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Auditory attention identification methods attempt to identify the sound source of a

listener’s interest by analyzing measurements of electrophysiological data. We present

a tutorial on the numerous techniques that have been developed in recent decades,

and we present an overview of current trends in multivariate correlation-based and

model-based learning frameworks. The focus is on the use of linear relations between

electrophysiological and audio data. The way in which these relations are computed

differs. For example, canonical correlation analysis (CCA) finds a linear subset of

electrophysiological data that best correlates to audio data and a similar subset of

audio data that best correlates to electrophysiological data. Model-based (encoding

and decoding) approaches focus on either of these two sets. We investigate the

similarities and differences between these linear model philosophies. We focus on (1)

correlation-based approaches (CCA), (2) encoding/decoding models based on dense

estimation, and (3) (adaptive) encoding/decoding models based on sparse estimation.

The specific focus is on sparsity-driven adaptive encoding models and comparing the

methodology in state-of-the-art models found in the auditory literature. Furthermore,

we outline the main signal processing pipeline for how to identify the attended sound

source in a cocktail party environment from the raw electrophysiological data with all

the necessary steps, complemented with the necessary MATLAB code and the relevant

references for each step. Our main aim is to compare the methodology of the available

methods, and provide numerical illustrations to some of them to get a feeling for their

potential. A thorough performance comparison is outside the scope of this tutorial.

Keywords: cocktail-party problem, auditory attention, linear models, stimulus reconstruction, canonical

correlation anaysis (CCA), decoding, encoding, sparse representation

1. INTRODUCTION

The first use of the term cocktail party in the context of auditory scene analysis appeared in Cherry
(1953), where it was used to refer to the challenge of focusing on a single sound source, often a
speech stream, while suppressing other unwanted sounds in a noisy and complex background. The
ability to segregate and follow a sound source of interest in a cocktail party environment is one
of the hallmarks of brain functions. Although this is a highly ill-posed problem in a mathematical
sense, the human brain instantly solves this problem, with a compelling ease and accuracy that
is difficult to be matched by any currently available algorithm. However, recent studies have
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shown the potential of model-based algorithms to assist
intelligent hearing aids, and the purpose of this tutorial
is to provide a rather broad coverage of the mathematical
tools available for solving the cocktail party problem. The
algorithms are illustrated on examples from datasets previously
used in several studies. The algorithms in this tutorial are
relatively simple and computationally inexpensive, although
further research on algorithm optimization is needed to achieve
real-time performance.

Neural networks and cognitive processes assist the brain in
parsing information from the environment (Bregman, 1994).
These processes allow us to perform everyday tasks with
remarkable ease and accuracy, for example, enjoying our time
with friends in crowded places such as restaurants and cafes
while being alert to salient sound events such as someone calling
our name. The intrinsic complexity of the background is hidden
by the brain’s process of perceiving and selectively attending to
any sound source: (a) competing acoustic sources (stimuli) emit
acoustic signals and (b) are subsequently mixed, (c) the mixture
of incoming sound streams enters the ear(s), (d) this mixture is
resolved such that (e) the attended sound is perceived, and (f) the
remaining, unwanted streams of sound are effectively attenuated
within the human auditory cortex.

There are many studies on deciphering human auditory
attention. The majority of these studies have generally focused
on brain oscillations (Obleser and Weisz, 2011; Weisz et al.,
2011; Henry et al., 2014) and speech entrainment (Ding and
Simon, 2012a,b; Mesgarani and Chang, 2012; Pasley et al., 2012;
Mirkovic et al., 2015; O’Sullivan et al., 2015, 2017; Ekin et al.,
2016; Biesmans et al., 2017; Fuglsang et al., 2017; Kaya and
Elhilali, 2017; Van Eyndhoven et al., 2017; Haghighi et al.,
2018) in electroencephalography. Broadly speaking, the twomost
common approaches in the development of speech (envelope)
entrainment are (1) encoding, i.e., estimating the neural responses
from the sound features, and (2) decoding, i.e., estimating the
sound from the neural response features. In most of these
studies, the linear filters are computed using “dense” least-
squares (LS) optimization tools. However, it is also possible
to exploit an alternative approach based on sparse estimation.
Sparse estimation has shown great potential in diverse signal
processing applications (Sepulcre et al., 2013; Akram et al., 2016,
2017; Rao et al., 2016; Miran et al., 2018).

As a further alternative to encoding and decoding,
bidirectional hybrid approaches (Dmochowski et al., 2017;
de Cheveigné et al., 2018), such as canonical correlation analysis
(CCA), aim to combine the strengths (and weaknesses) of

Abbreviations: AAD, auditory attention deciphering; ADMM, alternating

direction method of multipliers; AIC, Akaike–s information criterion; BIC,

Bayesian information criterion; CASA, computational auditory scene analysis;

CCA, canonical correlation analysis; CCV, correlation coefficient value; CV, cross-

validation; EEG, electroencephalography; FBS, forward-backward splitting; FIR,

finite impulse response; IIR, infinite impulse response; LASSO, least absolute

shrinkage and selection operator; LOOCV, leave-one-out cross-validation; LS,

least squares; MEG, magnetoencephalography; MFCC, Mel-frequency cepstral

coefficients; ML, machine learning; MSE, mean squared error; SIMO, single input

multiple output; SISO, single input single output; SPARLS, sparse recursive least

squares; SR, stimulus reconstruction; SVD, singular value decomposition; SVM,

support vector machine; TLS, total least squares; TRF, temporal response function.

encoding and decoding methods. A recent work (de Cheveigné
et al., 2018) supports the view that CCA-based classifier schemes
may provide higher classification performance compared to
encoding and decoding methods.

The applications of attention deciphering are diverse,
including robotics, brain-computer interface (BCI), and hearing
applications (see e.g., Li and Wu, 2009; Lunner and Gustafsson,
2013; Gao et al., 2014; Khong et al., 2014; Lunner, 2015;
Tsiami et al., 2016). In fact, there is currently increased
interest in auditory attention identification in, for instance,
the hearing aid industry. The reason for this interest is
that for a hearing-impaired listener, the ability to selectively
attend to a desired speaker in a cocktail party situation
is highly challenging. With an aging population with an
increasing number of hearing-impaired individuals, increased
understanding of the underlying mechanisms of the cocktail
party problem is highly needed. Along the same lines,
the hearing aid companies are also interested in applying
auditory attention deciphering (AAD) techniques for cognitive
control of a hearing aid and its noise-reduction algorithms
(Das et al., 2017; Van Eyndhoven et al., 2017).

However, despite the increasing interest in this problem from
the audiology and neuroscience research communities (Fritz
et al., 2007; Mesgarani and Chang, 2012; Jääskeläinen and
Ahveninen, 2014; Kaya and Elhilali, 2017), the basis for the
computational models of the brain’s ability to selectively attend
to different sound sources remains unclear.

The primary objective of this study is to explain how to
use linear models and identify a model with sufficiently high
performance in terms of attention deciphering accuracy rates and
computational time. Our ultimate goal is to provide an overview
of the state-of-the-art for how linear models are used in the
literature to decipher human auditory attention by exploiting the
brain activity elicited during attentive listening to a single sound
source in an acoustically complex background.

This contribution focuses on the classification of auditory
attention by using multivariate linear models. Consequently,
we do not cover other aspects of auditory attention and scene
analysis, and to limit the scope, we do not cover (computational)
auditory scene analysis (CASA) (Wang and Brown, 2006; Wang
et al., 2009; Snyder et al., 2012; Gutschalk and Dykstra, 2014;
Alain and Bernstein, 2015; Simon, 2017), auditory attention
modeling (Kaya and Elhilali, 2017), speech masking (Scott and
McGettigan, 2013; Evans et al., 2016), and sound segregation and
localization (Ahveninen et al., 2014; Middlebrooks, 2017).

An important note regarding the current auditory attention
identification methods is that these methods require access to
the clean speech signals, which are usually not available in
practice. CASA methods are then necessary to provide these.
Recent attempts to perform attention deciphering without access
to the individual speakers (but noisy speech mixtures instead)
may provide a useful way to approach solving this problem. The
study of S. Van Eyndhoven (Van Eyndhoven et al., 2017), later
improved by Das Das et al. (2017), was the first that tackled this
problem, based on beamforming methods. O’Sullivan later also
did a similar study, using deep learning (O’Sullivan et al., 2017).
After separating the individual speakers in the mixture, these
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studies used the linearmodels discussed in this tutorial to identify
the sound source of a listener’s interest.

The outline of this contribution is as follows.
To obtain accurate attention deciphering using EEG
(electroencephalography) / MEG (magnetoencephalography)
sensors, several important factors need to be considered. First,
the algorithms that are currently used to identify the attended
sound source need to be accurately described, which is the topic
of section 2. Note that we must always first preprocess the data
to avoid problems in the later encoding/decoding procedures,
which is also a topic of section 2. Based on the analysis of
the models in section 2, we can construct different models. In
section 3, we discuss the datasets used in this contribution to
study different auditory attention identification methods. The
practical implementation of the discussed algorithms is the topic
of section 4, where we provide experimental results for some
different examples and datasets. We end this contribution with
some concluding remarks and (potential) future improvements
in section 5.

2. LINEAR MODELS FOR AUDITORY
ATTENTION DECIPHERING

In this section, we explain the basics of linear modeling.
Furthermore, we introduce some of the concepts from machine
learning (ML) that are frequently used in the auditory attention
identification literature. The last decade has witnessed a large
number of impressive ML applications that involve large
amounts of data, and our application of audio-EEG data is one
area that has thus far remained rather unexplored. The subject of
designing the linear models is introduced in section 2.1. How to
select the model is a crucial part of any estimation problem. Thus,
we discuss different modeling approaches in sections 2.3–2.4.

2.1. The Sound and EEG Signals
We assume that at any given point in space, a time-varying
sound pressure exists that originates from nu sound streams
pi(t), i = 1, 2, . . . , nu, emitted by one or more sound sources
(e.g., individual talkers and loudspeakers). The resulting sound
pressure can be conceptually written as a sum

p(t) =
nu
∑

i=1

pi(t). (1)

This mixture is what the ear decodes and what can be sampled
by a microphone. The latter results in a discrete time signal
p[k] = p(kTs), where Ts is the sampling interval, which typically
corresponds to a sampling frequency of f

p
s = 1/Ts = 44100 Hz.

The EEG signals are sampled by ny EEG electrodes denoted

yj[k], j = 1, 2, . . . , ny. The EEG sampling frequency f
y
s is

considerably smaller than the sampling frequency of the sound
f
p
s . Typical values in experiments in this field are nu = 2, ny =
{64, 128} and f

y
s = 512 Hz. To synchronize the data streams to

the same sampling frequency, the ratio f
p
s /f

y
s defines a decimation

factor that is needed to reduce the sampling rate of the sound.
This downsampling needs to be done only after the envelope

extraction of the individual sound sources pi(t). In the following
paragraphs we will describe each of these steps in more detail.

Next, we present the basic steps that are commonly used in
practice in this application:

• Extract the envelope of the audio signal, which can be
performed in several ways. A complete overview of the
envelope extraction methods for AAD is presented in
Biesmans et al. (2017). The resulting sound signal will be
denoted u[k], which in the literature is supposed to be the sum
u[k] =

∑nu
i=1 ui[k] of nu envelopes ui[k], but it should be

noted that u[k] will never be used in practice as the access to
the individual sound streams ui[k] is needed when applying
AAD techniques. Speech envelopes are spectrotemporally
sparse, and therefore the equation is approximately true
enough for the purposes used here.

• Downsample the EEG signal and the audio signals to the
same sampling rate (e.g., to 64 Hz), which can be performed
using the nt_dsample function from the NoiseTools toolbox
(http://audition.ens.fr/adc/NoiseTools/) (Yang et al., 1992; Ru,
2001) or MATLAB built-in downsampling methods, such as
decimate or resample functions.

• Bandpass filter both the EEG and the sound signals using a
bandpass filter between 1 and 8 Hz, which is the frequency
interval where the brain processes auditory information (Zion
Golumbic et al., 2013).

The following code performs this operation, as was proposed in
O’Sullivan et al. (2015):

p = resample(p,44096,44100);

% Resample to a multiple of 64 Hz

pc = hilbert(p);

% Transform from real to analytic signal

u = decimate(abs(pc),44096/64);

% Downsampling to 64 Hz, including an

anti-alias

[b,a] = butter(3,[2 8]/64*2);

% Bandpass filter with passband [2,8] Hz

uf = filter(b,a,u);

% Causal filtering to keep causality

Without loss of generality, we will assume that the attended
sound source is u1[k], while the other sources, ui[k] for i > 1,
represent nuisance sound sources.

2.2. Data Notation
We denote all scalars by lowercase letters, e.g., w, and all
vectors and matrices by uppercase letters, e.g., W, unless stated
otherwise. The (p, q) entry, p− th row and q− th column in
W are expressed as [W]p,q, Wp,: and W:,q, respectively, and the
p − th entry in vector U is expressed as Up. The transpose of

the matrixW is denoted asWT . The functions ‖W‖F (Frobenius
norm) and ‖U‖2 (Euclidean or l2 norm) return thematrix-valued
norm and vector-valued norms, respectively, and ‖W‖2F =
trace(WTW) and ‖U‖22 = UTU. The l1 penalty term is defined
as ‖W‖1 =

∑

p,q |[W]p,q|. The letter n with an index will

denote the dimension of a vector, for instance, ny and nu, as
previously introduced.
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To have a compact notation avoiding one or more indices, we
will summarize the data in the data vectors Ui and Yj, the data
matrices U and Y , which are defined as follows:

[

Yj

]

k
= yj[k], k = 1, . . . ,N, j = 1, 2, . . . , ny, (2)

[

Y
]

kj
= yj[k], k = 1, . . . ,N, j = 1, 2, . . . , ny, (3)

and similarly for U and Ui.
For a model that takes the latest na data points into account,

we define the Hankel matrix

[

H(Yj)
]

kn
= yj[na + k− n], k = 1, . . . ,N − na + 1,

n = 1, 2, . . . , na, (4)

and similarly forH(Ui). We will refer to the data as Yj,Ui,Y ,U.

2.3. Correlation-Based Learning
Correlation-based learning aims to find the pattern in the EEG
signal that best correlates to the target sound u1(t) with less
correlation to the distracting sounds ui(t), i 6= 1. Typical
correlation-based learning approaches are:

(1) Cross-correlation:

(a) Zero-lag cross-correlation: The normalized covariance
between each speech signal Ui and each EEG signal Yj,

i.e., cij = Cov(Ui ,Yj)√
Var(Ui)Var(Yj)

. The drawback with zero-lag

cross-correlation is that it assumes that both Ui and Yj

are synchronized in time, which is hardly the case.
(b) Time-lag cross-correlation: Here one of the sequences

is delayed (time-lagged) before the correlation is
computed. There is here one extra degree of freedom,
so one has to maximize cross-correlation with respect to
this lag.

(2) Canonical Correlation Analysis (CCA).

The disadvantage of correlation-based approaches is that they
compare sample by sample for the entire batch and are thus
less effective if there is a dynamical relationship between U
and Y , in which case only a few samples around the current
time would exhibit a significant correlation. CCA corresponds
to a linear model of the whole segment of speech, and the
model is by construction non-causal. The segment length is an
important design parameter corresponding to the model order in
FIR models.

2.4. Linear Models
The linear filter formalism we use is based on the shift operator q
defined by q−nx[k] = x[k− n] and qnx[k] = x[k+ n] for all n. A
causal FIR filter can then be written as

yj[k] = Bi(q)ui[k] = (bi0 + bi1q
−1 + · · · + binbq

−nb )ui[k]

= bi0ui[k]+ bi1ui[k− 1]+ · · · + binbui[k− nb].
(5)

Similarly, an IIR filter can be written as

Aj(q) yj[k] = Bi(q)ui[k],

(1+ aj1q
−1 + · · · + ajnaq

−na )yj[k] = yj[k]+ aj1 (6)

yj[k− 1]+ · · · + ajnayj[k− na] = Bi(q)ui[k],

yj[k] = −aj1yj[k− 1]− · · · − ajnayj[k− na]+ Bi(q)ui[k].

It should also be noted that (6) does not represent the general
form of Aj(q), i.e., the filter Aj(q) can be generalized so that
positive exponents can also be used for q, as explained in the
remainder of this section.

Implementation requires stability. The IIR filter specified by
Aj(q) can be causally stably implemented forward in time only
if all roots to the polynomial Aj(q) are inside the unit circle.

We denote such a filter with Af (q). Conversely, a filter with all
roots outside the unit circle can be anti-causally implemented
in a stable way backward in time, and we denote such a filter
with Ab(q). Any IIR filter can be split into two parts with
one causal and one anti-causal part. For more details on these
issues, see basic text books in signal processing, for instance
(Gustafsson et al., 2010).

Given this brief background, there are two fundamentally
different ways to define a model for listening attention, forward
or backward in time,

yj[k] =
nu
∑

i=1

B
f
i (q)

A
f
j (q)

ui[k]+ e
f
j [ k] (7)

ui[k] =
ny

∑

j=1

Ab
j (q)

Bbi (q)
yj[k]+ ebi [k] (8)

The first model corresponds to the forward model (using

superscript f for forward), where each EEG signal is explained
as a sum of filtered sound signals plus additive noise to account

formeasurement errors andmodel imperfections, while the other
model corresponds to the inverse backward model (denoted with
superscript b). Another note, positive exponents are used for q
in backward models. It is assumed that both filters are causally

stable, implying that A
f
j and Bbi are polynomials with all roots

inside the unit circle. The roots of B
f
j and Ab

i can be both inside

and outside the unit circle generally. This means that inverting
the forward model does not give a causally stable backward

model, and is thus not in general a valid backwardmodel. In other
words, the models are not identical or related in simple terms.

Also the noise realizations e
f
j [ k] and ebi [k] are different and can

have quite different characteristics.

Note, however, that one can mix a forward and backward
model in a non-causal filter. Combining both model structures
gives the linear filter

yj[k] =
nu
∑

i=1





B
f
i (q)

A
f
j (q)

+ Bbi (q)

Ab
j (q)



 ui[k]+ ej[k], (9)

and similarly for the backward model. This can be seen as a non-
causal filter with poles both outside and inside the unit circle.
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Given such a linear filter, one can reproduce an estimate ŷj[k]
of the EEG signal. For instance, the causally stable part can be
implemented with

for j=1:ny

yijhat[:,j]=filter(bf(j,:),af(i,:),U(:,i));

end

yihat=sum(yijhat,2);

Here, af denotes the matrix of polynomial coefficients for the

polynomials A
f
i (q) and so forth. A good model should provide a

small estimation error yj[k] − ŷj[k]. We will return to the issue
of parameter estimation, or system identification (Ljung, 1998),
shortly, but note that there is no good model in the traditional
sense. All linear models share the property that the prediction
errors are of the same order as the signal itself. In other words, the
least squares loss function will be only somewhat smaller than the
sum of squared measurements, which would be the least squares
loss function for the trivial signal predictor ŷj[k] = 0 for all times
k and all channels j.

The use of IIR (infinite impulse response) models is still
unexplored in this area; thus, we will restrict the discussion to FIR

(finite impulse responses) models, having denominators A
f
j (q) =

1 in (7) and Bbi (q) = 1 in (8) equal to unity, in the following.

2.5. FIR Models for Encoding and Decoding
Here, we explain two modeling perspectives that are widely used
in auditory research: forward and inverse (backward) modeling.
Encoding and decoding are two special cases of supervised
learning of forward and backward models, respectively (Haufe
et al., 2014). The encoding and decoding models applied
in cognitive electrophysiology are described in greater detail
in Holdgraf et al. (2017). The traditional encoding approach
attempts to predict neural responses (EEG) given the sound
stimulus

yj[k] = B
f (q)
i ui[k]+ e

f
j [k] (encoding) (10)

Note that there is one filter B
(q)
i for each input and output

combination. Here, ŷj[k] = B
f (q)
i ui[k] will be referred to as a

neural prediction.
In contrast, the decoding approach attempts to extract the sound
from the neural responses (EEG)

ui[k] =
ny

∑

j=1

Ab
j (q)yj[k]+ ebi [k] (decoding) (11)

Similarly, ûi[k] =
∑ny

j=1 A
b
j (q)yj[k] will be referred to as a

reconstructed stimulus. Note that ûi[k] usually captures the
neural responses yj[k] after stimuli presentation at time step k.
The stimulus reconstruction (SR) approach, which has received
the greatest attention in the auditory literature, compares the
reconstructed sound waveformwith the actual waveform tomake
a decision on the attended sound source. Figure 1 illustrates the
difference between the encoding and decoding approaches.

2.6. Parameter Estimation
The encoding and decoding models (10)–(11) can be more
conveniently written in matrix-vector form as

Yj = H(Ui)B
f
i + E

f
j , (12)

Ui =
∑

j

H(Yj)A
b
j + Ebi , (13)

using the Hankel matrices defined in (4), and B
f
i and Ab

j are

the vectors consisting of the coefficients of the polynomials B
f (q)
i

defined in (5) and A
f
j (q) defined in (6), respectively.

The model in (12) defines an estimation error

ǫj = Yj −H(Ui)B
f
i , (14)

from which one can define an LS loss function

W(B
f
i ) = ‖Yj −H(Ui)B

f
i ‖22. (15)

This loss function defines a quadratic function in the parameters
Bi. Minimization provides the LS estimate as

B̂
f
i = argmin

B
f
i

W(B
f
i ) = H(Ui)

†Yj (16)

where H
†(Ui) = [H(Ui)

T
H(Ui)]

−1
H(Ui)

T denotes the Moore-
Penrose pseudoinverse. Similarly,

Âb
j = argmin

Ab
j

W(Ab
j ) = H(Yj)

†Ui (17)

The corresponding operations in MATLAB are given below.

for i=1:nu

for j=1:ny

HUij = hankel(U(1:end-nb,1),

U(end-nb:end,1));

bhat(i,j,:) = HUij\ Y(nb:end,j);

W(i,j) = norm(Y(nb:end,j) -

HUij*squeeze(bhat(i,j,:)));

end

end

The backslash operator solves the LS problem in a numerically
stable way using a QR factorization of the Hankel matrix. For
model structure selection, that is, the problem of selecting the
model order nb, the QR factorization enables all parameter
estimates and cost functions for lower model orders to be
obtained for free.However, model order selection is prone to
overfitting; thus, in practice, one has to be careful when selecting
nb not only based on the LS cost function.

2.7. Regularization
Due to the challenge of avoiding overfitting, encoding
and decoding techniques should be complemented with a
regularization method, which basically adds a penalty for the
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FIGURE 1 | Illustration of the essential difference between encoding and decoding methods.

model complexity to (15). In general terms, regularized LS can
be expressed as

VN(B
f
i ) = WN(B

f
i )+ λg(B

f
i ) (18)

where N is the number of data and g is generally called a
regularizer or regularization function, and it is typically non-
smooth and possibly non-convex and λ ∈ IR+ is a penalty
parameter. The regularization function is most commonly
selected as the lp norm, i.e.,

minimize
B
f
i

1

2
‖Yj −H(Ui)B

f
i ‖22 + λ‖B f

i ‖p (19)

With l2, the problem given in (19) has the analytic solution

B̂
f
i = (H(Ui)

T
H(Ui)+ λI)−1

H(Ui)
TYj (20)

Similarly,

Âb
j = (H(Yj)

T
H(Yj)+ λI)−1

H(Yj)
TUi (21)

However, l2 regularization does not do a variable subset selection.
Methods that directly aim to limit the number of parameters

nb include Akaike’s information criterion AIC, where UN =
log(WN) + 2nb/N, and his improved suggestion Bayesian
information criterion BIC UN = log(WN) + log(nb)/N. Note

that nb is the l0 norm of B
f
i , a fact that is used in many recent

approaches of sparse modeling based on efficient algorithms for
convex optimization. However, the l0 term is not convex, but
the l1 norm is, and it is in practice a good approximation of

the l0 norm (Ramirez et al., 2013). This trick to obtain a feasible
problem belongs to the class of convex relaxations.

The use of the l1 norm to induce sparsity is frequently referred
to as the least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996). This formulation can be used to identify the
sparse spatial-temporal resolution and reveal information about
the listening attention.

Conceptually, sparse signal estimation depicts a signal as a
sparse linear combination of active elements, where only a few
elements in Bi are non-zero. The sparse estimation can be further
improved with group sparsity, in other words, grouping the

elements in B
f
i (or Ab

j ) and considering the groups of elements

to be singletons, where a relatively small number of these groups
is active at each time point. The group sparse estimation problem
is frequently referred to as group LASSO (Yuan and Lin, 2006).

One way to solve sparse (l1-regularized) optimization
problems is to apply the Expectation Maximization (EM)
algorithm. One such example is the sparse (l1-regularized)
recursive least squares (SPARLS) algorithm introduced in Babadi
et al. (2010). The SPARLS algorithm estimates a sparse forward
model using a dictionary of atoms, which is posed as a linear
estimation problem. It has already been successfully used in
AAD studies to estimate the encoding model (Akram et al.,
2017). The authors concluded that the SPARLS algorithm could
improve performances over the conventional (l2-regularized)
linear estimation methods. Another way to solve sparse (l1-
regularized) optimization problems is based on proximal
splitting algorithms, one of which is a forward-backward splitting
(FBS) algorithm, also referred to as the proximal gradient method
(Combettes and Pesquet, 2011). Recently, Miran et al. (2018)
suggested a Bayesian filtering approach for sparse estimation
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to tackle AAD. In their work, the authors used FBS procedure
for decoding/encoding model estimation in real-time. In our
examples, we use an algorithm called ADMM (alternating
direction method of multipliers) to solve sparse (l1-regularized)
optimization problems in an efficient way that normally requires
very few iterations of simple computations to converge. The
reason is 2-fold: the ADMM is simpler and easier to work
with, since its iterative solution can be implemented via simple
analytical expressions, and it has a proven fast convergence
(Boyd et al., 2011).

2.8. SIMO Formulation
For simplicity, we have thus far considered single-input single-
output SISO models, where the model relates one sound source
to one EEG signal, and conversely for the reverse model. It is,
however, simple to extend the model to a single-input multiple-
output (SIMO) model that aims to explain all EEG data based
on one sound stimulus at a time. The principle is that the sound
stimulus that best explains the observed EEG signals should
correspond to the attended source.

The SIMO FIR model for each sound source is defined as

Y = H(Ui)BBB
f
i + E

f
i , i = 1, 2, · · · , nu, (22)

where BBB
f
i is an nb × ny matrix.

In the literature, the filter BBBi is frequently referred to as a
temporal response function (TRF), and the corresponding case for
the backward approach leads to an na × ny matrix AAAb, where

AAAb = vec(Ab
j ), referred to as a decoder.

2.8.1. Example 1
If we assume that nb = 10 and ny = 6, then we can estimate

B̂BB
f
i , as shown in Figure 2. The first panel in Figure 2 shows

the “dense” filter BBBi, where all the elements are active (non-
zero). The second panel in the same figure illustrates the sparse
matrix resulting from LASSO. Here, LASSO finds the active

elements in the filter BBB
f
i (elements in white are non-active or

zero-valued elements). The prior knowledge of how the time lags
and electrodes form the groups can be incorporated with group
LASSO to obtain filters similar to those in the last two panels
shown in Figure 2, respectively. If for instance some of the EEG
signals are completely uncorrelated with the sound stimulus, the
reconstruction error will not increase if these EEG signals are left
out. A general rule of thumb for intuition in system identification
is that zero is the best prediction of zero mean white noise. Any
other prediction will increase the cost. That is the rationale with
LASSO, don’t attempt to predict white noise, even if reasons of
over learning may indicate that it is possible.

2.9. CCA vs. Linear FIR Filters
The main difference between the forward and backward models
is how the noise enters the models 7 and 8, respectively. The
general rule in LS estimation is that the noise should be additive
in the model. If this is not the case, then the result will be biased.
However, if there is additive noise to both the input Ui and the
output Yj, then the total least squares (TLS) algorithm can be

used. TLS basically weights both noise sources together in an
optimal way. The standard implementation of TLS is based on a
singular value decomposition (SVD) of the Hankel matrixH(Ui).

CCA combines the encoding and decoding approaches:

B
f
i (q)ui[k] ∼

ny
∑

j=1

Ab
j (q)yj[k]+ e[k] (CCA) (23)

and involves solving a generalized eigenvalue problem.
Table 1 provides a summary of the discussed linear models.
Solving a generalized eigenvalue problem is more costly for

high-dimensional data in a computational sense (Watkins,
2004). In particular, the sample covariance matrices of
high-dimensional data become singular (do not have an
inverse), which leads to more complex associated generalized
eigenvalue problems.

A regularized CCA (rCCA) is often proposed to address this
problem (Hardoon et al., 2004). This particular problem may be
overcome by formulating CCA as an LS problem, as in Sun et al.
(2011), where the classical CCA (and rCCA) is formulated as an
LS problem, and LS optimization methods are used to solve it.
However, this topic is beyond the scope of this paper and is left
for future work.

2.10. Non-linear Models
Linear models should always be examined first in the spirit of
“try simple things first.” An alternative method to estimate the
attended sound source would be to exploit non-linear models.
There are, however, many problems in ML that require non-
linear models. The principle is the same, but the algorithms are
more complex. In short, the linear model Yj = H(Ui)Bi + Ej in
(12) is replaced with

Yj = f (Ui,Bi)+ Ej. (24)

Among the standardmodel structures for the non-linear function
f , we mention the Wiener and Hammerstein models, support
vectormachines and neural networks (Taillez et al., 2017; Deckers
et al., 2018; Akbari et al., 2019). Indeed, non-linear models can be
used to decipher attention, but the focus of this paper is on linear
models because they are simpler to understand and implement.

3. EXAMINED DATASETS

We have used both simulated data and real datasets to evaluate
the aforementioned algorithms. Simulations provide a simple
way to test, understand and analyze complex algorithms in
general, as well as in this case. We use synthetic sound and EEG
signals to illustrate the aforementioned algorithms, but real data
have to be used to evaluate the potential for applications.

In our contribution, we are revisiting two datasets that were
anonymized and publicly available upon request by the previous
authors. The publications from which the data originated (see
references Power et al., 2012; Fuglsang et al., 2017) state that the
data were collected with the approval of the corresponding ethical
bodies and with due process of informed consent.
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FIGURE 2 | Schematic illustration of dense and sparse modeling. The first panel shows the “dense” filter resulting from l2-penalized LR. The second, third, and fourth

panels show the sparse filters resulting from l1-penalized LR generated by LASSO and group LASSO. Non-active (zero-valued) elements are shown in white.

The first real dataset is characterized as follows:

• The subjects were asked to attend to a sound source on either
the left u1 or the right u2 side.

• The subjects maintained their attention on one sound source
throughout the experiment.

• Each subject undertook 30 trials, each 1 min long.
• Each subject was presented with two works of classic fiction

narrated in English in the left and right ears.
• Full-scalp EEG data were collected at a sampling frequency of

512 Hz with ny = 128 number of electrodes.
• Sound data were presented at a sampling frequency of 44.1

kHz.

This dataset was first presented and analyzed in Power et al.
(2012) and O’Sullivan et al. (2015). Henceforth, we refer to this
dataset as the O’Sullivan dataset.

The second dataset can be described as follows:

• The subjects were asked to selectively attend to a sound source
on the left u1 or right u2 side in different simulated acoustic
environments (anechoic, mildly reverberant classroom,
and highly reverberant Hagia Irene Church) throughout
the experiment.

• The subjects switched their attention from one sound source
to another throughout the experiment.

• Each subject was presented with two works of classic fiction
narrated in Danish.

• Each subject undertook 60 trials, each 50 s long accompanied
by multiple choice questions.

• Full-scalp EEG data were collected at a sampling frequency of
512 Hz with ny = 64 number of electrodes.

• Sound data were presented at a sampling frequency of
44.1 kHz.

This dataset was first presented and analyzed in Fuglsang et al.
(2017), and we will refer to this dataset as the DTU dataset.

We randomly selected twelve subjects from each dataset to
assess the potential benefits that might result from the different
linear models considered in this contribution. The reason for this
approach is that our main contribution is to provide a tutorial
of methods and examples of their use, not to obtain a final
recommendation on which method is the best in general.

There are several toolboxes that are useful when working
with real datasets. First, there are at least two toolboxes available
for loading EEG data: (1) the EEGLab toolbox (https://sccn.ucsd.
edu/eeglab/) (Delorme and Makeig, 2004) and (2) the FieldTrip
toolbox (http://www.fieldtriptoolbox.org/) (Oostenveld et al.,
2011). For more details on importing EEG data with EEGLab
and FieldTrip, see Appendix. Then, linear trends can be
removed, and the EEG data can be normalized using functions
in the NoiseTools toolbox (de Cheveigné and Simon, 2008a,b;
de Cheveigné, 2010, 2016).

4. COMPUTATIONAL MODELS IN
PRACTICE

In this section, we apply the presented algorithms to the two
datasets described in Section 3. All experiments were performed
on a personal computer with an Intel Core(TM) i7 2.6 GHz
processor and 16 GB of memory, using MATLAB R2015b. Note

that for notational simplicity we shall take AAAb = AAA and BBB
f
i = BBBi

in the remainder of this section.
We start by discussing two main alternatives to train the

models and estimate the de/en - coders (AAA or BBB):

1) Treating each trial as a single least-squares LS problem
and estimating one de/en-coder for each training
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TABLE 1 | An overview of linear methods.

Learning

representations

Approaches Mathematical formulations Optimization

problem

Relevant references

Correlation-

based learning

Cross-Correlation

CCA B f
i
(q)ui [k] ∼

∑ny
j=1 A

b
j
(q)yj [k]+ e[k]

Generalized

eigenvalue

problem

Biesmans et al., 2017; Dmochowski et al., 2017;

de Cheveigné et al., 2018; de Cheveigné et al., 2019

Model-based

learning

Forward modeling

Supervised case: Encoding

yj [k] = B f
i
(q)ui [k]+ ef

j
[ k] Least-

squares Ding and Simon, 2012a; Di Liberto et al., 2015; Alickovic

et al., 2016, in rewiev; Fiedler et al., 2017, 2019;

Hjortkjær et al., 2018; Kalashnikova et al., 2018;

Lesenfants et al., 2018; Lunner et al., 2018; Verschueren

et al., 2018; Wong et al., 2018

Inverse/backward modeling

Supervised case: Decoding

ui [k] =
∑ny

j=1 A
b
j
(q)yj [k]+ eb

i
[k]

Mirkovic et al., 2015; O’Sullivan et al., 2015, 2017;

Aroudi et al., 2016; Das et al., 2016, 2018; Presacco

et al., 2016; Biesmans et al., 2017; Fuglsang et al.,

2017; Van Eyndhoven et al., 2017; Zink et al., 2017;

Bednar and Lalor, 2018; Ciccarelli et al., 2018; Etard

et al., 2018; Hausfeld et al., 2018; Narayanan and

Bertrand, 2018; Schäfer et al., 2018; Vanthornhout et al.,

2018; Verschueren et al., 2018; Wong et al., 2018;

Akbari et al., 2019; Somers et al., 2019

trial separately, and averaging over all training
de/en-coders (Crosse et al., 2016).

B
avg
i = 1/K

∑

k

[

(H(Ui,k)
T
H(Ui,k))

−1
H(Ui,k)

TYj,k

]

(25)

2) Concatenating all training trials in a single LS problem
(Biesmans et al., 2017).

Bconci =
[

∑

k

H(Ui,k)
T
H(Ui,k)

]−1 [

∑

k

H(Ui,k)
TYj,k

]

(26)

Here K is a total number of trials. We may point to the following
aspects that are to be considered when discussing the two
alternatives:

• Averaging LS per-trial estimates is not equivalent with the
correct overall LS estimate. It is easy to show that the
two alternatives will result in different estimates, even if the
discontinuities and boundary effects are correctly treated. One
can show algebraically that -under some technical conditions-
the second alternative will yield a better estimator with a lower
(co-)variance on its entries. For a more detailed discussion, see
section 2.2.1 in Gustafsson (2010).

• Efficient cross-validation. Note that the matrix H(Ui)
T
H(Ui)

in (20) denotes the information matrix, and can also be
expressed as

∑

k H(Ui,k)
T
H(Ui,k), where k is a trial index and

Ui,k contains the data from one trial. This trick of combining
sufficient statistics for the different datasets saves a lot of
computations. For a more detailed discussion, see sections
2.2.3, 2.2.4 in Gustafsson (2010).

• Introducing artifacts from discontinuities between trials. The
issue of introducing artifacts from discontinuities between
trials is due to the boundary effects when the filter shifts out
of the window. One solution is to insert zeros in the Hankel

matrix used for solving the LS problem. A better alternative
is to delete the rows in the Hankel matrix affected by these
boundaries, which yields an LS estimate without boundary
effects. In a similar way, one can remove discontinuities
between trials in the concatenation case. For more details, see
section 6.3 in Gustafsson et al. (2010).

Although both alternatives have been widely used as tools for
studying selective attention and AAD, we shall here consider the
first alternative. A basic reason for this is that the first alternative
has received somewhat more attention in the literature due
primarily to being implemented in the publicly available mTRF
toolbox. It is also important to note that the second alternative is
often less sensitive to the choice of the regularization parameter,
and for which regularization can sometimes even be omitted if
sufficient data is available (Biesmans et al., 2017).

4.1. Canonical Correlation Analysis
We start by evaluating the CCA model. The simple CCA model
consists of the following steps:

• Design a multichannel representation of the input sound
signal, e.g., cochlear or any other auditory model, time-
frequency analysis with spectrogram, or Mel-frequency
cepstral coefficients (MFCC) (Slaney, 1998).

• Demand two linear transformations with CCA. Efficient
CCA-based decoding implementations are available in (1)
COCOHA toolbox (https://cocoha.org/the-cocoha-matlab-
toolbox/), (2) NoiseTools toolbox, (3) http://www.imt.liu.se/~
magnus/cca/ and (4) http://www.yelab.net/software/CCA/. A
particularly simple way of implementing CCA is available
in MATLAB ’s canoncorr.m function. This function takes
Hankel matrices H(Ui) and H(Y) with time lags [defined as
in (4)] as inputs and computes the filtersAAA, BBBi and correlation
coefficients (Krzanowski, 2000).
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• Select the first (few) component(s) for each transformation
such that the highest possible correlation between the datasets
is retrieved.

4.1.1. Example 2 (Attention Deciphering With CCA)
In this example, we consider one (randomly selected) subject
from the first database who attended to the speech on his left side
U1. The task is to determine whether CCA can be used to identify
whether the attended speech is actually U1.

4.1.1.1. Preprocessing
We followed the very simple preprocessing scheme described in
the last sentence of §2.1 and in Alickovic et al. (2016).

4.1.1.2. Modeling
Following the approach to CCA proposed here, see
Equation (23), the encoding and decoding filters covered
time lags ranging from −250 ms to 0 ms prestimulus (see
Alickovic et al., 2016) and 0 ms to 250 ms poststimulus (see
O’Sullivan et al., 2015), respectively.

4.1.1.3. Classification
After projecting data onto a lower-dimensional space, a linear
SVM is applied for binary classification: attended vs. ignored
sound. We select the correlation coefficient values as the
classifier’s inputs. In this example, we selected the first 10
coefficients, thus classifying two times with a 10-D vector, once
for the attended sound and once for the ignored sound. This
corresponds to a 2-fold match-mismatch classification scheme
suggested in de Cheveigné et al. (2018). In the case that
the classifier implies attention on both sounds (attended and
ignored), we consider such classification as incorrect. Next, we
generate 10 randompartitions, i.e., 10-fold cross-validation (CV),
of data into training (27 minutes) and test (3 minutes) sets, and
we report the average performances.

4.1.1.4. Results
The average classification accuracy is ∼ 98%. The total
computational time for training and CV is∼ 20 s.

4.1.1.5. Remarks
Note that this accuracy could be further improved with more
training data or further preprocessing (e.g., removing eye blinks
from EEG data). However, because we aim to establish real-time
systems, we attempt to reduce the preprocessing and thereby
increase the speed of the system at the expense of a lower
accuracy rate.

As for any data-driven model design, the choice of the
classifier’s inputs is left to the user. Our choice is based primarily
on the desire to show that CCA is a promising tool for auditory
attention classification. In the following sections, we further
discuss the significance of CCA by comparing the results of
the methods discussed here applied on the two large datasets
described in section 3.

4.2. Decoding With Dense Estimation
SR is the most prominent decoding technique, see Equation (11),
that aims to reconstruct the stimuli from the measured neural

responses. The standard approach to SR in the literature is to
use l2-regularized (dense) LR techniques. The recent work of
Crosse et al. (2016) provides a comprehensive description of
the Multivariate Temporal Response Function (mTRF) toolbox
(https://sourceforge.net/projects/aespa/)—a MATLAB toolbox
for computing (dense) filters Aj or Bi (depending on a mapping
direction) by using LR techniques.

4.2.1. Example 3 (Attention Deciphering With

Dense SR)
Here, we consider the same subject as in the previous example.
The task is now to determine the efficiency of the dense SR in
classifying the attended speech.

4.2.1.1. Preprocessing
Identical to Example (4.1.1).

4.2.1.2. Modeling
The decoder AAA covers time lags up to 250 ms poststimulus. To
find the decoder AAA, the model presented in Equation (11) is
applied. One decoder is produced for each stream of sound i for
each segment s = 1, . . . , 30, resulting in 30 attended decoders.

4.2.1.3. Classification
Next, 29 of these decoders are combined by simply averaging AAA
matrices to thematrixAAAavg in the training phase - LOOCV (leave-
one-out CV); then, AAAavg is used to produce the estimate of the

stimulus Ûi for the fresh data, i.e., the remaining segment. The
correlation coefficient c is then assessed between the actual nu
test stimuli Ui and the estimate Ûi, and the sound stream with
the greatest c is identified as the attended source. This procedure
is repeated 30 times.

4.2.1.4. Results
The average classification accuracy is ∼ 80%. Note the drop
in accuracy from ∼ 98% (obtained with CCA) to ∼ 80% (with
SR) for this particular subject. The total computational time for
training and CV is∼ 58 s.

4.3. Decoding With Sparse Estimation
In this section, we consider SR, but we use l1 (sparse)
regularization rather than l2 (dense) regularization (which is
widely used in auditory research) to quantify the sparsity effect
on the auditory attention classification.

4.3.1. Example 4 (Attention Deciphering With Sparse

SR)
Using the data from the same subject as in Examples (4.1.1–
4.2.1), the task is to evaluate the performances of l1-regularized
(sparse) SR.

4.3.1.1. Preprocessing
4.3.1.1.1. Preprocessing/Modeling/Classification Identical to
Example (4.1.1).

4.3.1.2. Preprocessing
4.3.1.2.1. Results The average classification accuracy is ∼ 80%.
The total computational time for training and CV is∼ 6 s. Note
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the drop in computational time from∼ 58 s (obtained with dense
SR) to∼ 6 s (obtained with sparse SR) for this particular subject.

4.3.1.3. Preprocessing
4.3.1.3.1. Remarks Note the substantial reduction in the
computational time when l1 regularization, implemented with
the ADMM, is used rather than conventional l2 regularization in
the SR method.

4.4. Encoding With Dense Estimation
Here, we consider encoding, where we go in the forward direction
from the speech to EEG data. The standard approach to encoding
found in the auditory literature is to solve the optimization
problem (10) for each EEG channel j = 1, . . . , ny separately,
which means that we will have ny neural predictions for each
stimulus. Recall that one single reconstruction for each stimulus
in the decoding approach discussed above makes it easier to
compare the correlation coefficient values (CCVs). One way
to classify the attended sound source by using the encoding
approach is to take the sum of all CCVs, compare these sums,
and classify the attended sound as the one with the highest sum
of the CCVs (similar to the decoding). We refer to this approach
as dense LOOCV encoding.

4.4.1. Example 5 (Attention Deciphering With Dense

LOOCV Encoding)
Here, we consider the same subject as in the previous examples.
The task is now to determine the efficiency of the suggested
approach to dense encoding in classifying the attended speech.

4.4.1.1. Preprocessing
Identical to Example (4.1.1).

4.4.1.2. Modeling
The TRFBBBi covers time lags from -250ms to 0ms prestimulus. To
find the TRF BBBi, the model presented in Equation (10) is applied.
One TRF is produced for each stream of sound i for each segment
s = 1, . . . , 30, resulting in 30 attended TRFs.

4.4.1.3. Classification
Next, 29 of these TRFs are combined by simply averaging BBBi
matrices to the matrix BBBi,avg in the training phase - LOOCV
(leave-one-out CV); then, BBBi,avg is used to predict the neural

response Ŷi for the fresh data, i.e., the remaining segment.
The summed CCV is then assessed between the actual Y and
predicted Ŷi, and the sound stream with the larger CCV is
identified as the attended source, i.e.,

î = argmax
i

CCVi (27)

This procedure is repeated 30 times.

4.4.1.4. Results
The average classification accuracy is ∼ 77%. The total
computational time for training and CV is ∼ 2.5 s. However, the
main limitation of the dense encoding is that it is very sensitive
to the regularization parameter λ, which must be selected very
carefully. We will return to this issue in section 4.7.

4.4.1.5. Remarks
Note the substantial reduction in the computational time with
dense encoding compared to the dense decoding (SR) method.

4.5. Encoding With Sparse Estimation
Here, we consider encoding with ADMM-based sparse
estimation. We report similar performance in terms of both the
classification accuracy rate and computational time as observed
for the encoding with dense estimation for the data taken from
the same subject used in the previous examples. We refer to this
approach as sparse LOOCV encoding.

4.5.1. Example 6 (Attention Deciphering With Sparse

LOOCV Encoding
Here, we consider the same subject as in the previous
examples. The task is now to determine the efficiency of the
suggested approach to sparse LOOCV encoding in classifying the
attended speech.

4.5.1.1. Preprocessing, Modeling & Classification
As in Example (4.4.1).

4.5.1.2. Results
The average classification accuracy is ∼ 80%. The total
computational time for training and CV is ∼ 1.5 s. Note that
LOOCV encoding could be quite sensitive to λ.

4.6. Encoding From the System
Identification Perspective
Here, we take a different approach to the common classification
approaches found in the auditory literature, using tools from the
system identification area (Ljung, 1998). In the present work, we
refer to this approach as adaptive encoding.

4.6.1. Example 7 (Attention Deciphering With the SI

Approach)
We consider the same data used in our previous examples. The
task is now to use our classification model.

4.6.1.1. Preprocessing
Identical to Example (4.1.1).

4.6.1.2. Modeling
The TRF Bi covers time lags from −250 ms to 0 ms prestimulus.
The attended and ignored TRFsBBB1 andBBB2 are computed for each
segment, and the cost for both TRFs is evaluated for each segment
as Lunner et al. (2018)

Vi(Bi) =‖Y − UiBBBi‖2F + λ‖B̄BBi‖1 (28)

subject to BBBi = B̄BBi (29)

4.6.1.3. Classification
We compare the costs for each segment and determine which
speech signal provides the smallest cost, i.e.,

î = argmin
i

Vi(BBBi) (30)

Frontiers in Neuroscience | www.frontiersin.org 11 March 2019 | Volume 13 | Article 153

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Alickovic et al. A Tutorial on Auditory Attention Identification Methods

If λ is known a priori, then this model is unsupervised and
requires no training. However, this is rarely the case, and λ must
be computed separately for each subject by using the subject’s
own training data.

4.6.1.4. Results
We use the first 9 min of data to compute the value of the
regularization parameter λ and the remaining time to assess
the performances of the models given in (28)-(30). The average
classification accuracy is∼ 95%.

4.6.1.5. Remarks
Although the classification accuracy of the adaptive encoding
approach is similar to that obtained with CCA, note the
substantial decrease in training time, from 27 to only 9 min.

4.7. Sensitivity of the Regularization
Parameter
The previously discussed models have all been sensitive to a
regularization parameter λ. Therefore, we need to solve the
optimization problem (19) for different λ values to identify the λ

value that optimizes the mapping such that the optimal λ value
minimizes the mean squared error (MSE) and maximizes the
correlation between the predicted (reconstructed) and actual
waveform. One way to perform this optimization is to have
the inner CV loop on the training data to tune λ value. In the
inner CV loop, we can implement either LOOCV or K-fold
CV in a similar way to the outer LOOCV, with the difference
that we repeat the process for different λ values and select the
λ that yields either the lowest MSE or the highest correlation
(Pearson r) value. For the l2 (dense) regularization, a parameter
sweep is generally performed between 10−6 and 108 (Wong
et al., 2018). From our experience, a good choice for this type of
regularization is to set λ to 103. For the l1 (sparse) regularization,
the parameter sweep is typically performed between 10−6λmax

and 0.95λmax, where λmax is a critical value above which the filter
becomes zero-valued (Boyd et al., 2011). From our experience, a
good choice for this type of regularization is to set λ to 10−1λmax.
A similar approach was adapted for the adaptive encoding, with
the only difference that the inner CV loop was implemented on
9 min of data.

4.8. Classification Performance
Comparison
In this section, we verify that the proposed linear models
discussed in the present contribution can identify the sound
source of the listener’s interest. Two different datasets, the
O’Sullivan and DTU datasets, were used to evaluate the
performances of different models. Here the window length over
which the correlation coefficients are estimated for each method
is the same as in the corresponding examples above and the trial
lengths are the same as the trial lengths mentioned in section 3.

4.8.1. O’Sullivan Dataset
Table 2 shows part of the assessed performances when the
subjects were asked to attend to an identical sound source
throughout the experiment. As shown in this table, CCA
and adaptive encoding approaches resulted in the highest

TABLE 2 | Classification rates on the O’Sullivan dataset for the different

classification approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

A
tt
e
n
d
R
ig
h
t

1 86.21 93.10 86.21 89.66 100 97.86

2 86.67 90.00 70.00 70.00 95.45 98.32

3 96.67 100.00 86.67 86.67 100.00 97.93

4 90.00 90.00 80.00 76.67 86.36 98.33

5 90.00 96.67 90.00 93.33 95.45 98.03

6 70.00 86.67 60.00 70.00 100.00 97.83

Avg 86.59 92.74 78.81 81.05 96.21 98.05

A
tt
e
n
d
L
e
ft

7 80.00 86.67 63.33 73.33 100.00 98.33

8 93.33 90.00 76.67 80.00 95.45 97.70

9 80.00 80.00 73.33 73.33 95.45 97.08

10 80.00 90.00 73.33 76.67 81.82 96.90

11 76.67 80.00 66.67 83.33 95.45 98.25

12 100.00 100.00 83.33 86.67 100.00 98.32

Avg 85.00 87.78 72.78 78.89 94.70 97.76

Total avg 85.80 90.26 75.80 79.97 95.45 97.91

classification rates and the lowest computational times (see the
previous examples). Moreover, note that the sparse estimation
outperformed the dense estimation for both SR and LOOCV
encoding. The accuracy rates for sparse SR were ∼ 5% higher,
on average, when sparse (ADMM-based) estimation was used to
determine the (decoder) filter coefficients. This was also the case
when estimating the encoding filter coefficients. Furthermore,
there was a significant reduction in computational time, as shown
in Table 3. Although it might seem natural that l2 regularization
would be faster as l1 regularization is iterative process, what
makes l1 regularization faster is the ADMM algorithm that
converges quickly enough, within few iteration steps and does not
include inverting large matrices.

As shown in Tables 2, 3, the best-performing linear methods
for this dataset in terms of both accuracy and computational time
are adaptive encoding and CCA.

4.8.2. DTU Dataset
Table 4 shows part of the assessed performances when the
subjects were asked to switch their attention throughout the
experiment. As shown, CCA results in the highest classification
rates. Moreover, note that for this dataset, the sparse estimation
also outperformed the dense estimation for both SR and LOOCV
encoding. However, the adaptive encoding did not result in a high
classification accuracy rate for the “switching” data compared
to CCA. One reason for this result might be that CCA, as
a “bidirectional” approach, captures more of the EEG-audio
(stimulus-response) data relationship than when going in only
one (forward) direction. To summarize, all linear methods have
a high potential to be fully utilized in the identification of
the subject’s sound source of interest in “attention-switching
scenarios,” with CCA demonstrating a high potential to also be
used as an efficient AAD tool.

The O’Sullivan dataset is known to be biased in the sense that
subjects either always maintain their attention on the left sound
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TABLE 3 | Computational times on the O’Sullivan dataset for the different

classification approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

A
tt
e
n
d
R
ig
h
t

1 46.69 5.21 2.06 1.99 1.96 23.34

2 47.65 2.20 2.09 86.67 2.05 23.73

3 49.44 2.20 2.38 76.67 2.38 20.75

4 47.98 2.20 2.55 93.33 2.45 19.83

5 47.95 2.20 2.09 70.00 2.00 19.58

6 47.75 2.17 2.56 70.00 2.36 27.83

Avg 47.91 5.43 2.17 2.28 2.20 22.51

A
tt
e
n
d
L
e
ft

7 47.61 5.26 2.16 2.20 2.15 20.32

8 42.34 6.08 2.19 2.16 2.12 21.19

9 43.03 5.28 2.15 2.08 2.06 19.53

10 44.79 6.26 2.18 2.45 2.37 19.82

11 43.30 5.28 2.19 2.14 2.10 19.91

12 49.73 5.29 2.22 2.04 2.01 21.19

Avg 45.13 5.57 2.18 2.18 2.08 20.33

Total avg 46.52 5.50 2.18 2.23 2.13 2.16

TABLE 4 | Classification rates on the DTU dataset for the different classification

approaches discussed in this contribution.

Subject
Dense

SR

Sparse

SR

Dense

LOOCV

encoding

Sparse

LOOCV

encoding

Adaptive

encoding
CCA

1 83.33 83.33 71.67 71.67 80.39 87.23

2 78.33 90.00 78.33 76.67 70.59 81.93

3 86.67 81.67 66.67 73.33 86.27 80.73

4 90.00 96.67 70.00 66.67 78.43 98.75

5 81.67 81.67 75.00 60.00 70.59 82.90

6 70.00 73.33 68.33 71.67 84.31 100.0

7 76.67 80.00 78.33 78.33 80.39 94.63

8 91.67 93.33 71.67 73.33 70.59 81.08

9 81.67 85.00 80.00 75.00 80.39 97.97

10 85.00 88.33 70.00 75.00 84.31 96.18

11 91.67 90.00 60.00 73.33 78.43 82.54

12 88.33 88.33 63.33 66.67 80.72 85.77

Total avg 83.75 85.97 71.11 72.22 78.33 89.14

source or always maintain their attention on the right sound
source. The subject-dependent decoders then tend to perform
much better than when they are trained on both left- and right-
attended trials of the same subject. This effect was shown in Das
et al. (2016). This partially explains why the performance on the
DTU dataset is noticeably lower.

It is, however, important to keep in mind that although
the tables above may indicate different performance among the
methods, no comparative conclusions can be drawn from these
tables, since the parameter settings may not be fully optimized
or comparable. It is not the purpose of the paper to make
that performance comparison, and rather just illustrate the
different working principles. To objectively compare methods,

one should use the same cross-validation, same window lengths
to make a decision, and then properly optimize all parameters for
each method.

5. CONCLUSIONS

In this work, we investigated the similarities and differences
between different linear modeling philosophies: (1) the classical
correlation-based approach (CCA), (2) encoding/decoding
models based on dense estimation, and (3) (adaptive)
encoding/decoding models based on sparse estimation. We
described the complete signal processing chain, from sampled
audio and EEG data, through preprocessing, to model estimation
and evaluation. The necessary mathematical background was
described, as well as MATLAB code for each step, with the
intention that the reader should be able to both understand the
mathematical foundations in the signal and systems areas and
implement the methods. We illustrated the methods on both
simulated data and an extract of patient data from two publicly
available datasets, which have been previously examined in the
literature. We have discussed the advantages and disadvantages
of each method, and we have indicated their performance on the
datasets. These examples are to be considered as inconclusive
illustrations rather than a recommendation of which method is
best in practice.

Furthermore, we presented a complete, step-by-step pipeline
on how to approach identifying the attended sound source in a
cocktail party environment from raw electrophysiological data.
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A. APPENDIX: EEG DATA IMPORT

A.1. Importing EEG Data With EEGLab
The key steps are as follows:

• Downloading the EEGLab toolbox.
• Starting MATLAB and adding the path.
• Loading the EEG data with the pop_biosig function.
• Excluding all non-scalp channels and reference to average all

scalp channels as: EEG = pop_select( EEG,’nochannel’, ’channel
names’); EEG = pop_reref( EEG, []);

• Segmenting data correctly based on the trigger information
with the pop_epoch function.

• Additionally, mean baseline value from each epoch can be
removed with the pop_rmbase function.

• Saving the .mat file

A.2. Importing EEG Data With FieldTrip
The key steps are as follows:

• Downloading the FieldTrip toolbox.
• Starting MATLAB and adding the path.
• Using the ft_defaults function to configure default variable and

path settings.
• Reading the EEG data with a ft_read_data function to

a structure file and adding the needed values to the
fields in the structure from the header with the function
ft_read_header.

• Reading the event information if possible with ft_read_event.
• Segmenting the data correctly based on the relevant

event(s).
• Selecting the scalp channels.
• Removing the mean and normalizing the data.
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