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Gliomas have the highest mortality rate and prevalence among the primary brain tumors.

In this study, we proposed a supervised brain tumor segmentation method which detects

diverse tumoral structures of both high grade gliomas and low grade gliomas in magnetic

resonance imaging (MRI) images based on two types of features, the gradient features

and the context-sensitive features. Two-dimensional gradient and three-dimensional

gradient information was fully utilized to capture the gradient change. Furthermore,

we proposed a circular context-sensitive feature which captures context information

effectively. These features, totally 62, were compressed and optimized based on an

mRMR algorithm, and random forest was used to classify voxels based on the compact

feature set. To overcome the class-imbalanced problem of MRI data, our model was

trained on a class-balanced region of interest dataset. We evaluated the proposed

method based on the 2015 Brain Tumor Segmentation Challenge database, and the

experimental results show a competitive performance.

Keywords: brain tumor segmentation, gradient, context-sensitive, random forest, mRMR, class-imbalanced

1. INTRODUCTION

Gliomas, the most common brain tumors in adults, have the highest mortality rate and prevalence
among the primary brain tumors (DeAngelis, 2001). They can be classified into high grade
gliomas (HGG) and low grade gliomas (LGG). HGG is more aggressive and infiltrative than LGG,
thus patients with HGG have a shorter life expectancy (Louis et al., 2007). Magnetic resonance
imaging (MRI) with multiple sequences, such as T2-weighted fluid attenuated inversion recovery
(Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1c), and T2-weighted (T2) provides
detailed and valuable information of the brain, and thus is commonly used to diagnose brain
diseases, plan the medical treatment strategies, and monitor tumor progression (Bauer et al.,
2013; Zeng et al., 2018a). However, gliomas from MRI are difficult to localize as they invade
into almost everywhere in the brain with various shapes and sizes and heterogeneous growth
patterns (Zhao et al., 2018); they have similar appearances with other diseases such as stroke or
inflammation observed in the images; and they are also tangled with surrounding tissues, causing
the boundaries diffusive and blurry (Goetz et al., 2016). Furthermore, the scale of MRI voxels is
not uniform as the X-ray computed tomography (CT) scans, causing the same tumors to have
different gray values, especially when the scans are obtained at different institutions (Sapra et al.,
2013). Manual segmentation requires expertise and manually labeling each voxel is laborious and
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time-consuming (Gordillo et al., 2013). Meanwhile, a variability
of 20% and 28% for intra- and inter-rater respectively has been
reported for manually segmentation of brain tumors (Mazzara
et al., 2004; Goetz et al., 2016). For these reasons, automatic
methods instead of manual segmentation with high accuracy and
less time-consumption is in high demand.

In this paper, our goal is to propose an automatic method
to detect the three different regions of interest (ROI): complete
tumor, tumor core, and enhancing tumor from the brain MRI.
Our main contributions can be summarized as following:

1. A group of features named circular context-sensitive (CCS)
features were proposed. The CCS features fully utilize the
histogram information of rays along various orientations and
with various lengths.

2. Gradient information was fully utilized by extracting two-
dimensional and three-dimensional features. A total of 62
features were extracted to detect and classify the brain tumors.

3. We used an mRMR feature selection algorithm, which could
select features that have minimum redundancy and maximum
relevance with each others. This is used to significantly reduce
the computational cost and increase the efficiency.

The paper is organized as follows: we give a brief literature review
of related work in section 2. Then the methods are described in
details in section 3. We give the experimental results in section 4,
followed by the conclusions in section 5.

2. RELATED WORK

Numerous methods of brain tumor detection and segmentation
including semi-automatic methods and full-automatic
techniques have been proposed (Tang et al., 2017). These
segmentation techniques can be roughly divided into
4 categories: threshold-based techniques, region-based
techniques, model-based techniques, and pixel/voxel
classification techniques.

The threshold-based techniques, region-based techniques,
and pixel classification techniques are commonly used for two-
dimensional image segmentation (Vijayakumar and Gharpure,
2011). Model-based techniques and voxel classification methods
are usually used for three-dimensional image segmentation. We
will review the four types ofmethods in the following subsections.

2.1. Threshold-Based Techniques
Threshold-based method is a simple and computationally
efficient approach to segment brain tumors because only intensity
values need to be considered. The objects in the image are
classified by comparing their intensities with one or more
intensity threshold values (Gordillo et al., 2013). The Otsu
algorithm (Otsu, 1979), Bernsen algorithm (Bernsen, 1986), and
Niblack algorithm (Niblack, 1986) are simple and commonly
used algorithms.

Gibbs et al. proposed an unsupervised approach using a global
threshold to segment. The ROI for the tumor extraction task
from the MRI images (Gibbs et al., 1996). Stadlbauer et al. used
the Gaussian distribution of intensity values as the threshold to
segment tumors in brain T2-weighted MRI (Stadlbauer et al.,

2004). However, if the information in the image is too complex,
the threshold-based algorithm is not suitable. It is also limited to
extract enhanced tumor areas.

2.2. Region-Based Techniques
Region-based methods divide an image into several regions
that have homogeneity properties according to a predefined
criterion (Adams and Bischof, 1994). Region growing and
watershed methods are the most commonly used region-based
methods for brain tumor segmentation.

Ho et al. proposed a region competition method which
modulates the propagation term with a signed local statistical
force to reach a stable state (Ho et al., 2002). Salman et al.
examined the seeded region growing and active contour to be
compared against experts’ manual segmentations (Salman et al.,
2005). Sato et al. proposed a Sobel gradient magnitude-based
region growing algorithm which solves the partial volume effect
problem (Sato et al., 2000). Deng proposed a region growing
method which was based on the gradients and variances along
and inside of the boundary curve (Deng et al., 2010).

Letteboer et al. and Dam et al. described multi-scale
watershed segmentation (Letteboer et al., 2001; Dam et al.,
2004). Letteboer et al. proposed a semi-automatic multi-scale
watershed algorithm for brain tumor segmentation in MR
images (Letteboer et al., 2001). Region-based techniques are
used commonly in brain tumor segmentation. However, region-
based segmentation has the over-segmentation problem and
there is considerable difficulty in marker extraction when using
marker-based watershed segmentation. Li and Wan solved these
problems by proposing an improved watershed segmentation
method with an optimal scale based on ordered dither halftone
and mutual information (Li and Wan, 2010).

2.3. Model-Based Techniques
Model-based segmentation techniques could be divided into
parametric deformable and geometric deformable approaches.
There are a number of studies on image segmentation based
on active contours, which is a popular parametric deformable
method (Boscolo et al., 2002; Amini et al., 2004). Snake is one
of the most commonly used geometric deformable algorithm
for brain tumor segmentation. Luo et al. proposed a deformable
model to segment brain tumors (Luo et al., 2003). This method
combined the adaptive balloon force and the gradient vector
flow (GVF) force to increase the GVF snake’s capture range
and convergence speed. Ho et al. proposed a new region
competition method for automatic 3D brain tumor segmentation
based on level-set snakes which overcome the difficulty in
initialization and the missing boundary problems by modulating
the propagation term with a signed local statistical force (Ho
et al., 2002).

2.4. Pixel/Voxel Classification Techniques
Voxel-based classification usually uses voxel attributes for each
voxel in the image such as gray level and color information. In
brain tumor segmentation, voxel-based techniques are classified
as unsupervised classifiers and supervised classifiers to cluster
each voxel in the feature space (Gordillo et al., 2013).
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Juang and Wu proposed a color-converted segmentation
approach with the K-means clustering technique for MRI which
converts the input gray-level MRI image into a color space
image and the image is labeled by cluster indices (Juang and
Wu, 2010). Selvakumar et al. implemented a voxel classification
method which combined K-means clustering and fuzzy C-
means (FCM) segmentation (Selvakumar et al., 2012). Vasuda
and Satheesh improved the conventional FCM by implementing
data compression including quantization and aggregation to
significantly reduce the dimensionality of the input (Vasuda
and Satheesh, 2010). Comparing to the conventional FCM, the
modified FCM has a higher convergence rate. Ji et al. proposed
a modified possibilistic FCM clustering of MRI utilizing local
contextual information to impose local spatial continuity to
reduce noise and resolve classification ambiguity (Ji et al., 2011).
Autoencoders were used in Vaidhya et al. and Zeng et al. work
for brain tumor segmentation and other imaging tasks (Vaidhya
et al., 2015; Zeng et al., 2018b). Zhang et al. proposed a hidden
Markov random field model and the expectation-maximization
algorithm for brain segmentation on MRI (Zhang et al., 2001).

For the voxel-classification MRI processing techniques,
proper depiction of voxels is required as a criteria to accurately
classify each voxel. In the previous studies, Zulpe et al. used
gray-level co-occurrence matrix (GLCM) textural features to
detect the brain tumors (Zulpe and Pawar, 2012); Context-
sensitive features were used in Meier et al.’s study to classify
tumors and non-tumors (Meier et al., 2014). Meanwhile, a
feature selection algorithm also requires good designs to select
a compact set of features in order to reduce the computation
cost (Zou et al., 2016a,b; Su et al., 2018), considering the huge
data size of the MRI. In our study, one set of informative features
and efficient feature selection algorithm were proposed. The
experimental results have demonstrated that promising brain
tumor segmentation performance can be achieved using the
proposed method.

3. METHODOLOGY

In this paper, we extracted various types of features from the
brain MRI and used for classification. And an mRMR feature
selection method was used to reduce the feature dimension
and select the best feature set. The whole pipeline was depicted
in Figure 1. Firstly, the MRI sequences were pre-processed
with smoothing and normalization operations. Secondly, we
extracted two types of features, gradient-based features and
context-sensitive features. Thirdly, we used an mRMR feature
selection method to select the optimal feature set with minimal
redundancy and maximal relevance. We will explain the whole
process in detail later.

3.1. Data
We used the training data of BraTS 2015 as our training and test
data (Menze et al., 2015). It provides 4 sequences T1, T1c, T2, and
Flair. The image data contains 220HGG (anaplastic astrocytomas
and glioblastoma multiforme tumors) MR scans and 54 LGG
(histological diagnosis: astrocytomas or oligoastrocytomas) cases.

The “ground truth” are labeled by manual annotations with 0-
5 with four types of tumoral structures labeled as the following:
“necrotic (or fluid-filled) core” is labeled 1, “edema” is labeled
2 , “non-enhancing(solid) core” is labeled 3, and “enhancing
core” is labeled 4. The normal tissue is labeled 0. We evaluated
our work within three regions: complete tumor (which contains
necrotic core, edema, non-enhancing core and enhancing core),
tumor core (which contains necrotic core, non-enhancing, and
enhancing core) and enhancing tumor.

3.2. Pre-processing
We carried out smoothing and normalization on the
MRI sequences to reduce the impact of image noise and
to enhance image quality for further processing. As for
smoothing, we chose the Gaussian filter which has been widely
used in image processing and computer vision for noise
suppression (Bergholm, 1987; Deng and Cahill, 1993; Kharrat
et al., 2009; Zeng et al., 2017).

For further processing, MRI sequences are sensitive to all the
acquisition conditions such as MR protocols, MR scanners, and
MR adjustments (Sled et al., 1998). Even for the same tissue
information acquired with the same conditions, there will be a
variation because MRI intensities do not have a tissue specific
value. In order to eliminate the impact of the variation for
further image processing which is based on image intensity, we
normalized the smoothed value to the range from 0 to 1. The
normalization was calculated as in Equation (1)

X∗ =
X − Xmin

Xmax − Xmin
(1)

where X∗ and X are the normalized and raw gray value
respectively; Xmax is the maximal gray value, and Xmin is the
minimal gray values.

3.3. Gradient Based Features
The gradient value represents the rate of change in the direction
of the largest possible intensity change. In our study, we used
the central difference gradient as the gradient operator. For
each voxel p, the derivative at one direction is the mean of the
two voxels adjacent to p in that particular direction. Here we
calculated two sets of gradient-based features within the ROI.
The first set calculated the gradient along each coordinate plane,
which we named as Gradient2D. The Gradient2D of one image in
each coordinate plane has two components: the x-derivative and
the y-derivative. In Equation (2), we take the x-derivative as an
example (I is the input image). The second set, the Gradient3D, is
based on the three-dimensional gradient magnitude. We further
divide the Gradient3D into five subsets, the GM, rMean, rVar,
seqMean, and seqVar, and we show them in Table 1.

The GM feature consists of the three-dimensional gradient
magnitude, which is calculated based on Equation (3). Gx is
the directional gradient along the x-axis, Gy is the directional
gradient along the y-axis and Gz is the directional gradient along
the z-axis. In our study, we also used the central difference
gradient as gradient operator to extract the GM feature for
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FIGURE 1 | The pipeline of our proposed method.

TABLE 1 | The five feature subsets in Gradient3D.

Feature

name

Modality Cube size

GM Flair, T1 , T1c , T2 –

rMean Flair, T1 , T1c , T2 3, 5, 7

rVar Flair, T1 , T1c , T2 3, 5, 7

seqMean all modalities 3, 5, 7

seqVar all modalities 3, 5, 7

each respective MRI image sequence. The operator is given in
Equation (2).

dI/dx =
I(x+ 1)− I(x− 1)

2
(2)

mag(Gx,Gy,Gz) =
√

G2
x + G2

y + G2
z (3)

We further extracted the rMean and rVar features by calculating
the mean and variance of the GM feature over a cube-shaped
neighborhood with sizes 33, 53, 73 for each GM feature of
each respective sequence. Meanwhile, we extracted seqMean and
seqVar by calculating the mean and variance of the GM features
over the sequences in cube-shaped neighborhoods.

3.4. Circular Context-Sensitive Feature
Meier et al. proposed context-sensitive features for brain tumor
segmentation which extracts ray features in plane by calculating
the histogram using intensity values from T1 and Flair-weighted
images after atlas-normalization (Meier et al., 2014). The
rationale of this method is that the intensity range of T1 and
Flair-weightedmodalities is larger than that of the healthy tissues.
Based on this method, we proposed a circular context-sensitive
(CCS) feature to capture more details in various sizes.

In context-sensitive features, every voxel sends out four rays
with radius r ∈ {10, 20} and orienting at ang ∈ {0,π/2,π , 2π/3}.
In order to obtain more information and extract features in
multiple scales, we made several improvements to the original
context-sensitive features. Firstly, instead of utilizing only voxel
information in the horizontal or vertical directions, we used
rays evenly distributed on a circle to swipe all the orientations,

which are denser. The directions are calculated using the
following equation:

ang = β + n ∗ βθ , n ∈ N,

βθ = 2π/Nβ

(4)

where β is the initial angle, βθ is the step size rotating around the
center point, and Nβ is the total number of directions. Secondly,
in order to capture context features with all the scales, we used a
continuous radius to cover the neighboring voxel information as
much as possible. The radius r is defined as:

r = r0 + n ∗ r
θ
, n ∈ N∗,

rθ = (rmax − rmin)/Nr
(5)

where r0 is the initial radius, where rθ is the step size moving
toward the outermost circle, rmin and rmax are the minimum
and maximum of the radius, and Nr is the total number of
rays. We show the comparison between the original context-
sensitive features and the circular context-sensitive features in
Figure 2. The original context-sensitive sends out four rays in
four directions. The CCS features, however, send out rays along
all the orientations and with all the radius, which is supposed to
capture rich context information. In our studies, we used 8 rays
evenly distributed on 45 circles ranging from 10 to 20 with even
numbers to capture the context-sensitive features.

In the MRI, the slice thickness varies considerably which will
affect the feature extraction results so the features are considered
only for the T1 and Flair-weighted in-plane images. In summary,
our CCS feature extraction is summarized as the following:

1. For one voxel i, we calculated r and ang of all the rays, based
on Equations (4, 5).

2. Using T1 and Flair images, we computed the histograms and
obtained the maximal Hmax and minimal Hmin histogram
values.

3. The mean values of each ray was calculated using Hmax and
Hmin as the CCS feature values.

In summary, we extracted 12 Gradient2D features, 34
Gradient3D features, 4 context-sensitive features, and 12
CCS features, as shown in Table 2. In the next section, we will
show the voxel-based classification and feature selection to label
different regions of the brain MR images.
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FIGURE 2 | The original context-sensitive features and the circular context-sensitive (CCS) features. (A) shows the original context-sensitive features. (B) shows the

CCS features. In this example, the center voxel sends out 18 rays of length r+ n ∗ rθ with an angle β + n ∗ βθ . The CCS can fully extract context information instead of

only voxel information in horizontal or vertical directions.

TABLE 2 | Number of features in each feature group.

Feature type Counts

Gradient2D 12

Gradient3D 34

Context-sensitive 4

CCS 12

Total 62

3.5. Feature Selection Based on mRMR
We classified the brain MRI images into five categories: normal
tissue, edema, non-enhancing core, necrotic core, and enhancing
core. Random forests (RF) (Breiman, 2001) is an ensemble
learning method for classification, regression, and other tasks,
and has been widely used in image analysis (Jin et al., 2014;
Liu et al., 2015). It consists of multitude of decision trees and
outputs the votes over each tree. They are able to handle multi-
class problems, and they provide a probabilistic output instead of
hard label separations. However, due to the large volume of MRI
images, direct classification based on the extracted features (as
shown in Table 2) is time-consuming. A proper feature selection
algorithmwill greatly reduce the computational cost and increase
the efficiency.

Minimal Redundancy maximal Relevance(mRMR) was
proposed by Peng et al. which can select features that have
minimum redundancy and maximum relevance with each
other (Peng et al., 2005) . We use Equation (6) to search for
features which have the maximum relevance, and use the
minimal redundancy condition as the Equation (7) to select
mutually exclusive features. Equation (8) gives mRMR features.
xi represents the i− th feature in feature set S with target class c.
8 means the combination of D and R.

maxD(S, c),D =
1

|S|

∑

xiǫS

I(xi; c) (6)

minR(S),R =
1

|S|2

∑

xi ,xjǫS

I(xi, xj) (7)

max8(D,R),8 = D− R (8)

In order to avoid over-learning and under-learning, we evaluated
our RF classifier by 5-fold cross validationwith themeasurements
in section 3.7. In detail, we divided the subcases into 5 roughly
equal parts. For each k = 1, 2, ..., 5, we fit the RF model to the
other 4 parts, and predict the kth part with the fitted RF model.
The final outcome equals to the mean of the results of the 5-folds.
In our study, we used the mRMR feature selection method to
select the minimal feature set which reduces the computational
cost without performance degradation. The raw 62-dimensional
feature set is shown in Table 2. The mRMR feature selection
details are as follows:

1. Train the RF classifier with top f features which are ranked by
mRMR from the raw feature set and test the model with 5-fold
cross validation. Here, we set f = 62− 5n, n = 0, 1, 2, ..., 12.

2. Rank the performance in step 1. Set the final feature set
with fm dimension as the features which achieve the best
performance among all the f -dimensional features. Here, fm
is the dimension of the final feature set.

3.6. Solution to the Class-Imbalance
Problem
The “BraTS” data is seriously unbalanced, with less than 1% of
voxels being tumor voxels. Training on them would result in
problems such as higher mis-classification rate for the minority
class data. Thus, we carried out three steps to overcome the
class-imbalance problem.

1. Detect the boundary of ROI: We used a plane to move along
each axis’s direction until it detected a voxel labeled with none-
zero. Then the plane in the current position was used as the
boundary in that direction.
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FIGURE 3 | Sum of rankings for each feature dimension f . The ranking rules are defined as follows: In each feature set with dimension f , we observed the three

metrics (Dice, sensitivity and specificity) in three ROIs (Complete, enhancing and core) of HGG, LGG and both, totally 32 values in Table 3. We ranked the

corresponding values across all the f . If equal values appeared, we took another metric, the size of the feature set into account. Then we summed all the rankings of

each f and plotted the curve.

2. Split the ROI: After step 1, each raw MR image would have a
total of 6 boundaries in the xyz space. We split out a cuboid as
our ROI using the boundaries. This removed a large number
of zero label voxels and voxels inside each ROI contained all
the categories.

3. Equally select voxels for each category: Within the segmented
ROI, the label with the least number of voxels was recorded.
We randomly picked the equal number of voxels in the ROI to
form a balanced data.

3.7. Performance Measurements
To show the performance of our segmentation approach, we
use Dice, positive predictive value (PPV), Sensitivity, Specificity
to evaluate HGG and LGG tumor regions segmentation. TP
represents the number of “true positive,” where “true positive” is
the event that the test makes a positive prediction, and the subject
has a positive ground truth. FP is the number of “false positive,”
where “false positive” is the event that the test makes a positive
prediction, and the subject has a negative ground truth. FN is the
number of “false negative” and TN indicateds the size of “true
negative” set.

1. Dice

Dice =
TP

((TP + FP)+ (TP + FN))/2

The Dice score normalizes the number of true positives to the
average size of the two segmented areas. It is identical to the
F-score (the harmonic mean of the precision recall curve) and
can be transformed monotonously to the Jaccard score.

2. Positive predictive value (PPV)

PPV =
TP

TP + FP

The PPV represents the proportions of positive results in tests
that are true positive results.

3. Sensitivity

Sensitivity =
TP

TP + FN

Sensitivity measures the proportion of actual positives that are
correctly identified as such.

4. Specificity

Specificity =
TN

FP + TN

Specificity (also called the true negative rate) measures the
proportion of actual negatives that are correctly identified
as such.

4. EXPERIMENTAL RESULTS

In our experiments, we extracted four groups of features
after pre-processing: Gradient2D features, Gradient3D features,
context-sensitive features, and CCS features, including totally
62 features (as shown in Table 2). The Gradient3D set
contains five subsets: the GM, rMean, rVar, seqMean, and
seqVar. We used the mRMR feature selection method to
select a compact set of features and built the random
forest classifier.
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Firstly, we built the random forest classifier using the top f
feature set ranked by mRMR respectively. We used f to denote
the dimension of the feature set, where f = 62 − 5n, n =

0, 1, 2, ..., 12. Secondly, we compared the performance of feature
sets with diverse f . The best feature dimension fm is the f which
has the best performance. We recorded this fm-dimensional
feature set as the optimal feature set. Here we present the
performance comparisons between diverse f s; Then we show the
performance comparisons among different feature groups. Next,
we compared our results with Meier et al.’s method (Meier et al.,
2014). Lastly, we show the segmentation results marked with
different colors.

4.1. Comparison Between Feature Sets
With Different Dimensions
In this step, we trained our model with different numbers of
features as shown in Table 3. For the n-th training, we selected
the top f -dimensional feature set ranked by the mRMR feature
selection method according to their relevance and redundancy,
where f = 62 − 5n, n = 0, 1, 2, ..., 12. Here we used random
forest as our classifier and set the number of trees in the forest
to 100. For every n, we evaluated the model by the measurements
in section 3.7 within three regions: complete tumor, tumor core,
and enhancing tumor. The HGG&LGG, HGG, and LGG MR
scans subsets were tested.

As shown in Table 3, the difference between the results of two
adjacent experiments is very small. It is difficult to distinguish
which dimension f has the best performance. In order to obtain
an intuitive feature selection outcome, we provide an overall
ranking of the performances for each f and show the results in
Figure 3. It can be seen that 22-dimensional feature set achieves
the best performance among all the tested feature sets.

4.2. Comparison Between Different Feature
Groups
In our studies, We have tested four different types of features.
In order to learn which feature group is more informative for
classification, we trained the model with each feature group and
compared the performances of each feature group in Table 4.
The table shows that the Gradient3D group performed far better
than the other groups. It obtained a high Dice score (0.91) for
complete tumor in HGG and a high PPV (0.92) for complete
tumor in HGG&LGG datasets. And the CCS features performs
slightly better than the context-sensitive features. However,
compared with using all the 62 features, using a single group
cannot achieve a better performance, which shows that each
group is useful for classification and the integration of all the four
groups is more helpful for classification.

4.3. Comparison With Other Method
We compared our methods with another method which was
proposed by Meier et al. (2014). They extracted appearance-
sensitive and context-sensitive features and also used random
forest as a classifier.

As shown in Table 5, Meier et al. evaluated the classifier
with three ROIs: complete tumor, tumor core, and enhancing

FIGURE 4 | Examples the brain tumor segmentation results using the

proposed method. The rows 1,3,5 are the axial, sagittal, and coronal slices of

the ground truth. Rows 2,4,6 are the axial, sagittal, and coronal slices of our

results. The labels of the tumor structure: enhancing tumor (green), tumor

core(green and red), complete tumor (green, red, and yellow).
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tumor. However, the LGG performance was not mentioned.
In our experiments, we trained the HGG&LGG, HGG, and
LGG models and tested our models with three ROIs. As shown
in Table 3, we had better performance especially for complete
tumor. Compared to Meier et al.’s method, we not only extract
the context-sensitive features, but we also made improvements
and proposed the circular context-sensitive features, which
considered multiple scales and multiple directions.

4.4. Performance of Brain Tumor
Segmentation
In Figure 4, the axial, sagittal, and coronal slices of the
ground truth are shown in rows 1, 3, and 5, respectively. The
corresponding slices of the segmentation results are shown
in rows 2, 4, and 6, respectively. As shown in Figure 4, our
segmentation results are consistent with the ground truth.
And we have good performance in all axial, sagittal, and
coronal directions.

5. CONCLUSIONS

In our study, we proposed a supervised brain tumor
segmentation method for MRI scans. We extracted four

types of feature groups named Gradient2D set, Gradient3D
set, context-sensitive features, and circular context-sensitive
features, totally 62 features. Then we selected a set of
the most informative feature set based on the mRMR
algorithm and used them to build the random forest in
order to distinguish different regions of brain tumors. We
presented the performance comparisons among different
dimensions of feature sets for feature selection, comparisons
among different feature subgroups and comparisons with
other tumor segmentation approaches. The results show
that the proposed method is competitive in segmenting
brain tumors.
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