
approach was further extended by Zhang et al. (2016) through
application of Gaussian filtering. On the other hand, Kohno
et al. (2007) employed independent component analysis (ICA)
to extract the most spatially uniform component of 1Oxy-Hb.
Furthermore, they showed their extracted component was highly
correlated with SBF through its comparison with simultaneous
laser Doppler measurement (Johnson et al., 1984; Oberg, 1990).
Kiguchi and Funane (2014) further extended this ICA-based
approach for its online use. Sato et al. (2016) argued that although

these filters offer reliable and accurate tool for SBF attenuation,
their reliance on considerably large number of probes for data
acquisition makes their application infeasible. In turn, they
addressed this limitation through identification of the scalp-
hemodynamic component from a small number of short source-
detector channels, thereby removing this effect based on general
linear model (GLM) (Mardia et al., 1979; Friston et al., 1995,
2011). Their approach showed a significant improvement in
contrast with Zhang et al. (2005) and Kohno et al. (2007), as
suggested by their fMRI-based comparative analysis.

Although our overview of research on scalp-hemodynamic
and SBF demonstrates fascinating approaches with impressive
results, it reveals an immediate shortcoming that is lack of
quantitative realization of the utility of these methodologies for
their verification toward a common consensus on their use. For
instance, whereas Zhang et al. (2005) claimed the first three
principal components for adequate SBF attenuation, Sato et al.
(2016) suggested a non-significant difference in adaptation of
first or combination of first two or three components. More
importantly, these approaches fall short in assessing the state of
fNIRS time series once the SBF attenuation process is complete.
For example, Kohno et al. (2007) showed a high correlation
between their selected most spatially uniform component with
SBF signal while discarding a report on fNIRS content once
this component was removed. Although a few have included
measures such as correlation coefficient, signal-to-noise ratio,
or Pearson R2 (Zhang et al., 2005; Gagnon et al., 2011), these
linear measures fail to detect the nonlinearity in interacting
processes (Kinney and Atwal, 2014). Moreover, they cannot
provide any causal insight on the observed effect: they are unable
to quantify whether they attenuated the confounding effect of the
interfering process or information pertinent to cortical activity.
In addition, many of these results have derived the quality of
their SBF attenuation through comparison of fNIRS data with
fMRI recordings (Haeussinger et al., 2014; Sato et al., 2016).
Although high spatial resolution of fMRI along with significant
correlation between its BOLD and corresponding Blood de-
/Oxygenation of fNIRS (Okamoto et al., 2004; Steinbrink et al.,
2006; Strangman et al., 2006; Toronov et al., 2007; Cuiand et al.,
2011) provide a basis for such comparative analyses, they are
highly time-consuming and require extra care to ensure the least
environmental and experimental discrepancies, making their
adaptation impractical in a broader domain.

In this article, we address these shortcomings through
proposal of information-theoretic criteria for preservation of
information content of frontal brain activity. We utilize the
concept of transfer entropy (TE) (Schreiber, 2000) to quantify
the effect of SBF on fNIRS time series of frontal brain activity
via transferring undesired information onto fNIRSmeasurement.
TE provides a powerful tool for measuring the strength and
direction (i.e., causation) of the coupling between simultaneously
observed processes (Kaiser and Schreiber, 2002). Utilization
of TE as a measure for information flow becomes more
attractive, considering its minimal assumptions on dynamics
of the time series under investigation, its numerical stability
even for reasonably small sample sizes, and its ability in
capturing both, linear as well as nonlinear effects (Lungarella
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and Sporns, 2006). In fact, recent years have witnessed a
growing interest in application of TE in neuroscientific research
(Lungarella and Sporns, 2006; Honey et al., 2007; Vakorin
et al., 2010; Liao et al., 2011). Additionally, we exploit the
concept of mutual information (MI) and its correspondence with
conditional entropy between interacting continuous random
variables (Cover and Thomas, 2006; Stone, 2015) to formalize
criteria for preservation of the frontal activity’s information in
resulting fNIRS time series once the SBF attenuation is complete.

Our results suggest that mere reduction of SBF influence
on fNIRS time series of frontal activity is insufficient to
warrant frontal activity’s information is retained. Moreover,
they imply a higher fidelity of PCA-based algorithm in frontal
activity’s information preservation in comparison with ICA-
based approach. Furthermore, they indicate that a combination
of first two principal components of PCA-based algorithm results
in most efficient SBF attenuation while ensuring maximum
frontal activity’s information preservation. Our results contribute
to the field by presenting a systematic approach to quantification
of the SBF and its effect as an interfering process during
fNIRS measurement, thereby drawing an informed conclusion
on this debate. Furthermore, they provide evidence for a
reliable choice among existing SBF attenuation algorithms and
their inconclusive number of components, thereby ensuring
minimum loss of frontal activity’s information during SBF
attenuation process.

2. MATERIALS AND METHODS

2.1. Formal Statements
2.1.1. Preliminaries

Prior to formalizing our information-theoretic criteria, we restate
the definitions of conditional entropy, MI, and TE, along
with two Theorems and a Corollary (without proofs) from
information theory to help better elaborate on rationale behind
our criteria.

Definition 2.1. If (X ,Y) ∼ f (x, y), ∀x ∈ X , y ∈ Y , the
conditional entropy H(X |Y) is defined as Cover and Thomas
(2006)[p. 249]

H(X |Y) = −
∫

f (x, y)log(f (x|y))dxdy (1)

where f (x, y), ∀x ∈ X , y ∈ Y indicates the joint density
and f (x|y) is the probability of occurrence of x, given that y
occurred. In other words, conditional entropy quantifies the
average uncertainty regarding the value of X when the value of
Y is known (Stone, 2015).

Definition 2.2. The mutual information I(X ;Y) between two
random variables with joint density f (x, y), ∀x ∈ X , y ∈ Y is
defined as Cover and Thomas (2006)[p. 251]

I(X ;Y) =
∫

f (x, y) log
f (x, y)

f (x)f (y)
dxdy (2)

Mutual information can be expressed in terms of conditional
entropy as (ibid.):

I(X ;Y) = H(X )−H(X |Y)
= H(Y)−H(Y|X )

= H(X )+H(Y)−H(X ,Y) (3)

with H(.) representing the entropy of its argument and H(X |Y)
and H(X ,Y) are the conditional entropy and the joint entropy
between X and Y , respectively.

On the other hand, transfer entropy (Schreiber, 2000) aims at
extracting directed flow or transfer of information (Lungarella
and Sporns, 2006) between interacting processes. In essence,
TE quantifies the deviation from generalized Markov property
p(xt+1|xt , yt) = p(xt+1|xt), ∀xt , xt+1 ∈ X , yt ∈ Y , with p(x|y)
being the probability of occurrence of x, given y occurred. TE
is expressed as a specific version of Kullback-Leibler divergence
(Cover and Thomas, 2006; Stone, 2015) i.e., the relative entropy
(Lungarella and Sporns, 2006):

T(Y → X ) =
∑

xt+1

∑

xt

∑

yt

p(xt+1, xt , yt) log
p(xt+1|xt , yt)
p(xt+1|xt)

(4)

One can also identify TE as a conditional MI (i.e., a
causal inference on shared information) between two
interacting processes:

T(Y → X ) = I(yt; xt+1|xt), ∀xt+1, xt ∈ X , yt ∈ Y (5)

If this deviation is small, then the state of Y is assumed to
have minimal or no relevance on the transition probabilities of
X (Lungarella and Sporns, 2006), thereby implying an absence
and/or a non-significant effect of Y on X . It is worthy of
note that unlike MI, TE is explicitly and strictly non-symmetric
under exchange of the role of the interacting processes (Kaiser
and Schreiber, 2002). In other words, TE(Y → X ) 6= TE
(X → Y),∀X , Y .

Theorem 2.1. (Conditioning reduces entropy): For any two
random variables X and Y , we have (Cover and Thomas, 2006,
p. 41 and p. 253)

H(X |Y) ≤ H(X ) (6)

with equality if and only if X and Y are independent.

Theorem 2.2. (Data Processing Inequality): if X → Y → Z1,
then (Cover and Thomas, 2006, p. 34)

I(X ;Y) ≥ I(X ;Z) (7)

Corollary 2.1. In particular, if Z = g(Y), we have (Cover and
Thomas, 2006, p. 35)

I(X ;Y) ≥ I(X ; g(Y)) (8)

1X → Y → Z if and only ifX andZ are conditionally independent, givenY i.e.,

they form a Markov chain Cover and Thomas (2006, p. 34).
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Concretely, Data Processing Inequality (DPI), as formulated in
Equations (7, 8), states that the result of any manipulation of
data cannot improve the inferences that are made from the
data (Cover and Thomas, 2006; Kinney and Atwal, 2014). In
other words, no matter how sophisticated a processing approach
is, it inevitably results in loss of information. Implication
of DPI in SBF attenuation is 2-fold: (1) it implies that no
matter how well-defined an SBF attenuation process is, loss
of information is inherent in its steps. (2) Therefore, it is of
utmost cruciality to ensure such a loss maximally reflects the
undesirable information induced by SBF than actual frontal
brain activity.

In what follows, we utilize the aforementioned observations
from information theory to formalize our criteria. In essence,
Criterion 2.1 through Criterion 2.3 provide necessary and
sufficient conditions for quantification of the ability of SBF
attenuation algorithms in reducing effect of SBF on fNIRS time
series of frontal brain activity. On the other hand, Criterion 2.4
signifies utility of such algorithms in preservation of the frontal
brain activity’s information in resulting fNIRS times series.
Finally, Criterion 2.5 examines whether preservation of the
cortical activity in resulting fNIRS time series is maximized by
adapted SBF algorithms.

2.1.2. The Criteria

Let X and X′ represent the fNIRS time series of cortical activity
before and after application of an SBF attenuation algorithm.
Furthermore, let Y be the time series, representing SBF. The
main premise of any SBF attenuation algorithm is its effectiveness
for reducing the impact of SBF on fNIRS time series of cortical
activity of human subjects.

Criterion 2.1. Transferred information from SBF to fNIRS times
series is significantly reduced if adapted attenuation process is
effective i.e., TE(Y → X′) ≤ TE(Y → X).

Criterion 2.1, in turn, implies that given different SBF
attenuation algorithms, the one with significantly smaller
TE(Y → X′) is more effective in attenuation of SBF influence
on fNIRS time series of frontal brain activity in comparison with
other SBF attenuation algorithms.

Furthermore, if X primarily represents the frontal activity
that is partially contaminated by SBF, then attenuation of
SBF must, in principle, have no effect on ability of X to
explain X′ in absence of Y . This, in turn, implies that Y →
X → X′ holds true (as per Theorem 2.2) and X′ = g(X)
i.e., X′ is expressible as a function of X. We utilize this
observation in conjunction with Corollary 2.1 to formalize our
second criterion.

Criterion 2.2. fNIRS time series prior to SBF attenuation must, in
principle, have more in common with Y than after SBF attenuation
is complete i.e., I(Y;X) ≥ I(Y; g(X)). Using Theorem 2.2 and
applying Equation (3), we get

I(Y;X) ≥ I(Y;X′)

⇒ H(Y)−H(Y|X) ≥ H(Y)−H(Y|X′) (9)

⇒ H(Y|X) ≤ H(Y|X′)

As a direct consequence of Criterion 2.2, an SBF attenuation
algorithm with significantly larger H(Y|X′) is more effective, in
comparison with any other such algorithms.

Criterion 2.1 and Criterion 2.2 provide necessary conditions
to validate that outcome of an adapted SBF attenuation algorithm
is successful in reducing the correspondence between SBF and
fNIRS time series of frontal brain activity. However, they are not
sufficient conditions for quantification of significance of such a
reduction since H(Y|X′) 6= H(X′|Y), ∀X′, Y . Therefore, it is
necessary to validate the sufficient condition of such an algorithm
in reducing the SBF effect.

Criterion 2.3. Y must, in principle, be more informative
about fNIRS before than after attenuation is complete i.e.,
H(X|Y) ≤ H(X′|Y)

As a result of Criterion 2.3, if an SBF attenuation algorithm is
more effective, its application must result in significantly larger
H(X′|Y) in comparison with other such algorithms.

Moreover, an effective SBF attenuation algorithm ensures the
preservation of cortical activity while reducing the undesirable
effect of SBF, thereby resulting in higher mutual information
between X and X′ than X and Y. We formulate this expectation
through the fourth criterion.

Criterion 2.4. X′ realizes the information content of X more than
Y does i.e., I(X;X′) ≥ I(X;Y). Applying Equation (3), this is
equivalent to

H(X)−H(X|X′) ≥ H(X)−H(X|Y)
⇒ H(X|X′) ≤ H(X|Y)

(10)

Considering Criterion 2.4, an effective SBF attenuation algorithm
results in significantly smallerH(X|X′) in comparison with other
SBF attenuation algorithms. Criterion 2.4 forms a necessary
condition to ensure that the acquired time series is primarily
due to cortical activity that is affected by SBF than vice-versa, as
demonstrated through the following Theorem.

Theorem 2.3. Let X, C, and Y represent recorded fNIRS, actual
cortical activity, and SBF such that X= C + Y. Then, Criterion 2.4
is a necessary condition if C is reflective of cortical activity.

Proof: Taking derivative of X = C + Y with respect to C (i.e.,
variable of interest), we have:

dX

dC
=

d(C + Y)

dC
= 1 (11)

In addition, the entropy of a transformed random variable X
is Stone (2015, p. 119):

H(X) = H(C)+ E[log|
dX

dC
|] (12)

Substituting Equation (11) in Equation (12), we have:

H(X) = H(C)+ E[log(1)] = H(C) (13)
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which, in turn, implies that

H(X|C) = 0 (14)

and therefore,

I(X;C) = H(X)−H(X|C) = H(X) (15)

Considering the fact that I(X;C) ≥ 0, ∀X,C, we get

H(X) ≥ 0 (16)

which implies that the interval within which X lies i.e., X ∈ [a, b]
must satisfy b − a ≥ 1 since b − a < 1 ⇒ H(X) < 02. This
observation along with Theorem 2.1 indicate that

0 ≤ H(X|Y) ≤ H(X) (17)

with H(X|Y) = H(X) if and only if X and Y are independent and
H(X|Y) = 0 when X = Y . Now, if Criterion 2.4 is not valid, it
must only be the case that

H(X|Y) < H(X|C) ⇒ H(X|Y) < 0 (18)

due to Equation (14)3. However, this violates the Equation (17).

In addition, SBF attenuation must ensure that attenuated
effect is maximally reflective of Y than X, thereby inducing
minimum loss of information content of X once SBF attenuation
is complete.

Criterion 2.5. Preserved information content of X in X′ is
maximized if attenuation primarily reduces the effect of SBF. Using
Theorem 2.1, we have:

H(X|Y) ≤ H(X) (19)

and

H(X′|Y) ≤ H(X′) (20)

Considering Equations (19, 20) and applying Criterion 2.3 and
Criterion 2.4, we get:

H(X|X′) ≤ H(X|Y) ≤ H(X′|Y) ≤ H(X′)

⇒ H(X|X′) ≤ H(X′)
(21)

Criterion 2.5, in turn, indicates that an SBF algorithm that
significantly (i.e., in comparison with other such algorithms)
maximizes the inequality H(X′) − H(X|X′) ≥ 0 also attains
the maximum frontal activity’s information preservation in the
resulting fNIRS time series.

2Continuous random variables can have negative entropy. For instance,H(X) < 0

if σ 2
X < 1

2πe or µX < 1
e in case of normal and Poisson distributions.

3If H(X|Y) ≤ 0 in Equation (18), indicating the possibility for H(X|Y) = 0, then

H(X|Y) = 0 ⇒ H(X|Y) = H(X|C) ⇒ Y = C which contradicts X= C + Y.

2.2. Simulation-Based Verification
We simulated (Figure 2) four random time series of length 3,000
out of which 600 and 2,500 data points were used as resting
and task periods, respectively. We considered four time series to
adhere with the number of channels in adapted fNIRS device in
this study. In addition, ICA- and PCA-based algorithm require
more than a single sequence for their components’ calculation.
The reason behind 600 and 2,500 data points split was due to
the requirement of resting data by PCA-based SBF attenuation
algorithm (Zhang et al., 2005) to calculate the global trend in
given time series (e.g., global hemodynamic responses such as
SBF) in the form of principal components. We chose 600 data
points to mimic the 1-min-long resting period in our realtime
experimental settings (i.e., 60 s × 10.0 Hz sampling rate of our
fNIRS device). This, in turn, resulted in the use of 2,500 data
points during the PCA- and ICA-based algorithms analyses. We
repeated this random time series simulation for fifty rounds
(M = 5.76, SD = 18.61). Furthermore, we simulated SBF as
a Gaussian noise with the same length i.e., 3,000 data points
(50 different series one for each round of simulated time series
above) with their mean and standard deviation equals 3 times the
corresponding simulated channels time series mean and standard
deviation (M = 15.56, SD = 43.25). This noise was also added
to the first 600 data points of each of the simulated sequences
(i.e., simulated resting portion for PCA-based SBF attenuation)
to mimic the global effect of SBF. We report the averaged analysis
results of these fifty simulation rounds for simulation-based
verification of Criterion 2.1 through Criterion 2.5.

2.3. Participants
We conducted three experiments, namely, verbal fluency task
(referred to as VFT hereafter), conversation task experiment
(referred to as CTE hereafter), and logical memory test (LMT
hereafter). Two different groups of 20 (10 females and 10 males,
M = 70.20, SD = 3.78) and 18 (6 females and 12 males, M =
72.31, SD = 4.16) older adults participated in VFT and CTE. On
the other hand, LMT included thirty two (sixteen females and
sixteen males, M = 20.50, SD = 1.80) younger adults. We were
unable to record fNIRS data from two participants during VFT
and six participants in LMT. Therefore, these individuals were
excluded from our analyses.

Choice of VFT was to ensure the correctness as well
as effectiveness of our criteria in quantification of the SBF
attenuation and frontal activity’s information preservation in a
fine-grained working memory task. On the other hand, CTE
allowed us to evaluate our analysis results in a naturalistic setting.
Last, we included LMT to verify our results are unaffected by age
of the participants.

All participants were right-handed (confirmed using
FLANDERS (Nicholls et al., 2013) handedness questionnaire),
were free of neurological and psychiatric disorders, and had no
history of hearing impairment. Prior to the data collection, we
received approval (approval code: 16-601-1) from the ethical
committee at the Advanced Telecommunications Research
Institute International (ATR), Kyoto, Japan. All subjects gave
written informed consent. Subjects were seated on an easy
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armchair in the sound-attenuated experimental room, with
instructions to fully relax and their eyes closed while resting.

2.3.1. VFT

We adapted the protocol by Takahashi et al. (2011) in their study
of SBF effect on fNIRS time series. It consisted of two blocks.
Each block consisted of a 6-s-long word generation. The word
generation period was preceded with 30 s of silence period and
followed by 70 s of control periods. During the word generation
period, participants had to generate as many words as possible
that started with the syllable that was auditorily presented every
20 s. In the control period, participants were instructed to repeat
five syllables: /a/, /i/. /u/, /e/, and /o/. This task was also used
by Sato et al. (2016) in their comparative fMRI-fNIRS analysis
of reduction of SBF interference on fNIRS time series of frontal
brain activity using their proposed GLM-based approach.

We started each experiment by acquiring a 1-min-long resting
data, followed by its corresponding VFT session. We provided
our participants with a 1-min-long resting break (while staying
at their seat with their eyes closed) prior to the commencement
of the experiment. We kept the content of the two blocks intact.
However, we randomized the order of their occurrence among
the participants. We used a speaker as a medium and generated
the sequences of VFT using PsychoPy.

2.3.2. CTE

It included a 20-min-long conversation with participants about
a site-seeing visit to Yakushima Island in southern Japan (in
Japanese). We started by acquiring a 1-min-long resting data,
followed by its corresponding 20-min-long experimental session.
We provided our participants with a 1-min-long resting break
(while staying at their seat with their eyes closed) prior to
the commencement of the experiment. We kept the content of
conversation intact. A female assistant, who was not aware of
the purpose of this study, conversed with our participants. We
controlled the conversational session in such a way that the
operator was in charge of leading the topic, thereby requiring
all the participants to respond to same series of statements and
questions [e.g., their most interesting visited site(s), preferred
cousin, etc.].

2.3.3. LMT

We adapted the protocol by Basso Moro et al. (2013). It
started with participants listening to a 20-s-long story of the
LMT (D. Wechsler, 1997) which was immediately followed by
participants repeating the narrated story aloud, trying to recall
as much of a detail as possible. The recall period lasted for 30 s.
We started each experiment by acquiring a 1-min-long resting
data, followed by its corresponding LMT session. We provided
our participants with a 1-min-long resting break (while staying
at their seat with their eyes closed) prior to the commencement
of the experiment.We kept the content of the LMT story intact. A
female assistant, who was not aware of the purpose of this study,
read the stories to the participants through a speaker medium.

2.4. Data Acquisition
We used functional near infrared spectroscopy (fNIRS) (Ferrari
and Quaresima, 2012; Dix et al., 2013) to collect frontal brain
activity of the participants. We acquired fNIRS time series
data of the participants using a wearable optical topography
system "HOT-1000," developed by Hitachi High-Technologies
Corporation (please refer to Figure 1). Participants wore this
device on their forehead. It records the frontal brain activity
through detection of total blood flow via emitting a wavelength
laser light (810 nm) at 10.0 Hz sampling rate. Data acquisition
is carried out through four channels (i.e., Left1, Left3, Right1,
and Right3, as shown in Figure 1). Subscripted numerical values
that are assigned to these channels specify their respective
source-detector distances. In other words, Left1 and Right1
have a 1.0 cm and Left3 and Right3 have 3.0 cm source-detector
distances, respectively. Research findings indicate that short
source-detector channels [e.g., 0.5 cm (Takahashi et al., 2011),
1.0 cm (Gagnon et al., 2011), 1.5 cm (Sato et al., 2013, 2016;
Kiguchi and Funane, 2014), and 2.0 cm (Yamada et al., 2009)]
are mostly representatives of scalp hemodynamics than cortical
blood flow (CBF). Moreover, choice of 3.0 cm source-detector
distance is customary in NIRS-based studies of brain activity
(Yamada et al., 2009; Gagnon et al., 2011; Takahashi et al., 2011;
Sato et al., 2013, 2016; Kiguchi and Funane, 2014). It is also
worth noting that Zhang et al. (2005) and Kohno et al. (2007)
adapted this source-detector distance in their original articles
on PCA- and ICA-based SBF attenuation algorithms. Therefore,
we primarily report our analysis results on long source-detector
channels [Left3 in the main body of this article and Right3 in
Supplementary Material (SM)].

We placed a laser Doppler tissue blood flow meter
probe (FLO-C1, Omegawave Incorporated, Tokyo, Japan) on
participants’ forehead close to the Left1 for SBF recording. It
collected data from the scalp layer within 1.0 mm from the probe
and its analog output was recorded simultaneously alongside the
fNIRS recording. This device uses a laser beam with a wavelength
of 780.0 nm and has a sampling rate of 10.0 Hz that matches our
fNIRS device sampling rate. This device has also been adapted by
Takahashi et al. (2011) during their SBF effect study.

To ensure synchronized data acquisition across sensors,
we collected data streams for NIRS and SBF through
"labstreaminglayer" system.

2.5. Data Preprocessing
First, we baseline-normalized the data via subtracting the mean
of 1-min-long resting period. This step that is customary in
fMRI/fNIRS research is based on the assumption that it removes
the brain activity that was present prior to the start of the
task (as reflected in the time series data recorded during the
resting period) and hence does not reflect the effect of the brain
activation during the task period. Next and in oder to attenuate
the effect of systemic physiological artifacts (Tak and Ye, 2014)
(e.g., cardiac pulsations, respiration, etc.) we applied a one-degree
polynomial butter worth filter with 0.01 Hz and 0.6 Hz for
low and high bandpass. This was followed by linear detrending.
Detrending of the signal that is adapted from signal processing
and time series analysis and forecasting is a necessary step to
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FIGURE 1 | (A) fNIRS device in present study. Bottom subplot on left shows arrangement of source-detector of four channels of this device. Distances between short

(i.e., 1.0 cm) and long (i.e., 3.0 cm) source and detector of left and right channels are shown. (B) Arrangement of 10–20 International Standard System: In this figure,

relative locations of channels of fNIRS device in our study (i.e., L1, L3, R1, and R3) are depicted in red (i.e., sources) and green (i.e., detectors) squares. L1, R1, L3,

and R3 are channels with short (i.e., 1.0 cm) and long (i.e., 3.0 cm) source-detector distances.

ensure that assumptions of stationarity and homoscedasticity (as
reflected in wide spread application of linear models in analysis
of fNIRS/fMRI time series) are not strongly violated (e.g., due to
seasonality and/or repetitive increasing/decreasing patterns) by
acquired fNIRS signal.

We adapted the SBF attenuation algorithms by Zhang et al.
(2005) (referred to as PCA-based hereafter) and Kohno et al.
(2007) (referred to as ICA-based hereafter) in present study.
The first approach utilizes an eigenvector-based spatial filtering
method that is applied to the rest (baseline) period, thereby
removing the first r spatial eigenvectors calculated from the
baseline data by PCA from the fNIRS time series that are
recorded during the task period. We used the resting period
time series of the four channels of our device (Figure 1), per
participant, for this purpose. Given the combination of short
(i.e., Left1 and Right1) and long (i.e., Left3, , and Right3) source-
detector channels of our device, the PCA-based algorithm is
able to capture the components that best represent global
hemodynamics, as noted by Zhang et al. (2005). This is due
to the results that indicate the short source-detector channels
[e.g., 0.5 cm (Takahashi et al., 2011), 1.0 cm (Gagnon et al.,
2011), 1.5 cm (Sato et al., 2013, 2016; Kiguchi and Funane, 2014),
and 2.0 cm (Yamada et al., 2009)] are mostly representatives
of scalp hemodynamics and the long source-detector channels
are suitable for recording of the CBF (Yamada et al., 2009;
Gagnon et al., 2011; Takahashi et al., 2011; Sato et al., 2013,
2016; Kiguchi and Funane, 2014). It is worth noting that Zhang
et al. (2005) also adapted the 3.0 cm source-detector distance
(i.e., similar to Left3, , and Right3 in our case) for capturing
the CBF in their original article on PCA-based SBF attenuation
algorithm. On the other hand, ICA-based SBF attenuation
algorithm (Kohno et al., 2007) removes the component that has
the highest coefficient of spatial uniformity (i.e., the absolute
value of the coefficient of variation; Everitt, 1998) among the

independent components as a representative of the global scalp-
hemodynamic component. Similar to PCA-based algorithm, we
used the four channels of our device to determine the component
with coefficient of spatial uniformity. It is worth noting that
Kohno et al. (2007) also adapted the 3.0 cm source-detector
distance (i.e., similar to Left3, , and Right3 in our case) for
capturing the CBF in their original article on ICA-based SBF
attenuation algorithm.

Sato et al. (2016) used the PCA-based algorithm after
preprocessing steps for SBF attenuation. On the other hand,
they utilized the ICA-based algorithm prior to preprocessing
steps. These orders for application of SBF attenuation [i.e.,
preprocessing the fNIRS time series after (in case of ICA-based)
and before (in case of PCA-base) SBF attenuation] were reported
by Kohno et al. (2007) and Zhang et al. (2005) as well. Therefore,
we followed the same orderings while applying these algorithms
for attenuation of the effect of SBF on fNIRS time series data of
cortical activity of our participants.

Although Zhang et al. (2005) did not provide any specific
reason for selection of the number of components, they
considered the combination of the first three components
(referred to as PC123 hereafter) to be an adequate choice
for attenuation of the SBF effect. On the other hand, Sato
et al. (2016) argued that the difference between the first
three components in contrast with only the first component
(referred to as PC1 hereafter) is non-significant. Subsequently,
they adapted the first component in their analysis. In present
study, we used these two settings. However, considering the
explanatory power of the first three components in PCA-
based approach (Zhang et al., 2005; Sato et al., 2016),
we also included the combination of first two components
(referred to as PC12 hereafter) in our analyses. On the
other hand, we followed Kohno et al. (2007) and removed
the component with highest coefficient of spatial uniformity
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(referred to as IC1 hereafter) in case of ICA-based SBF
attenuation algorithm.

2.6. Statistical Analysis
First, we applied Wilcoxon rank sum (i.e., one-sample) test to
determine the effect of SBF on fNIRS (i.e., TE(Y → X)) time
series of frontal brain activity of participants (in both, VFT
and CTE). This was followed by testing Criterion 2.1 through
Criterion 2.5 to determine the utility of PCA- and ICA-based
algorithms and their respective adapted components (i.e., PC1,
PC12, PC123 in case of PCA-based and IC1 in case of ICA-based
SBF attenuations) in reduction of the effect of SBF on fNIRS while
preserving information content of frontal brain activity.

In case of Criterion 2.1, we performed Kruskal-Wallis test on
combination of TE before [i.e., TE(Y → X)] along side after [i.e.,
TE(Y → X′)] SBF attenuation by each of PC1, PC12, PC123, and
IC1 to determine any significance induced by the choice of these
components in reduction of TE. This was followed by post-hoc
paired Wilcoxon rank sum test.

We followed the same steps in case of Criterion 2.2 and
Criterion 2.3, replacing TE before [i.e., TE(Y → X)] and
after [i.e., TE(Y → X′)] with the “reduction of SBF-related
information in frontal brain activity before [i.e., H(Y|X)] and
after [i.e., H(Y|X′)] SBF attenuation," in case of Criterion 2.2,
and "reduction of correspondence between SBF and fNIRS time
series of frontal brain activity before [i.e., H(X|Y)] and after [i.e.,
H(X′|Y)] SBF attenuation," in case of Criterion 2.3, respectively.

In case of Criterion 2.4, we performed Kruskal-Wallis test on
combination ofH(X|Y) alongside the measuredH(X|X′) by each
of PC1, PC12, PC123, and IC1 to determine any significance
induced by the choice of these components in retaining the
correspondence between time series of frontal activity before
and after application of SBF attenuation. This was followed by
post-hoc paired Wilcoxon rank sum test.

In case of Criterion 2.5, we first applied a paired Wilcoxon
rank sum (i.e., two-sample) betweenH(X|X′) andH(X′) for each
of the components (i.e., PC1, PC12, PC123, and IC1) separately,
thereby signifying their respective effect in preservation of
information content of frontal brain activity. Next, we performed
Kruskal-Wallis test on combination of preserved frontal brain
activity [i.e., H(X′) − H(X|X′)] by each of PC1, PC12, PC123,
and IC1 to quantitatively determine any significance induced
by the choice of these components in such an information
preservation. This was followed by post-hoc paired Wilcoxon
rank sum between every pair of these components, thereby
determining the component(s) that significantly maximize such
a preservation of information content of frontal brain activity in
comparison with other components.

For Kruskal-Wallis, we reported the effect size r =
√

χ2

N ,

with N denoting the sample size, as suggested by Rosenthal and
DiMatteo (2001). In case of Wilcoxon test, we used r = W√

N

(Tomczak and Tomczak, 2014) as effect size withW denoting the
Wilcoxon statistics and N is the sample size. All results reported
are Bonferroni corrected (i.e., multiplying the p-values with the
sample size, given the use of non-parametric tests). We used
JIDT (Lizier, 2014) for calculation of TE, MI, and conditional

entropies. All statistical analyses were carried out in Matlab
R2016a environment. We used Gramm (Morel, 2018) for data
visualization. We used Python 2.7 for simulated data generation,
realtime data acquisition and processing, and information-
theoretic measures computation. All statistical analyses were
carried out in Matlab R2016a.

3. RESULTS

3.1. Simulation-Based Verification
Figure 2A corresponds to the grand-average of the computed TE
values for lags 1 through 100 (i.e., up to 10 s of lag, considering the
sampling rate of 10.0 Hz of our device during the real-time data
acquisition). This subplot indicates that maximum transferred
information from simulated noise to simulated channels was,
on average, at lag = 36 (i.e., 3.6 s in adapted fNIRS device in
present study). This was the lag we used during our analyses.
Figure 2B visualizes a sample spatial map of eigenvectors by
PCA-based SBF attenuation algorithm along with the sample
original simulated time series (in matrix forms for better
visualization purpose) before and after application of PC1, PC12,
and PC123 components. Distinctive effect of these components
on the simulated data is evident in this subplot. We observed
significant differences between data before and after application
of PC1 [p < 0.001, W(7, 998) = 24.21, r = 0.27, MBefore = 8.46,
SDBefore = 12.91,MPC1 = 1.77, SDPC1 = 10.10], PC12 [p < 0.001,
W(7, 998) = 29.74, r = 0.33, MPC12 = 0.52, SDPC12 = 10.06], and
PC123 [p < 0.001, W(7, 998) = 35.55, r = 0.40, MPC123 = 0.14,
SDPC123 = 6.22].

Figure 2C shows a sample Gaussian noise (blue) along with
the computed IC1 by ICA-based SBF attenuation algorithm
(green) (pertinent to the case in which simulated channel 1
was selected as component with highest coefficient of spatial
uniformity). Although this algorithm resulted in selection of
different simulated channels as the component with highest
coefficient of spatial uniformity (i.e., the absolute value of the
coefficient of variation; Everitt, 1998) (Figure 2D, Ch1= 20.00%,
Ch2= 16.00%, Ch3= 40.00%, Ch4= 24.00%), these components
were significantly correlated with simulated noise (Ch1: r =
0.73, p < 0.001, Ch2: r = 0.78, p < 0.001, Ch3: r = 0.78,
p < 0.001, and Ch4: r = 0.89, p < 0.001). On the other hand,
PCA-based algorithm (Figure 2E) exhibited a higher specificity
in selecting the principal components (PC1 = 89.00%, PC12 =
8.10%, PC123= 2.90%).

3.1.1. Criterion 2.1: TE(Y → X′) ≤ TE(Y → X)
Kruskal-Wallis test implied significant effect of choice of
components [p < 0.001, H(4, 249) = 152.35, r = 0.61, M =
0.22, SD= 0.01]. Moreover, post-hoc comparison implied that all
components significantly reduced SBF effect in comparison with
TE(Y → X) [PC1: p < 0.001, W(98) = 8.61, r = 0.86, M = 0.02,
SD = 0.01, PC12: p < 0.001, W(98) = 8.61, r = 0.86, M = 0.01,
SD = 0.01, PC123: p < 0.001, W(98) = 8.61, r = 0.86, , M = 0.02,
SD = 0.01, IC1: p < 0.001,W(98) = 8.61, r = 0.86,M = 0.02, SD
= 0.01]. Post-hoc comparison indicated that PC12 significantly
performed better in attenuation of the effect of SBF than PC1
[p < 0.001, W(98) = 4.11, r = 0.41], PC123 [p < 0.001, W(98) =
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FIGURE 2 | Simulated Time Series (A) Grand-average (i.e., fifty rounds of simulation) of computed TE values for Lag = 1, . . . , 100 (i.e., up to 10 s of lag, considering

the sampling rate of 10.0 Hz in our device during real-time data acquisition). Maximum TE was, on average, at Lag = 36 (equivalent to time = 3.6 s of adapted fNIRS

device in present study (i.e., sampling rate = 10.0 Hz) (B) Sample spatial map of eigenvectors by PCA-based SBF attenuation algorithm along with the sample original

simulated time series (in matrix forms for better visualization purpose) before and after application of PC1, PC12, and PC123 components. Distinctive effect of these

components on the simulated data is evident in this subplot. All matrices are scaled within [0, 1] interval for ease of comparison. (C) Sample Gaussian noise (blue) and

sample IC1 component (green) computed by ICA-based SBF attenuation algorithm. In this subplot, the plotted IC1 component pertains to the case in which simulated

channel 1 was selected as component with highest coefficient of spatial uniformity. (D) Frequency of selected simulated channels with highest coefficient of spatial

uniformity by ICA-based SBF attenuation algorithm (E) Percentages of the variance-explained by each of the principal components (i.e., PC1, PC12, PC123) of

PCA-based SBF attenuation algorithm. Subplots (D,E) correspond to all fifty rounds of simulations.

6.34, r = 0.63], and IC1 [p < 0.001, W(98) = 4.90, r = 0.49]. On
the other hand, we observed non-significant differences between
PC1 and PC123 [p = 0.14, W(98) = 1.52, r = 0.15], PC1 and
IC1 [p = 0.12, W(98) = 1.52, r = 0.15], as well as PC123 and IC1
[p= 0.13,W(98) = 1.52, r = 0.15]. Figure 3, subplot C1, illustrates
these results.

3.1.2. Criterion 2.2: H(Y|X) ≤ H(Y|X′)
Kruskal-Wallis implied a significant effect of choice of
components [p < 0.001, H(4, 249) = 234.13, r = 0.94]. Post-
hoc comparison indicated a significant reduction of SBF-related
information in frontal brain activity of participants by PC1 [p <

0.001, W(98) = 8.61, r = 0.86, MH(Y|X) = 4.03, SDH(Y|X) = 0.01,
MPC1 = 4.06, SDPC1= 0.03], PC12 [p < 0.001,W(98) = 8.61, r =
0.86, MPC12 = 4.13, SDPC12 = 0.01]. Interestingly, application
of PC123 resulted in a significantly reduced information [p <

0.001, W(98) = 8.6, r = 0.86, MPC12 = 3.96, SDPC12 = 0.02], and
IC1 [p < 0.001, W(98) = 8.61, r = 0.86, MIC1 = 4.05, SDIC1 =
0.02]. Additionally, this comparison indicated that adaptation
of PC1 resulted in a significantly more reduced SBF-related
information than PC123 [p < 0.001, W(98) = 8.61, r = 0.86] as
well as IC1 [p < 0.001, W(98) = 6.61, r = 0.86]. In addition, we
found PC12 significantly more effective than PC1 [p < 0.001,
W(98) = 8.61, r = 0.86], PC123 [p < 0.001, W(98) = 8.61, r =
0.86] and IC1 [p < 0.001, W(98) = 8.61, r = 0.86]. Last, we
observed a significant differences between IC1 and PC123 was
significant [W(98) = 8.61, r = 0.86]. Figure 3, subplot C2, shows
these results.

3.1.3. Criterion 2.3: H(X|Y) ≤ H(X′|Y)
Kruskal-Wallis indicated a significant effect of choice of
components in resulting fNIRS data [p < 0.001, H(4, 249) =

238.00, r = 0.96]. Whereas post-hoc comparison suggested that
PC123 was ineffective in satisfying this Criterion 2.3 [PC123: p
< 0.001, W(98) = 8.61, r = 0.86, MH(X|Y) = 3.49, SDH(X|Y) =
0.04,MPC123 = 3.421, SDPC123 = 0.04] all other components were
significantly effective in reducing the degree of correspondence
between SBF and fNIRS time series of frontal brain activity [PC1:
p < 0.001, W(98) = 8.61, r = 0.86, MPC1 = 4.17, SDPC1 = 0.01,
PC12: p< 0.001,W(98) = 8.61, r= 0.86,MPC12 = 4.22, SDPC12 =
0.01, IC1: p< 0.001,W(98) = 8.61, r= 0.86,MIC1 = 3.74, SDIC1 =
0.03]. In addition, this comparison indicated that adaptation of
PC12 yielded a significantly better performance than PC1 [p <

0.001, W(98) = 8.23, r = 0.82], PC123 [p < 0.001, W(98) = 8.61,
r = 0.86], as well as IC1 [p < 0.001, W(98) = 8.61, r = 0.86].
Moreover, PC1 was significantly more effective than PC123 [p <

0.001, W(98) = 8.61, r = 0.86] and IC1 [p < 0.001, W(98) =
8.61, r = 0.86]. Additionally, IC1 was significantly different from
PC123 [W(98) = 8.61, r = 0.86]. Figure 3, subplot C3, plots
these results.

3.1.4. Criterion 2.4: H(X|X′) ≤ H(X|Y)
Kruskal-Wallis indicated a significant effect of choice of
components [p < 0.001, H(4, 249) = 239.04, r = 0.96]. Post-
hoc comparison suggested that all components were significantly
effective in retaining the correspondence between time series of
frontal activity before and after application of SBF attenuation
[PC1: p < 0.001, W(98) = 8.61, r = 0.86, MH(X|Y) = 3.49,
SDH(X|Y) = 0.04 MPC1 = 3.32, SDPC1 = 0.01, PC12: p < 0.001,
W(98) = 8.61, r = 0.86, MPC1 = 3.28, SDPC12 = 0.03, PC123:
p < 0.001, W(98) = 8.61, r = 0.86, MPC123 = 3.41, SDPC123 =
0.05, IC1: p < 0.001, W(98) = 8.61, r = 0.86, MIC1 = 3.38,
SDIC1 = 0.01]. Additionally, this comparison implied that PC12
resulted in significantly higher correspondence between time
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FIGURE 3 | Simulated Data. C1: Criterion 2.1: TE(Y → X ′) ≤ TE(Y → X ), C2: Criterion 2.2: H(Y |X ) ≤ H(Y |X ′), C3: Criterion 2.3: H(X|Y ) ≤ H(X ′|Y ), C4: Criterion 2.4:

H(X|X ′) ≤ H(X|Y ), C5: Criterion 2.5: H(X|X ′) ≤ H(X ′). In these subplots, IC1, PC1, PC12, and PC123 refer to the measured quantity by these components after their

respective SBF attenuation algorithms. Asterisks mark the components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

series of frontal brain activity before and after SBF attenuation
than PC1 [p < 0.001, W(98) = 8.61, r = 0.86], PC123 [p <

0.001, W(98) = 8.61, r = 0.86], as well as IC1 [p < 0.001,
W(98) = 8.613828 r = 0.861383]. Similarly, PC1 performed
significantly better than PC123 [p < 0.001, W(98) = 8.61,
r = 0.86] and IC1 [p < 0.001, W(98) = 8.61, r = 0.86].
Lastly, IC1 was significantly more effective than PC123 [p <

0.001, W(98) = 8.61, r = 0.86]. Figure 3, subplot C4, shows
these results.

3.1.5. Criterion 2.5: H(X|X′) ≤ H(X′)
Pairwise Wilcoxon rank sum suggested that all components
preserved information content of frontal activity [PC1:p< 0.001,
W(98) = 8.61, r = 0.86, MH(X|X′) = 3.32, SDH(X|X′) = 0.05,
MH(X′) = 3.48, SDH(X′) = 0.06, PC12:p< 0.001,W(98) = 8.61, r=
0.86, MH(X′) = 3.50, SDH(X′) = 0.07, PC123: p < 0.001, W(98) =
8.61, r = 0.86, MH(X′) = 3.46, SDH(X′) = 0.07, IC1: p < 0.001,
W(98) = 8.61, r= 0.86,MH(X′) = 3.48, SDH(X′) = 0.06]. Figure 3,
subplot C5, depicts these results.

Kruskal-Wallis test indicated a significant effect of choice of
component on preservation of information content of fNIRS
time series [i.e., H(X′) − H(X|X′) ≥ 0] [p < 0.001, H(3, 199) =
186.57, r = 0.94]. Post-hoc paired comparison implied a
significantly higher preservation of information content of
frontal brain activity with respect to PC12 in comparison with
PC1 [p < 0.001, W(98) = 8.61, r = 0.86, MPC1 = 0.15, SDPC1 =
0.01, MPC12 = 0.22, SDPC1 = 0.01], PC123 [p < 0.001, W(98) =
8.61, r = 0.86, MPC123 = 0.06, SDPC1 = 0.03], as well as IC1
[p < 0.001,W(98) = 8.61, r = 0.86,MIC1 = 0.09, SDIC1 = 0.01].

FIGURE 4 | Comparison of maximal preservation of information content of

frontal brain activity (i.e., H(X ′)− H(X|X ′) ≥ 0, Criterion 2.5) after application of

PCA- and ICA-based SBF attenuation algorithms on simulated data. Asterisks

mark the components with significant difference (*p < 0.05, **p < 0.01, ***p <

0.001).

PC1 was significantly more effective than and PC123 [p < 0.001,
W(98) = 8.61, r = 0.86] and IC1 [p < 0.001, W(98) = 8.61, r =
0.86]. Last, we found that IC1 was significantly more effective
than PC123 [p < 0.001,W(98) = 8.61, r = 0.86]. Figure 4 shows
these results.
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FIGURE 5 | VFT - (A) Grand-average of TE values for Lag = 1, . . . , 100 (i.e., up to 10 s of lag, sampling rate of 10.0 Hz in our device). Maximum TE was at Lag = 37

(equivalent to time = 3.7 s) (B) Sample spatial map of eigenvectors pertinent to first three principal components along with a sample PFC time series of a participant

(in matrix forms for better visualization purpose) before and after application of PC1, PC12, and PC123 components. Distinctive effect of these components on the

simulated data is evident in this subplot. All matrices are scaled within [0, 1] interval for ease of comparison. (C) Sample SBF (blue) and the corresponding IC1

component (green) computed by ICA-based SBF attenuation algorithm. The depicted IC1 component pertains to the case in which Right1 was selected as

component with highest coefficient of spatial uniformity. (D) Frequency of selected channels as a component with highest coefficient of spatial uniformity by ICA-based

SBF attenuation algorithm for VFT dataset. (E) Percentages of the variance-explained by each of the principal components (i.e., PC1, PC12, PC123) of PCA-based

SBF attenuation algorithm for VFT dataset.

3.2. VFT
Figure 5A corresponds to the grand-average of the computed TE
values for lags 1 through 100 (i.e., up to 10 s of lag, considering
the sampling rate of 10.0 Hz of our device) in VFT. This subplot
indicates that maximum SBF transferred information was, on
average, at lag = 37 (i.e., 3.7 s). This was the lag we used
during our analyses. Wilcoxon rank sum test implied significant
effect of SBF on fNIRS time series of frontal brain activity of
participants while performing VFT working memory task [p <

0.001,W(125) = 7.82,M = 0.44, SD= 0.15, r = 0.87].
Figure 5B visualizes a sample spatial map of eigenvectors

by PCA-based SBF attenuation algorithm along with a sample
participant’s PFC time series (in matrix forms for better
visualization purpose) before and after application of PC1, PC12,
and PC123 components. Distinctive effect of these components
on participant’s PFC time series is evident in this subplot. We
observed significant differences between PFC time series before
and after application of PC1 [p < 0.001, W(2, 398) = 6.67, r =
0.14,MBefore = 149.50, SDBefore = 19.13,MPC1 = 144.50, SDPC1 =
18.76], PC12 [p < 0.001, W(2, 398) = 12.98, r = 0.27, MPC12 =
139.27, SDPC12 = 8.76], and PC123 [p < 0.001, W(2, 398) = 6.66,
r = 0.14,MPC123 = 145.00, SDPC123 = 16.23].

Figure 5C shows a sample SBF (blue) along with the
computed IC1 by ICA-based SBF attenuation algorithm (green)
(pertinent to the case in which Right1 was selected as the
component with highest coefficient of spatial uniformity).
Although this algorithm resulted in selection of different
channels as the component with highest coefficient of spatial
uniformity (Figure 5D, Left1 = 23.46%, Left3 = 19.75%, Right1 =

32.10%, Right3 = 24.69%), these components were significantly
correlated with SBF (Left1: 0.74, p < 0.001, Left3: r = 0.76, p <

0.001,Right1: r= 0.80, p< 0.001, andRight3: r= 0.86, p< 0.001).
On the other hand, PCA-based algorithm (Figure 5E) exhibited
a higher specificity in selecting the principal components (PC1=
95.15%, PC12= 4.50%, PC123= 0.35%).

In what follows, we examine the effectiveness of PCA- and
ICA-based SBF attenuation algorithms on reduction of observed
impact of SBF on fNIRS frontal brain activity as well as their
utility in preservation of information content of this activity in
resulting fNIRS time series through investigation of Criterion 2.1
through Criterion 2.5.

3.2.1. Criterion 2.1: TE(Y → X′) ≤ TE(Y → X)
Kruskal-Wallis test implied significant effect of choice of
components [p < 0.001, H(4, 629) = 237.33, r = 0.61]. Moreover,
post-hoc comparison implied that all components significantly
reduced SBF effect in comparison with TE(Y → X) [PC1:
p < 0.001,W(250) = 7.82,M = 0.009, SD = 0.03, r = 0.49, PC12:
p< 0.001,W(250) = 7.82,M= 0.009, SD= 0.03, r= 0.49, PC123:
p < 0.001, W(250) = 7.82, M = 0.04, SD = 0.03, r = 0.49, IC1:
p < 0.001, W(250) = 7.82,M = 0.04, SD= 0.03, r= 0.49]. On the
other hand, whereas this comparison indicated non-significant
difference between PC1 and PC12 [p= 1.00,W(250) = 0.002, r =
0.0] as well as PC123 and IC1 [p = 0.41, W(250) = 0.83, r =
0.05), we found significant differences in reduction of TE between
PC1 and PC123 [p < 0.001, W(250) = 6.38, r = 0.40], PC1 and
IC1[p < 0.001, W(250) = 6.90, r = 0.43], PC12 and PC123 [p =
< 0.001,W(250) = 6.62, r = 0.42], as well as PC12 and IC1 [p <
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FIGURE 6 | VFT. C1: Criterion 2.1: TE(Y → X ′) ≤ TE(Y → X ), C2: Criterion 2.2: H(Y |X ) ≤ H(Y |X ′), C3: Criterion 2.3: H(X|Y ) ≤ H(X ′|Y ), C4: Criterion 2.4:

H(X|X ′) ≤ H(X|Y ), C5: Criterion 2.5: H(X|X ′) ≤ H(X ′). In these subplots, IC1, PC1, PC12, and PC123 refer to the measured quantity by these components after their

respective SBF attenuation algorithms. Asterisks mark the components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

0.001, W(250) = 6.51, r = 0.41]. Figure 6, subplot C1, illustrates
these results.

3.2.2. Criterion 2.2: H(Y|X) ≤ H(Y|X′)
Kruskal-Wallis implied a significant effect of choice of
components [p < 0.001, H(4, 629) = 47.37, r = 0.27]. Post-
hoc comparison indicated a significant reduction of SBF-related
information in frontal brain activity of participants by PC1
[p < 0.001, W(250) = 7.82, MH(Y|X) = 1.52, SDH(Y|X) = 0.50,
MPC1 = 1.62, SDPC1 = 0.50, r = 0.49], PC12 [p < 0.001,
W(250) = 7.81, MPC12 = 1.63, SDPC12 = 0.50, r = 0.49], and
IC1 [p < 0.001, W(250) = 7.81, MIC1 = 1.57, SDIC1 = 0.50, r =
0.49]. However, it was non-significant with respect to PC123
[p = 0.20, W(250) = 1.28, MPC123 = 1.53, SDPC1 = 0.50, r =
0.08]. Additionally, this comparison indicated that adaptation
of PC1 resulted in a significantly more reduced SBF-related
information than PC123 [p < 0.001,W(250) = 7.81, r = 0.49] as
well as IC1 [p < 0.001, W(250) = 7.79, r = 0.49]. Similarly, we
found PC12 significantly more effective than PC123 [p < 0.001,
W(250) = 7.82, r = 0.49] and IC1 [p < 0.001, W(250) = 7.55,
r = 0.49]. Additionally, difference between IC1 and PC123 was
significant [p < 0.001, W(250) = 7.82, r = 0.49]. However, we
found non-significant difference between PC1 and PC12 [p =
0.15, W(250) = 1.46, r = 0.09]. Figure 6, subplot C2, shows
these results.

3.2.3. Criterion 2.3: H(X|Y) ≤ H(X′|Y)
Kruskal-Wallis indicated a significant effect of choice of
components in resulting fNIRS data [p < 0.001, H(4, 629) =
83.87, r = 0.36]. Post-hoc comparison suggested that all
components were significantly effective in reducing the degree

of correspondence between SBF and fNIRS time series of frontal
brain activity [PC1:p < 0.001, W(250) = 7.62, MH(X|Y) = 5.94,
SDH(X|Y) = 1.67,MPC1= 7.66, SDPC1 = 2.04, r = 0.48, PC12: p <

0.001, W(250) = 7.82, MPC12 = 8.37, SDPC12 = 2.26, r = 0.49,
PC123: p< 0.001,W(250) = 7.82,MPC123 = 7.16, SDPC123 = 1.71,
r = 0.49, IC1: p < 0.001, W(250) = 3.90, MIC1 = 5.81, SDIC1 =
1.64, r = 0.25]. In addition, this comparison indicated that
adaptation of PC12 yielded a significantly better performance
than PC1 [p< 0.001,W(250) = 5.10, r= 0.32], PC123 [p< 0.001,
W(250) = 5.21, r= 0.33], as well as IC1 [p< 0.001,W(250) = 7.79,
r = 0.49]. Moreover, PC1 was significantly more effective than
PC123 [p < 0.01, W(250) = 2.92, r = 0.18] and IC1 [p < 0.001,
W(250) = 7.53, r = 0.47]. Additionally, PC123 was significantly
different from IC1 [p< 0.001,W(250) = 7.65, r= 0.48]. Figure 6,
subplot C3, plots these results.

3.2.4. Criterion 2.4: H(X|X′) ≤ H(X|Y)
Kruskal-Wallis indicated a significant effect of choice of
components [p < 0.001, H(4, 629) = 136.25, r = 0.46]. Post-
hoc comparison suggested that all components were significantly
effective in retaining the correspondence between time series of
frontal activity before and after application of SBF attenuation
[PC1: p < 0.001, W(250) = 7.25, MH(X|Y) = 5.94, SDH(X|Y) =
1.67, MPC1 = 3.32, SDPC1 = 1.64, r = 0.46, PC12: p < 0.001,
W(250) = 7.54,MPC12 = 2.88, SDPC12 = 1.63, r= 0.48, PC123:p<

0.001, W(250) = 5.49, MPC123 = 4.38, SDPC123 = 1.65, r = 0.35,
IC1: p < 0.001, W(250) = 4.40, MIC1 = 4.84, SDIC1 = 1.63, r =
0.28]. Additionally, this comparison implied that PC12 resulted
in significantly higher correspondence between time series of
frontal brain activity before and after SBF attenuation than PC1
[p< 0.001,W(250) = 7.82, r= 0.49], PC123 [p< 0.001,W(250) =
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FIGURE 7 | Comparison of maximal preservation of information content of

frontal brain activity (i.e., H(X ′)− H(X|X ′) ≥ 0, Criterion 2.5) after application of

PCA- and ICA-based SBF attenuation algorithms on VFT. Asterisks mark the

components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

7.82, r = 0.49], as well as IC1 [p < 0.001, W(250) = 7.82, r =
0.49]. This was followed by significantly better performance by
PC1 in contrast with PC123 [p < 0.001,W(250) = 7.82, r = 0.49]
and IC1 [p < 0.001,W(250) = 7.82, r = 0.49]. Lastly, PC123 was
significantly more effective than IC1 [p = 0.001, W(250) = 7.82,
r = 0.49]. Figure 6, subplot C4, shows these results.

3.2.5. Criterion 2.5: H(X|X′) ≤ H(X′)
Pairwise Wilcoxon rank sum suggested that all components
preserved information content of frontal activity [PC1: p < 0.001
W(250) = 7.76, MH(X|X′) = 3.32, SDH(X|X′) = 1.64, MH(X′) =
11.89, SDH(X′) = 5.73, r = 0.49, PC12: p < 0.001 W(250) = 7.81,
MH(X|X′) = 2.88, SDH(X|X′) = 1.63, MH(X′) = 16.75, SDH(X′) =
7.61, r = 0.49, PC123: p < 0.001 W(250) = 7.62, MH(X|X′) =
4.38, SDH(X|X′) = 1.65, MH(X′) = 9.66, SDH(X′) = 4.23, r = 0.48,
IC1: p< 0.001,W(250) = 5.37,MH(X|X′) = 4.84, SDH(X|X′) = 1.63,
MH(X′) = 6.38, SDH(X′) = 1.82, r = 0.34]. Figure 6, subplot C5,
depicts these results.

Kruskal-Wallis test indicated a significant effect of choice
of component on preservation of information content of
fNIRS time series [i.e., H(X′) − H(X|X′) ≥ 0] [p < 0.001,
H(3, 503) = 68.52, r = 0.37]. Post-hoc paired comparison implied
a significantly higher preservation of information content of
frontal brain activity with respect to PC12 in comparison with
PC1 [p < 0.001, W(250) = 7.82, MPC12 = 13.86, SDPC12 = 8.42,
MPC1 = 8.57, SDPC1 = 6.47], PC123 [p < 0.001, r = 0.49,
W(250) = 7.52, MPC123 = 5.27, SDPC123 = 4.86, r = 0.47], as
well as IC1 [p< 0.001,W(250) = 7.82,MIC1 = 1.54, SDIC1 = 2.15,
r= 0.49]. Furthermore, PC1 was significantly more effective than
PC123 [p < 0.001,W(250) = 6.32, r = 0.40] and IC1 [p < 0.001,
W(250) = 7.82, r = 0.49]. Lastly, we found PC123 significantly
better than IC1 [p < 0.001, W(250) = 7.72, r = 0.49]. Figure 7
shows these results.

3.3. CTE
Figure 8A corresponds to the grand-average of the computed TE
values for lags 1 through 100 (i.e., up to 10 s of lag, considering
the sampling rate of 10.0 Hz) in CTE. This subplot indicates that

maximum SBF transferred information was, on average, at lag =
30 (i.e., 3.0 s). This was the lag we used during our analyses.
Wilcoxon rank sum test implied significant effect of SBF on
fNIRS time series of frontal brain activity of participants during
conversation [p < 0.001,W(17) = 3.72,M = 0.13, SD= 0.13].

Figure 8B visualizes a sample spatial map of eigenvectors
by PCA-based SBF attenuation algorithm along with a sample
participant’s PFC time series (in matrix forms for better
visualization purpose) before and after application of PC1, PC12,
and PC123 components. Distinctive effect of these components
on participant’s PFC time series is evident in this subplot. All
matrices are scaled within [0, 1] interval for ease of comparison.
We observed significant differences between PFC time series
before and after application of PC1 [p< 0.001,W(87, 998) = 78.24,
r = 0.26, MBefore = 0.71, SDBefore = 2.02, MPC1 = 0.03, SDPC1 =
0.28], PC12 [p < 0.001, W(87, 998) = 102.05, r = 0.34, MPC12 =
0.004, SDPC12 = 0.13], and PC123 [p < 0.001,W(87, 998) = 76.69,
r = 0.26,MPC123 = 0.02, SDPC123 = 0.37].

Figure 8C shows a sample SBF (blue) along with the
computed IC1 by ICA-based SBF attenuation algorithm (green)
(pertinent to the grand-average of the cases in which Right1
was selected as the component with highest coefficient of spatial
uniformity). Although this algorithm resulted in selection of
different channels as the component with highest coefficient of
spatial uniformity (Figure 8D, Left1 = 57.89%, Left3 = 10.53%,
Right1 = 10.53%, Right3 = 21.05%), these components were
significantly correlated with simulated noise (Left1: 0.79, p <

0.001, Left3: r = 0.67, p < 0.001, Right1: r = 0.81, p < 0.001,
and Right3: r = 0.76, p < 0.001). On the other hand, PCA-
based algorithm (Figure 8E) exhibited a higher specificity in
selecting the principal components (PC1 = 97.42%, PC12 =
2.43%, PC123= 0.15%).

In what follows, we examine the effectiveness of PCA- and
ICA-based SBF attenuation algorithms on reduction of observed
impact of SBF on fNIRS frontal brain activity as well as their
utility in preservation of information content of this activity in
resulting fNIRS time series through investigation of Criterion 2.1
through Criterion 2.5.

3.3.1. Criterion 2.1: TE(Y → X′) ≤ TE(Y → X)
Kruskal-Wallis implied a significant effect of choice of
components [p < 0.001, H(4, 89) = 29.66, r = 0.57]. In
addition, post-hoc comparison suggested that all components
significantly reduced SBF effect in comparison with TE(Y → X)
[PC1: p < 0.001, W(34) = 3.72, M = 0.010, SD = 0.03, r = 0.62,
PC12: p < 0.001,W(34) = 3.72,M = 0.008, SD = 0.03, r = 0.62,
PC123: p < 0.001, W(34) = 3.72, M = 0.016, SD = 0.03, r =
0.62, IC1: < 0.001, W(34) = 3.72, M = 0.017, SD = 0.03, r =
0.62]. On the other hand, whereas this comparison indicated
non-significant difference between PC1 and PC12 [p = 0.95,
W(34) = 0.07, r = 0.01] as well as PC123 and IC1 [p = 0.65,
W(34) = 0.46, r = 0.08], we found significant differences in
reduction of TE between PC1 and PC123 [p < 0.001, W(34) =
3.42, r = 0.57], PC1 and IC1[p < 0.001,W(34) = 3.68, r = 0.61],
PC12 and PC123 [p < 0.05, W(34) = 2.11, r = 0.35], as well
as PC12 and IC1 [p < 0.03, W(34) = 2.55, r = 0.43]. Figure 9,
subplot C1, shows these results.
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FIGURE 8 | CTE - (A) Grand-average of TE values for Lag = 1, . . . , 100 (i.e., up to 10 s of lag, considering the sampling rate of 10.0 Hz in our device). Maximum TE

was at Lag = 30 (equivalent to time = 3.0 s) (B) Sample spatial map of eigenvectors by PCA-based SBF attenuation algorithm along with a sample participant’s PFC

time series (in matrix forms for better visualization purpose) before and after application of PC1, PC12, and PC123 components. Distinctive effect of these

components on participant’s PFC time series is evident in this subplot. All matrices are scaled within [0, 1] interval for ease of comparison. (C) Sample SBF (blue) and

the corresponding IC1 component computed by ICA-based SBF attenuation algorithm (blue). The depicted IC1 component pertains to the case in which Right1 was

selected as component with highest coefficient of spatial uniformity. (D) Frequency of selected channels as a component with highest coefficient of spatial uniformity

by ICA-based SBF attenuation algorithm for CTE dataset. (E) Percentages of the variance-explained by each of the principal components (i.e., PC1, PC12, PC123) of

PCA-based SBF attenuation algorithm for CTE dataset.

FIGURE 9 | CTE. C1: Criterion 2.1: TE(Y → X ′) ≤ TE(Y → X ), C2: Criterion 2.2: H(Y |X ) ≤ H(Y |X ′), C3: Criterion 2.3: H(X|Y ) ≤ H(X ′|Y ), C4: Criterion 2.4:

H(X|X ′) ≤ H(X|Y ), C5: Criterion 2.5: H(X|X ′) ≤ H(X ′). In these subplots, IC1, PC1, PC12, and PC123 refer to the measured quantity by these components after their

respective SBF attenuation algorithms. Asterisks mark the components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

3.3.2. Criterion 2.2: H(Y|X) ≤ H(Y|X′)
Kruskal-Wallis implied a significant effect of choice of
components [p < 0.05, H(4, 89) = 10.55, r = 0.34]. Post-hoc

comparison implied a significant reduction of SBF-related
information in frontal brain activity of participants by PC1
[p < 0.001, W(34) = 3.72, MH(Y|X) = 1.04, SDH(Y|X) = 0.47,
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MPC1 = 1.31 SDPC1 = 0.47, r = 0.62], PC12 [p < 0.001,W(34) =
3.72, MPC12 = 1.31, SDPC12 = 0.47, r = 0.69], and IC1 [p <

0.001, W(34) = 3.72, MIC1 = 1.27, SDIC1 = 0.47, r = 0.69].
However, it indicated non-significant with respect to PC123
[p = 0.29, W(34) = 1.07, MPC123 = 1.04, SDPC123 = 0.47, r =
0.18]. Moreover, this comparison indicated that adaptation
of PC1 resulted in a significantly more reduced SBF-related
information than PC123 [p < 0.001, W(34) = 3.72, r = 0.69]
as well as IC1 [p < 0.001, W(34) = 3.72, r = 0.69]. Similarly,
we found PC12 significantly more effective than PC123 [p <

0.001, W(34) = 3.72, r = 0.69] and IC1 [p < 0.001, W(34) =
3.72, r = 0.69]. Additionally, difference between IC1 and PC123
was significant [p < 0.001, W(34) = 3.72, r = 0.69]. However,
we found non-significant difference between PC1 and PC12
[p = 0.45, W(34) = 0.76, r = 0.13]. Figure 9, subplot C2, shows
these results.

3.3.3. Criterion 2.3: H(X|Y) ≤ H(X′|Y)
We observed a significant effect of choice of components in
resulting fNIRS data [p < 0.01, H(4, 89) = 16.47, r = 0.51]. Post-
hoc comparison suggested that all components were significantly
effective in reducing the degree of correspondence between SBF
and fNIRS time series of frontal brain activity [PC1: p < 0.001,
W(34) = 3.72, M(X|Y) = 11.58, SD(X|Y) = 1.53, MPC1 = 13.77,
SDPC1 = 3.02, r = 0.69, PC12: p < 0.001,W(34) = 3.72,MPC12 =
15.42, SDPC12 = 3.88, r = 0.69, PC123: p < 0.001, W(34) =
3.72, MPC123 = 14.07, SDPC123 = 3.11, r = 0.69, IC1: p <

0.001, W(34) = 3.72, MIC1 = 12.80, SDIC1 = 1.98, r = 0.69].
Additionally, this comparison implied that adaptation of PC12
yielded a significantly better performance than PC1 [p < 0.03,
W(34) = 2.20, r = 0.37], PC123 [p < 0.03, W(34) = 2.46, r =
0.41], as well as IC1 [p < 0.01,W(34) = 2.90, r = 0.48]. However,
we found non-significant difference between PC1 and PC123
[p = 0.74, W(34) = 0.33, r = 0.06], PC1 and IC1 [p = 0.20,
W(34) = 1.28, r = 0.21], as well as PC123 and IC1 [p = 0.17,
W(34) = 1.42, r= 0.24]. Figure 9, subplot C3, shows these results.

3.3.4. Criterion 2.4: H(X|X′) ≤ H(X|Y)
Kruskal-Wallis indicated significant effect of choice of
components [p < 0.001, H(4, 89) = 23.52, r = 0.51]. Post-
hoc comparison suggested that all components were significantly
effective in retaining the correspondence between time series of
frontal activity before and after application of SBF attenuation
algorithms in comparison with SBF [PC1: p < 0.001, W(34) =
3.72, MH(X|Y) = 11.58, SDH(X|Y) = 1.53, MPC1 = 9.72,
SDPC1 = 1.56, r = 0.69, PC12: p < 0.001,W(34) = 3.72,MPC12 =
9.40, SDPC12 = 1.55, r = 0.69, PC123: p < 0.001, W(34) = 3.72,
MPC123 = 10.17, SDPC123 = 1.55, r = 0.69, IC1: p < 0.001,
W(34) = 3.72,MIC1 = 10.57, SDIC1 = 1.55, r = 0.69]. Moreover,
this comparison implied that PC12 resulted in significantly
higher correspondence between time series of frontal brain
activity before and after SBF attenuation than PC1 [p < 0.001,
W(34) = 3.72, r = 0.69], PC123 [p < 0.001, W(34) = 4.24, r =
0.71], as well as IC1 [p< 0.001,W(34) = 3.72, r= 0.69]. This was
followed by significantly better performance by PC1 in contrast
with PC123 [p < 0.001, W(34) = 3.72, r = 0.69] and IC1 [p <

0.001, W(34) = 3.72, r = 0.69]. Lastly, PC123 was significantly

FIGURE 10 | Comparison of maximal preservation of information content of

frontal brain activity (i.e., H(X ′)− H(X|X ′) ≥ 0, Criterion 2.5) after application of

PCA- and ICA-based SBF attenuation algorithms on CTE. Asterisks mark the

components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

more effective than IC1 [p = p < 0.001,W(34) = 3.72, r = 0.69].
Figure 9, subplot C4, shows these results.

3.3.5. Criterion 2.5: H(X|X′) ≤ H(X′)
Pairwise Wilcoxon rank sum suggested that all components
preserved information content of frontal activity [PC1: p< 0.001,
W(34) = 3.72, MH(X|X′) = 9.72, SDH(X|X′) = 1.56, MH(X′) =
18.17, SDH(X′) = 7.48, r = 0.69, PC12: p < 0.001, W(34) = 3.72,
MH(X|X′) = 9.40, SDH(X|X′) = 1.55, MH(X′) = 27.66, SDH(X′) =
11.71, r = 0.69 PC123: p < 0.001, W(34) = -3.72, MH(X|X′) =
10.17, SDH(X|X′) = 1.55, MH(X′) = 20.58, SDH(X′) = 7.24, r =
0.88, IC1: p< 0.001,W(34) = 3.72,MH(X|X′) = 10.57, SDH(X|X′) =
1.55MH(X′) = 12.84, SDH(X′) = 2.00, r= 0.69]. Figure 9, subplot
C5, depicts these results.

Kruskal-Wallis test indicated a significant effect of choice of
component on preservation of information content of fNIRS
time series [i.e.,H(X′)−H(X|X′) ≥ 0] [p< 0.01,H(3, 71) = 11.15,
r = 0.39]. Post-hoc comparison implied significantly higher
preservation of information content of frontal brain activity with
respect to PC12 in comparison with PC1 [p < 0.001, W(34) =
3.51, MPC12 = 18.27, SDPC12 = 10.81, MPC1 = 8.45, SDPC1 =
7.04], r= 0.59, PC123 [p< 0.001,W(34) = 3.72,MPC123 = 10.41,
SDPC123 = 6.45, r= 0.62], as well as IC1 [p< 0.001,W(34) = 3.72,
MIC1 = 2.27, SDIC1 = 1.20, , r = 0.62]. Furthermore, PC1 was
significantly more effective than IC1 [p < 0.001, W(34) = 3.33,
r = 0.56]. Lastly, we found PC123 significantly better than IC1
[< 0.001,W(34) = 3.68, r= 0.61]. However, this test implied that
difference between PC1 and PC123 was non-significant [p= 0.29,
W(34) = 1.07, r = 0.18]. Figure 10 shows these results.

3.4. LMT
Figure 11A corresponds to the grand-average of the computed
TE values for lags 1 through 100 (i.e., up to 10 s of lag, considering
the sampling rate of 10.0 Hz of our device) in LMT. This subplot
indicates that maximum SBF transferred information was, on
average, at lag = 32 (i.e., 3.2 s). This was the lag we used during
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FIGURE 11 | LMT - (A) Grand-average of TE values for Lag = 1, . . . , 100 (i.e., up to 10 s of lag, considering the sampling rate of 10.0 Hz in our device). Maximum TE

was at Lag = 32 (equivalent to time = 3.2 s) (B) Sample spatial map of eigenvectors by PCA-based SBF attenuation algorithm along with a sample participant’s PFC

time series (in matrix forms for better visualization purpose) before and after application of PC1, PC12, and PC123 components. Distinctive effect of these

components on participant’s PFC time series is evident in this subplot. All matrices are scaled within [0, 1] interval for ease of comparison. (C) Sample SBF (blue) and

the corresponding IC1 component computed by ICA-based SBF attenuation algorithm (green). The depicted IC1 component pertains to the case in which Right1 was

selected as component with highest coefficient of spatial uniformity. (D) Frequency of selected channels as a component with highest coefficient of spatial uniformity

by ICA-based SBF attenuation algorithm for LMT dataset. (E) Percentages of the variance-explained by each of the principal components (i.e., PC1, PC12, PC123) of

PCA-based SBF attenuation algorithm for LMT dataset.

our analyses. Wilcoxon rank sum test implied significant effect of
SBF on fNIRS time series of frontal brain activity of participants
while performing VFTworkingmemory task [p< 0.001,W(25) =
4.46,M = 0.58, SD= 0.19, r = 0.70].

Figure 11B visualizes a sample spatial map of eigenvectors
by PCA-based SBF attenuation algorithm along with a sample
participant’s PFC time series (in matrix forms for better
visualization purpose) before and after application of PC1, PC12,
and PC123 components. Distinctive effect of these components
on participant’s PFC time series is evident in this subplot. All
matrices are scaled within [0, 1] interval for ease of comparison.
We observed significant differences in PFC time series between
before and after application of PC1 [p < 0.001, W(3, 358) =
7.70, r = 0.13, MBefore = 216.53, SDBefore = 32.81, MPC1 =
211.56, SDPC1 = 19.21], PC12 [p < 0.001, W(3, 358) = 9.03,
r = 0.16, MPC12 = 210.53, SDPC12 = 13.97], and PC123
[p < 0.001, W(3, 358) = 6.34, r = 0.11, MPC123 = 212.60,
SDPC123 = 12.86].

Figure 11C shows a sample SBF (blue) along with the
computed IC1 by ICA-based SBF attenuation algorithm (green)
(pertinent to the case in which Right1 was selected as the
component with highest coefficient of spatial uniformity).
Although this algorithm resulted in selection of different
channels as the component with highest coefficient of spatial
uniformity (Figure 11D, Left1 = 26.92%, Left3 = 23.08%,
Right1 = 30.77%, Right3 = 19.23%), these components were
significantly correlated with simulated noise (Left1: 0.77, p <

0.001, Left3: r = 0.73, p < 0.001, Right1: r = 0.70,p <

0.001, and Right3: r = 0.76, p < 0.001). On the other hand,

PCA-based algorithm (Figure 11E) exhibited a higher specificity
in selecting the principal components (PC1 = 94.53%, PC12 =
5.11%, PC123= 0.36%).

In what follows, we examine the effectiveness of PCA- and
ICA-based SBF attenuation algorithms on reduction of observed
impact of SBF on fNIRS frontal brain activity as well as their
utility in preservation of information content of this activity in
resulting fNIRS time series through investigation of Criterion 2.1
through Criterion 2.5.

3.4.1. Criterion 2.1: TE(Y → X′) ≤ TE(Y → X)
Kruskal-Wallis test implied significant effect of choice of
components [p < 0.001, H(4, 129) = 56.39, r = 0.66]. Moreover,
post-hoc comparison implied that all components significantly
reduced SBF effect in comparison with TE(Y → X) [PC1:
p < 0.001, W(50) = 4.46, M = 0.16, SD = 0.15, r = 0.62,
PC12: p < 0.001, W(50) = 4.43, M = 0.08, SD = 0.13, r = 0.61,
PC123:p < 0.001, W(50) = 4.46, M = 0.18, SD = 0.16, r = 0.62,
IC1: p < 0.001, W(50) = 4.43, M = 0.18, SD = 0.17, r = 0.61].
Post-hoc comparison indicated that PC12 significantly performed
better in attenuation of the effect of SBF than PC1 [p < 0.01,
W(50) = 2.73, r = 0.38], PC123 [p < 0.01, W(50) = 3.04, r =
0.42], and IC1 [p < 0.001,W(50) = 3.34, r = 0.46]. On the other
hand, we observed non-significant differences between PC1 and
PC123 [p = 0.36, W(50) = 0.93, r = 0.13], PC1 and IC1 [p =
0.47, W(50) = 0.72, r = 0.10], as well as PC123 and IC1 [p =
0.75, W(50) = 0.32, r = 0.04]. Figure 12, subplot C1, illustrates
these results.
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FIGURE 12 | LMT. C1: Criterion 2.1: TE(Y → X ′) ≤ TE(Y → X ), C2: Criterion 2.2: H(Y |X ) ≤ H(Y |X ′), C3: Criterion 2.3: H(X|Y ) ≤ H(X ′|Y ), C4: Criterion 2.4:

H(X|X ′) ≤ H(X|Y ), C5: Criterion 2.5: H(X|X ′) ≤ H(X ′). In these subplots, IC1, PC1, PC12, and PC123 refer to the measured quantity by these components after their

respective SBF attenuation algorithms. Asterisks mark the components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

3.4.2. Criterion 2.2: H(Y|X) ≤ H(Y|X′)
Kruskal-Wallis implied a significant effect of choice of
components [p < 0.01, H(4, 129) = 13.32, r = 0.32]. Post-
hoc comparison indicated a significant reduction of SBF-related
information in frontal brain activity of participants by PC1 [p <

0.001, W(50) = 4.46, MH(Y|X) = 2.31, SDH(Y|X) = 0.50, MPC1 =
2.69, SDPC1= 0.48, r = 0.62], PC12 [p < 0.001, W(50) = 4.46,
MPC12 = 2.71, SDPC12 = 0.50, r = 0.62], PC123 [p < 0.001,
W(50) = 3.95,MPC123 = 2.49, SDPC123 = 0.53, r = 0.55], and IC1
[p < 0.001,W(50) = 4.46,MIC1 = 2.47, SDIC1 = 0.53, r = 0.62].
Additionally, this comparison indicated that adaptation of PC1
resulted in a significantly more reduced SBF-related information
than PC123 [p < 0.001, W(50) = 4.23, r = 0.49] as well as IC1
[p < 0.001, W(50) = 4.33, r = 0.49]. Similarly, we found PC12
significantly more effective than PC123 [p < 0.001,W(50) = 4.10,
r = 0.49] and IC1 [p < 0.001,W(50) = 4.36, r = 0.49]. However,
we found non-significant differences between PC1 and PC12
[p = 0.49,W(50) = 0.70, r = 0.10] as well as IC1 and PC123 was
significant [p= 0.14,W(50) = 1.49, r = 0.21]. Figure 12, subplot
C2, shows these results.

3.4.3. Criterion 2.3: H(X|Y) ≤ H(X′|Y)
Kruskal-Wallis indicated a significant effect of choice of
components in resulting fNIRS data [p < 0.001, H(4, 129) =
47.41, r = 0.61]. Post-hoc comparison suggested that all
components were significantly effective in reducing the degree
of correspondence between SBF and fNIRS time series of frontal
brain activity [PC1: p < 0.001, W(50) = 4.46, MH(X|Y) = 4.22,
SDH(X|Y) = 2.21, MPC1 = 7.11, SDPC1 = 3.03, r = 0.62, PC12:
p < 0.001,W(50) = 4.46,MPC12 = 8.17, SDPC12 = 3.01, r = 0.62,
PC123: p < 0.001,W(50) = 4.46,MPC123 = 6.57, SDPC123 = 2.96,

r = 0.62]. However, we observed that the effect of IC1 was non-
significant [IC1: p = 0.10, W(50) = 1.66, MIC1 = 5.09, SDIC1 =
1.36, r = 0.23]. In addition, this comparison indicated that
adaptation of PC12 yielded a significantly better performance
than PC1 [p < 0.03, W(50) = 2.30, r = 0.32], PC123 [p < 0.001,
W(50) = 3.42, r = 0.47], as well as IC1 [p < 0.001,W(50) = 4.46,
r = 0.62]. Moreover, PC1 was significantly more effective than
PC123 [p < 0.05, W(50) = 1.97, r = 0.27] and IC1 [p < 0.001,
W(50) = 3.95, r = 0.55]. Additionally, PC123 was significantly
different from IC1 [p< 0.001,W(50) = 2.58, r= 0.36]. Figure 12,
subplot C3, plots these results.

3.4.4. Criterion 2.4: H(X|X′) ≤ H(X|Y)
Kruskal-Wallis indicated a significant effect of choice of
components [p < 0.001, H(4, 129) = 30.93, r = 0.49]. Post-hoc
comparison suggested that all components were significantly
effective in retaining the correspondence between time series of
frontal activity before and after application of SBF attenuation
[PC1: p < 0.001, W(50) = 3.24, MH(X|Y) = 4.22, SDH(X|Y) =
2.22, MPC1 = 2.71, SDPC1 = 1.72, r = 0.45, PC12:p < 0.001,
W(50) = 4.46,MPC12 = 1.97, SDPC12 = 1.88, r= 0.62, PC123: p<

0.001, W(50) = 3.39, MPC123 = 2.71, SDPC123 = 1.74, r = 0.47]
However, we observed that the effect of IC1 was non-significant
[p = 0.13, W(50) = 1.51, MIC1 = 3.67, SDIC1 = 1.47, r =
0.21]. Additionally, this comparison implied that PC12 resulted
in significantly higher correspondence between time series of
frontal brain activity before and after SBF attenuation than PC1
[p < 0.03, W(50) = 2.07, r = 0.29], PC123 [p < 0.001, W(50) =
2.20, r = 0.31], as well as IC1 [p < 0.001, W(50) = 3.85, r =
0.53]. Although PC1 performed significantly better than IC1 [p<
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FIGURE 13 | Comparison of maximal preservation of information content of

frontal brain activity (i.e., H(X ′)− H(X|X ′) ≥ 0, Criterion 2.5) after application of

PCA- and ICA-based SBF attenuation algorithms on LMT. Asterisks mark the

components with significant difference (*p < 0.05, **p < 0.01, ***p < 0.001).

0.001,W(50) = 2.22, r= 0.31], its difference with PC123 was non-
significant [p = 0.27,W(50) = 1.10, r = 0.15]. Lastly, PC123 was
significantly more effective than IC1 [p= p < 0.03,W(50) = 2.30,
r = 0.32]. Figure 12, subplot C4, shows these results.

3.4.5. Criterion 2.5: H(X|X′) ≤ H(X′)
Pairwise Wilcoxon rank sum suggested that all components
preserved information content of frontal activity [PC1: p < 0.001
W(50) = 3.67, MH(X|X′) = 2.71, SDH(X|X′) = 1.72, MH(X′) =
4.80, SDH(X′) = 2.11, r = 0.51, PC12:p < 0.001, W(50) = 4.46,
MH(X|X′) = 1.97, SDH(X|X′) = 1.88, MH(X′) = 11.55, SDH(X′) =
10.94, r = 0.62, PC123: p < 0.001, W(50) = 4.38, MH(X|X′) =
2.713, SDH(X|X′) = 1.74,MH(X′) = 4.83, SDH(X′) = 0.91, r = 0.61,
IC1: p < 0.001,W(50) = 4.46,MH(X|X′) = 3.67, SDH(X|X′) = 1.47,
MH(X′) = 6.67, SDH(X′) = 1.40, r = 0.62]. Figure 12, subplot C5,
depicts these results.

Kruskal-Wallis test indicated a significant effect of choice of
component on preservation of information content of fNIRS
time series [i.e.,H(X′)−H(X|X′) ≥ 0] [p< 0.01,H(3, 103) = 16.01,
r = 0.16]. Post-hoc paired comparison implied a significantly
higher preservation of information content of frontal brain
activity with respect to PC12 in comparison with PC1 [p <

0.001, W(50) = 4.30, MPC1 = 2.10, SDPC1 = 2.46, MPC12 = 9.58,
SDPC12 = 11.29, r = 0.60], PC123 [p < 0.001, W(50) = 4.43,
MPC123 = 2.12, SDPC123 = 1.77, r = 0.61], as well as IC1 [p <

0.001, W(50) = 4.43, MIC1 = 2.10, SDIC1 = 0.51, r = 0.61]. IC1
was significantly more effective than and PC1 [p < 0.03,W(50) =
2.25, r= 0.31] and PC123 [p< 0.01,W(50) = 3.19, r= 0.44]. Last,
we found that PC1 was significantly more effective than PC123
[p < 0.03,W(50) = 2.41, r = 0.33]. Figure 13 shows these results.

4. DISCUSSION

In this article, we pinpointed the lack of perspective in previous
studies on frontal activity’s information preservation while
attenuating the effect of SBF on fNIRS time series. Subsequently,
we proposed five information-theoretic criteria for quantification

of the frontal activity’s information preservation during SBF
attenuation process. We utilized the concept of TE (Schreiber,
2000) to quantify the effect of SBF on fNIRS time series of frontal
brain activity via transferring undesired information onto fNIRS
measurement. Advantages of TE for this purpose are twofold:
First, TE, similar to MI and unlike other correlation measures,
is always ≥ 0 that makes it a good quantitative metric for
amount of information transferred/shared. Second, TE, unlike
MI and other correlation measures, has a direction [i.e., TE(X
⇒ Y) 6= TE(Y ⇒ X)] which allows for causal reasoning about
which process induces the observed effect on transferred/shared
information. Additionally, we exploited the concept of MI and
its correspondence with conditional entropy between interacting
continuous random variables (Cover and Thomas, 2006; Stone,
2015) to formalize criteria for frontal brain activity’s information
preservation in resulting fNIRS time series once the process of
SBF attenuation is complete.

We verified the validity our criteria on PCA- (Zhang et al.,
2005) and ICA-based (Kohno et al., 2007) SBF attenuation
algorithms using simulated time series with additive Gaussian
noise. We chose these SBF attenuation algorithms due to their
widespread adaptation in recent literature (Katura et al., 2008;
Kiguchi and Funane, 2014; Tak and Ye, 2014; Naseer and
Hong, 2015; Sato et al., 2016; Zhang et al., 2016). Although
these algorithms make assumption on orthogonality and
statistical independence of their components, their well-defined
mathematical formulation help eliminate further empirical
assumptions on causal and/or explanatory effects (e.g., channels
with short source-detector distances as representatives of SBF,
etc.). Subsequently, we examined our criteria on two different
Working Memory (WM) tasks and a naturalistic conversational
settings. Our results implied a significant effect of SBF on fNIRS
time series of frontal brain activity through transfer of undesired
information. This finding that was founded on analysis of the
information flow from SBF onto fNIRS time series of frontal
brain activity presented a systematic approach to quantification
of the SBF as an interfering process during fNIRS measurement,
thereby drawing an informed conclusion on this issue (Takahashi
et al., 2011; Sato et al., 2013).

In addition, our results implied that mere reduction of SBF
influence on fNIRS time series of frontal activity was insufficient
to warrant frontal activity’s information preservation. More
importantly, we found this observation to hold true, irrespective
of the nature of the adapted task or age of the participants.
This, in turn, provided further support for inefficiency of such
measures as correlation coefficient, signal-to-noise ratio, or
Pearson R2 (Zhang et al., 2005; Kohno et al., 2007; Gagnon et al.,
2011) in determination of the significance of the reduced effect
of SBF due to their inability in detecting the direction of the
information flow (i.e., causality) between interacting processes
(Kinney and Atwal, 2014).

Moreover, our results implied a higher fidelity of PCA-based
algorithm in preservation of information content of frontal
brain activity in comparison with ICA-based approach. This
observation was in accord with the findings by Sato et al.
(2016). Furthermore, our results revealed a substantial effect of
selected number of components on performance of PCA-based
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algorithm. Concretely, they indicated that combination of first
two principal components of PCA-based algorithm resulted in
most efficient SBF attenuation while ensuring a significantly
higher (i.e., in comparison with other adapted components)
frontal activity’s information preservation. This provided an
evidence for a reliable choice among existing SBF attenuation
algorithms and their inconclusive number of components
(Zhang et al., 2005; Sato et al., 2016) to ensure minimum
loss of frontal activity’s information content during SBF
attenuation process.

Further evidence on substantial difference in performance
of these algorithms was due to the high variability of ICA-
based SBF attenuation in determination of the component with
highest coefficient of spatial uniformity. This variability that
was originally reported by Kohno et al. (2007) reduces the
reliability of this algorithm, given its contingency in selecting the
channel of interest (e.g., long source-detector distance channels).
On the other hand, PCA-based SBF attenuation algorithm
exhibited a stable distribution of the percentages of the variance-
explained among its selected components. It is worth noting
that observed distribution of these components in our results
is in close correspondence with Sato et al. (2016), although
their subtle differences is appreciated in light of comparably
larger number of channels in their study. Considering these
observations, it is apparent that such differences in stability
of these algorithms in determination of their respective SBF-
related component(s) impose substantial variation in analyses
results. Given the observed variability in choice of components,
as indicated by our results on simulated as well as real time
data and irrespective of the age of participants, it is apparent
that an SBF algorithm with the stable choice of component(s)
to reduce the effect of SBF to retain the information content
pertinent to brain activity of human subjects is highly desirable.
Our results suggested that ICA algorithm falls short in achieving
this objective.

Taken together, we provided evidence that lack of perspective
on preservation of information content of frontal brain activity
during SBF attenuation underlies the contrasting findings with
inconclusive results in previous studies. We showed that a mere
reduction of SBF influence on fNIRS time series of frontal
activity is insufficient in warranting frontal activity’s information
preservation in resulting fNIRS time series data. Subsequently,
we showed a higher fidelity of PCA-based algorithm in
achieving this information preservation in comparison with
ICA-based approach. Lastly, we showed that combination of
first two components of PCA-based algorithm resulted in most
information preservation while ensuring significant attenuation
of SBF effect. Our findings contribute to the field by presenting

a systematic approach to quantification of the SBF as an
interfering process during fNIRS measurement, thereby drawing
an informed conclusion on this debate (Takahashi et al., 2011;
Sato et al., 2013). Furthermore, they provide evidence for
a reliable choice among existing SBF attenuation algorithms
and their inconclusive number of components (Zhang et al.,
2005; Sato et al., 2016), thereby ensuring minimum loss of
information content of fNIRS cortical activity through SBF
attenuation process.
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