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The use of extracellular vesicles (EVs) as cell free therapy is a promising approach

to stimulate tissue regeneration including that of the nervous system. EVs transfer

bioactive proteins and lipids, RNA and microRNAs, which play a relevant role in

EV-mediated intercellular communication. The immunomodulatory, anti-inflammatory,

and neuroprotective effects of mesenchymal stem cells-derived EVs have been well

studied, knowledge of this paracrine mechanism and the availability of these cells,

positions mesenchymal stem cells as a potential source of EVs for cell free therapy for

a variety of regenerative and nervous system disorders. In this review, we focus on the

immunomodulatory and neuroprotective effects of stem cells-derived EVs within in vitro

and in vivo models of nerve disorders.

Keywords: extracellular vesicles, immunomodulatory effects, neuroprotective effects, mesenchymal stem cells,

nerve disorders

INTRODUCTION

The need to improve the effectiveness of available therapeutic protocols used within the
regenerative medicine field, has led to a number of different approaches. However, the nerve
disorders still present a treatment challenge due to the low regenerative potential of the central
nervous system (CNS). Stem cell therapy has been at the forefront of regenerative medicine for the
last decade, but poor clinical trial reports have shifted the focus of researchers to develop improved
protocols and complementary approaches. For example, it became apparent, that the therapeutic
effect of stem cells can be enhanced through the expression of genes of neurotrophic factors using
gene therapy approaches. Unfortunately, a hazard associated with inducing such genetic changes is
the potential for stem cell transformation. Therefore, a critical need still exists for the development
of new therapeutic approaches that do not carry the same potential risks.

Confirmation of the paracrine effects of stem cells and the relevance to tissue regeneration
was a breakthrough in this area, paving the way for a series of subsequent studies to characterize
and leverage this mechanism for therapeutic development. Gnecchi et al. were the first to show
that conditioned medium from mesenchymal stem cells (MSCs) overexpressing the gene Akt1
exerted cytoprotective effects on cardiomyocytes exposed to hypoxia in vitro, reduced acute
myocardial infarction sizes and improved ventricular functions in vivo (Gnecchi et al., 2005,
2006). Takahashi et al. (2006) similarly found that injection of bone marrow mononuclear cells
supernatants increased microvessel density and decreased the fibrotic area within an infarcted
heart model, contributing to significant functional improvement. Subsequently, MSCs-derived
conditional medium was reported to stimulate functional and morphological improvement in
pathological conditions such as renal injury, myocardial infarction, and fulminant hepatic failure
(Bi et al., 2007; Parekkadan et al., 2007; Timmers et al., 2007).
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The results obtained supported a paracrine hypothesis of stem
cell action in tissue protection and repair. It was subsequently
established that these beneficial were attributable to soluble
factors including extracellular vesicles (EVs) released from stem
cells (Bruno et al., 2009; Lai et al., 2010; Xin et al., 2013a).
The biogenesis and methodology of isolation of EVs has been
described in several published reviews (Biancone et al., 2012;
Akers et al., 2013; Koniusz et al., 2016). Therefore, in this mini
review, we focus on the newly emerging field investigating the
therapeutic potential of stem cell-derived EVs, produced in vitro
and transplanted within the animals and patient for the treatment
of nerve disorders.

IMMUNOMODULATORY AND
NEUROPROTECTIVE EFFECTS OF STEM
CELL-DERIVED EVS

By transferring bioactive proteins and lipids, RNA and
microRNAs (miRNAs), EVs may play a crucial role in
intercellular communication between stem cells and other cells
within the tissue micro-environment (Camussi et al., 2013;
Braccioli et al., 2014; Gomzikova and Rizvanov, 2017). The anti-
inflammatory and neuroprotective effects of MSC-derived EVs
and their paracrine mechanism of action have been well studied
(Kalani et al., 2014; Börger et al., 2017).

EVs have been shown to be actively involved in processes of
immune regulation such as stimulation of T-cell proliferation,
apoptosis induction in activated cytotoxic T-cells, differentiation
of monocytes into dendritic cells and B lymphocyte-mediated
tumor suppression (Bobrie et al., 2011; Chaput and Théry,
2011; Taylor and Gercel-Taylor, 2011). It is not surprising that
MSCs-derived EVs were also found to be immunologically
active (Blazquez et al., 2014; Zhang et al., 2014; Bruno et al.,
2015). The immunomodulatory properties of MSCs-derived EVs
are reported to be the result of the suppression of TNF-a
and IL-1b secretion, increasing the concentrations of TGF-b,
regulatory T cells (Treg) and cytotoxic T lymphocyte-associated
protein 4, inducing Th1 to Th2 cell conversion, reducing IFN-
γ production and the potential of T cells to differentiate into
Th17 cells (Mokarizadeh et al., 2012; Blazquez et al., 2014; Del
Fattore et al., 2015; Chen et al., 2016b). However, some data
indicate a lower in vitro immunomodulatory effect of MSC-
derived EVs on T-cell proliferation and antibody formation, as
compared with their cellular counterpart (Conforti et al., 2014).
In a recent study, immunomodulatory effect inflammation-
stimulated (TNF-α and IFN-γ) MSCs-derived EVs was evaluated
(Harting et al., 2018). It was found, that thus obtained EVs
have enhanced anti-inflammatory properties partially due to
COX2/PGE2 pathway alteration.

Although EVs can exhibit a variety of different protein
and nucleic acid cargos, their regenerative effects are mainly
ascribed to the transfer of specific proteins and miRNAs (Collino
et al., 2017). For example, EV cargos of miR-1000, miR-
133b, miR-21, miR-34a, and miR-219 have been reported to
exert a neuroprotective effect by regulating glutamate release at
the synapse (Verma et al., 2015), promoting neural plasticity

(Xin et al., 2013b), suppressing apoptosis (Ma et al., 2013;
Vallabhaneni et al., 2015), and enhancing myelination (Pusic and
Kraig, 2014b).

Despite knowledge of the function of some aspects of the
EV cargo, further studies are required to fully understand
the mechanisms that underpin the immunomodulatory and
neuroprotective effects of EVs.

CURRENT PERSPECTIVES OF EVS IN THE
TREATMENT OF NERVE DISORDERS

Although the therapeutic potential of EVs has not been fully
elucidated, their use can be said to be most promising for the
treatment of different disorders of the CNS, when drugs are of
limited use due to their inability to penetrate the blood-brain
barrier (BBB). EVs have been proposed to be transported across
the interior of a cell via transcytosis, which may enable these EVs
to cross the BBB. This has been experimentally confirmed, as EVs
given intravenously (Alvarez-Erviti et al., 2011) or intranasally
(Zhuang et al., 2011; Haney et al., 2015) were able to penetrate
the BBB.

It should be noted that the therapeutic potential of EVs
depends on the composition of their cargo. The cargo of EVs
from different cell types can include a common set of biological
molecules (nucleic acids, proteins, and lipids) and also molecules
that reflect the cell source of the EVs and the physiological or
pathological state of the cell source (Zhang et al., 2016; Reiner
et al., 2017). In this regard, it is important to define the cargo
of stem cell-derived EVs to further understand the mechanisms
involved in regenerative processes during therapy. Currently,
most studies evaluating the regenerative potential of stem cell-
derived EVs focus on a general assessment of therapeutic efficacy
without detailing the multiple physiological or biochemical
changes occurring due to EVs specific cargo. Defining the
EV cargo would allow subsequent manipulation, combining
a specific set of proteins and RNAs which could efficiently
modulate the course of nerve disorders (Selmaj et al., 2017).

The introduction of EV use into clinical practice has
been limited by the ability to isolate sufficient EVs from
culture systems and the heterogeneity of the cargo of naturally
occurring EVs. Therefore, methods of obtaining “modified”
EV have become a major focus for the field. In such a
cases, EVs are most often derived from MSCs owing to the
availability of these cells and the presence of positive properties
mediated by their EVs, or induced pluripotent stem cells
(iPS cells) whose EVs also demonstrate consistent regenerative
abilities. EVs from both cell types have been proposed as
a potential starting point for cell free therapy in nerve
disorders (Figure 1).

Table 1 provides a summary of preclinical studies of EV use in
both in vitro and in vivomodels of nerve disorders.

Multiple Sclerosis (MS)
The success of remyelinating therapy in MS is mostly attributed
to dendritic cell (DCs)-derived EVs (Pusic et al., 2014a),
whereby EVs produced by IFN-γ-stimulated DCs increased
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FIGURE 1 | Schematic illustration of potential cell free therapy in clinical trials of nerve disorders.

myelination and oxidative tolerance in vitro and in vivo
(Pusic et al., 2014c). These changes are likely attributable
to the high levels of miR-219 within the EVs, which is
necessary and sufficient for oligodendrocyte precursor cell (OPC)
differentiation, the formation and maintenance of compact
myelin, and is deficient in human multiple sclerosis lesions
(Junker et al., 2009; Dugas et al., 2010; Zhao et al., 2010).
Pusic et al. (2014a) proposed that stimulated DCs-derived
EVs contain high levels of specific anti-inflammatory miRNAs
that may have an immunomodulatory role in suppressing the
development of multiple sclerosis. Yu et al. (2013) demonstrated
that EVs withmembrane-associated TGF-β1 from gene-modified
DCs prevented the de novo differentiation of Th17 cells by
inhibiting DC IL-6 production, and were effective in inhibiting
the development and progression of experimental autoimmune
encephalomyelitis (EAE).

Zhuang et al. (2011) used EVs loaded with anti-inflammatory
agents like curcumin or JSI124 for intranasal delivery to the brain.
Effects of this route of delivery were evaluated in 3 different
inflammation-mediated murine disease models: brain tumor-
bearing, lipopolysaccharide (LPS)-induced brain inflammation,
and EAE. Having given EVs with curcumin, mice were protected
from LPS-induced brain inflammation and progression of EAE,
brain tumor-bearing mice also showed a significant delay in
brain tumor growth following curcumin loaded EV treatment.
Intranasal administration of EVs has been shown to provide
rapid transport to the brain, and subsequent absorption by
the microglia.

A marked reduction in MS and EAE relapses have been
observed during pregnancy (Confavreux et al., 1998). It was
demonstrated in a mouse model of EAE that serum EVs
suppressed T cell activation, promoted the maturation of OPC,
and pregnancy-associated exosomes facilitated OPC migration
into active CNS lesions (Williams et al., 2013). At the same
time, serum EVs derived from non-pregnant mice were also
able to reduce the severity of EAE. Thus, it was established
that serum EVs are a prominent mediator both of immune
modulation and neuroprotection which is especially pronounced
during pregnancy.

Alzheimer’s Disease (AD)
Wang et al. (2017) demonstrated the positive effect of using
bone marrowMSC-derived EVs (BM-MSC-derived EVs) both in
vitro and in vivo. Inducible nitric oxide synthase (iNOS) mRNA
and protein levels were significantly reduced in cultured primary
neurons prepared from APP/PS1 pups treated with BM-MSC-
derived EVs. In vivo studies demonstrated improved cognitive
behavior, rescued CA1 synaptic transmission, and long-term
potentiation in APP/PS1 mice administrated with BM-MSC-
derived EVs through an intracerebroventricular (i.c.v.) injection.

It has already been reported, that neutral endopeptidase (NEP)
levels and activity are reduced in patients with AD (Yasojima
et al., 2001). NEP was initially identified as a regulator of the
Aβ level (Iwata et al., 2000). Katsuda et al. (2013) demonstrated
NEP-specific enzyme activity could be exhibited by adipose
tissue-derived MSC EVs (AD-MSC-derived EVs). Furthermore,
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TABLE 1 | Preclinical trials using EVs.

Disease model Source of EVs Protocol details Reported effects Reference

MULTIPLE SCLEROSIS

EAE in mice EVs from bone

marrow-derived DCs

infected Ad/mTGF- 1 or

Ad/sTGF-β1,

∼100 nm

10 µg EVs/mouse, intravenously Prevented the de novo differentiation

of Th17 cells via inhibiting IL-6

production, inhibited the development

and progression of EAE

Yu et al., 2013

Primary OPC cultures serum-derived EVs of

pregnant and non-pregnant

mice

Co-culture of primary OPC with EVs,

for 72 h

Enhanced the function of OPCs Williams et al.,

2013

EAE in mice ∼100 nm 40 µg total protein of EVs/mouse,

intravenously

Suppressed T cell activation,

promoted the maturation of OPC,

facilitated OPC migration into active

CNS lesions

Brain tumor-bearing mice

model

Tumor cells-derived EVs

with circumin or JSI124,

∼100 nm

12.5 pmol EVs, intranasally for 12

consecutive days

Significantly delayed brain tumor

growth in the brain tumor model;

protected against LPS-induced brain

inflammation and the progression of

EAE

Zhuang et al.,

2011

LPS-induced brain

inflammation

1.5 nmol EVs in 10 µl PBS/mouse,

single intranasal administration

EAE in mice 1.5 nmol EVs, intranasally for 26

consecutive days

ALZHEIMER’S DISEASE

N2a cells AD-MSC-derived EVs,

∼100–200 nm

Co-culture of N2a cells with EVs, 500

µg protein/mL, up to 24 h

Decreased extracellular and

intracellular Aβ levels in N2a cells

Katsuda et al.,

2013

APP transgenic mice Primary neuron

culture-derived EVs

2mg total protein of EVs/ml PBS by

Alzet minipump at 0.25 ll/h for 14

days.

decreased Aβ and amyloid

depositions

Yuyama et al.,

2015

Primary cortical neuron

culture from newborn

APP/PS1 mice

BM-MSC-derived EVs,

∼100–140 nm

Co-culture of cortical neurons with

EVs, 100µg/ml EVs for 12 h

Reduced Aβ induced iNOS

expression in primary neurons

Wang et al., 2017

APP/PS1 mice 100 µg EVs in 5 µl PBS/mouse, i.c.v.

injection once per 2 days for 2 weeks

Improved cognitive behavior, rescued

impairment of CA1 synaptic

transmission, and long-term

potentiation

PARKINSON’S DISEASE

6-OHDA induced apoptosis

in DA neurons

SHEDs-derived EVs,

∼50–1000 nm

Co-culture of DA neurons with EVs,

for 20 h

Suppressed 6-OHDA induced

apoptosis

Jarmalavičiute

et al., 2015

Cortical neurons and DA

neurons from mouse pups

Macrophages—derived EVs

incorporating therapeutic

protein catalase,

∼100–200 nm

Co-culture of cortical neurons and DA

neurons with EVs, 100µg/mL total

protein, for 24 h

Reduced ROS level Haney et al., 2015

6-OHDA lesion of C57BL/6

mice

2.4 × 1010 EVs in 20 µl PBS/mouse,

intranasally or intravenously

Anti-inflammatory effect, reduced

microgliosis

AMYOTROPHIC LATERAL SCLEROSIS

NSC-34 cells expressing

ALS mutations

ADSC-derived EVs,

30–120 nm

Co-culture of NSC-34 cells with

200µg/ml EVs for up to 18 h

Protected cells from oxidative

damage

Bonafede et al.,

2016

G93A primary neuronal cell

culture

AD-MSC-derived EVs,

∼100 nm

Co-culture of G93A cells with

200µg/ml EVs, twice on day 2 and

day 6

Reduced mutant SOD1 aggregation Lee et al., 2016

STROKE

MCAO in rats BM-MSC-derived EVs,

∼100 nm

100 µg total protein of EVs in 500 µl

PBS/rats, intravenously

Improved functional recovery and

enhanced neurite remodeling,

neurogenesis, and angiogenesis

Xin et al., 2013a

MCAO in mice BM-MSC-derived EVs,

∼100 nm

EVs released by 2 × 106 MSCs

diluted in 250 µl of saline,

intravenously

Reduced post-ischemic motor

coordination impairment, induced

long-term neuroprotection, increased

cell proliferation, stimulated

neurogenesis, and angiogenesis

Doeppner et al.,

2015

(Continued)
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TABLE 1 | Continued

Disease model Source of EVs Protocol details Reported effects Reference

MCAO in rats AD-MSC-derived EVs,

∼100 nm

100 µg EVs/rat, intravenously Reduced infiltration of CD11+ and

CD68+ cells, decreased oxidative

stress, increased angiogenesis

Chen et al., 2016a

Subcortical Stroke AD-MSC-derived EVs,

∼100 nm

100 µg total protein of EVs,

intravenously

Rescued cognitive impairments,

improved functional recovery and

increased axonal sprouting

Otero-Ortega

et al., 2017

NEUROTRAUMA

TBI (controlled cortical

impact, CCI) in rat

BM-MSC-derived EVs,

∼100–150 nm

100 µg total protein of EVs in 500 µl

PBS/rat, intravenously

Significantly improved spatial learning,

sensorimotor functional recovery,

reduced neuroinflammation,

increased the number of newly

formed mature neurons in the DG,

increased the number of newly

formed endothelial cells in the lesion

boundary zone and DG

Zhang et al., 2015,

2017

TBI (controlled cortical

impact, CCI) in mice

BM-MSC-derived EVs,

∼200 nm

30 µg total protein of EVs (15 ×

109)/mice, single intravenous injection

Rescued cognitive impairments Kim et al., 2016

Contused SCI in rat BM-MSC—derived EVs,

∼20–130 nm

100 µg total protein of EVs (1 ×

1010) in 500 µl PBS/rat, intravenously

Decreased expression of

proapoptotic protein (Bax) and

pro-inflammatory cytokines (TNF-α

and IL-1β), increased expression

levels of anti-apoptotic (Bcl-2) and

anti-inflammatory (IL-10) proteins

Huang et al., 2017

Contused SCI in rat BM-MSC—derived EVs,

∼30–150 nm

40 µg total protein of EVs (1 × 106) in

200 µL PBS/rat, 30min and 1 day

post-SCI, intravenously

Reduced the proportion of A1

astrocytes, decreased lesion area and

expression of pro-inflammatory

cytokines (TNFα, IL-1α, IL-1β),

improved functional recovery

Wang et al., 2018

Contused SCI in rat BM-MSC—derived EVs 1 × 109 of EVs in 1ml PBS/rat, 3 h

post-SCI, intravenously

Reduced neuroinflammation,

decreased reactive microglia and

astrocytes, improved functional

recovery

Ruppert et al.,

2018

Contused SCI in rat BM-MSC- derived EVs,

∼30–100 nm

2.5 × 109 in 200 µl PBS/rat,

intravenously

Targeted the SCI site and might

contribute to the therapeutic effects,

target specifically to M2 macrophages

Lankford et al.,

2018

it was indicated that AD-MSC-derived EVs when transferred
to N2a cells (a fast-growing mouse neuroblastoma cell line
overproducing human Aβ) contributed, at least in part, to a
decrease in both extracellular and intracellular Aβ levels. That
AD-MSCs expressed NEP at a higher level than BM-MSCs is
an important observation highlighting the importance of MSC
origin on function (Yasojima et al., 2001).

An alternative cellular source of EVs for therapeutic
intervention in AD were used by Yuyama et al. (2015).
These authors showed that intracerebral infusion of neuronal
EVs into brains of APP transgenic mice decreased amyloid
depositions, suggesting an important role for neuronal exosomes
in clearing Aβ in brain, but not explaining mechanisms of
EVs actions.

Parkinson’s Disease (PD)
Haney et al. (2015) proposed a new EV-based technology
for catalase delivery to the CNS to treat PD. Bovine liver
derived catalase was loaded into EVs isolated from the mouse
macrophage cell line (Raw 264.7). The in vitro study data
demonstrated that reactive oxygen species (ROS) levels decreased

when catalase-loaded EVs as well as empty ones were co-cultured
with cortical neurons and dopaminergic (DA) neurons, although
the effect of empty EVs was less significant. Administration of
the same catalase loaded EVs to a model of 6-OHDA lesions in
C57BL/6 female mice had an anti-inflammatory effect manifested
as decreased microgliosis. It is important to note that there was
no effect on microglia activation, or the number of DA neurons.
It was hypothesized that EVs-mediated delivery of catalase to
activated microglia, astrocytes, and neurons in the inflamed
brain might result in ROS degradation and neuroprotection in
PD patients.

Jarmalavičiute et al. (2015) demonstrated in vitro that EVs
isolated from the supernatants of stem cells derived from the
dental pulp of human exfoliated deciduous teeth (SHEDs),
and grown on laminin-coated 3D alginate micro-carriers,
suppressed 6-OHDA (6-hydroxy-dopamine) induced apoptosis
in DA neurons. Interestingly, EVs from the same stem cells
cultured under standard conditions possessed no such properties.
These results confirm that EVs serve as a novel therapeutic
approach in the treatment of Parkinson’s disease, although the
mechanism of action remains unclear.
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Amyotrophic Lateral Sclerosis (ALS)
Bonafede et al. (2016) showed in vitro, that AD-stromal
cell-derived EVs (AD-SC-derived EVs) were able to protect
NSC-34 cells from oxidative damage, which is one of the
main mechanisms of damage in ALS, increasing cell viability.
They suggest the positive effect might be caused by secretion
of miRNAs, which play a protective role via inhibition of
apoptosis pathways, and promoting cell cycle progression and
proliferation. AD-SC-derived EVs were shown in vitro to
ameliorate SOD1 protein levels and aggregates in neuronal
cells derived from G93A ALS mice. It was concluded that
the abnormal expression of mitochondrial proteins in ALS
cells could be rescued by application of AD-SC-derived EVs
(Lee et al., 2016).

Stroke
When using BM-MSC-derived EVs in a model of middle cerebral
artery occlusion (MCAO) ischemic lesion volumes reduced,
however there was no significant difference compared to PBS-
treated controls (Xin et al., 2013a). This study demonstrated that
neurite remodeling improved, alongside increases in synaptic
plasticity, neurogenesis and angiogenesis within the ischemic
boundary zone. These improvements in function were proposed
to be the result of miR133b activity on neurite remodeling,
delivered to neural cells as part of the BM-MSC-derived
EVs cargo (Xin et al., 2013b). In complementary study,
intravenous injection of BM-MSC-derived EVs into an in vivo
model of MCAO reduced post-ischemic motor coordination
impairment, induced long-term neuroprotection, increased cell
proliferation, and stimulated neurogenesis and angiogenesis
(Doeppner et al., 2015).

Chen et al. (2016a) studied the effects of intravenous
administration of AD-MSC-derived EVs and AD-MSCs in
a model of MCAO. Results demonstrated that neurological
impairment was reversed after treatment with AD-MSC-derived
EVs an effect that was more significant when treatment
used AD-MSCs. Reduced infiltration of CD11+ and CD68+
cells (two indicators of inflammation), decreased oxidative
stress and increased angiogenesis were reported in both
experimental groups.

Otero-Ortega et al. (2017) demonstrated in a model of
subcortical stroke that after intravenous infusion, EVs were
found in the brain and peripheral organs (the liver, lungs and
the spleen). There was improved functional outcome, increased
axonal sprouting, increased oligodendrocyte-associated marker
expression and myelin formation, changes in white matter
thickness and the restoration of tract connectivity at 28 days
after EV administration. Proteomics analysis of the EVs identified
2,416 proteins that are implicated in repairing brain functions.

Neurotrauma
Zhang et al. (2015) demonstrated that BM-MSC-derived
EVs effectively improved functional outcome by promoting
endogenous angiogenesis, neurogenesis and reducing
inflammation in rats after traumatic brain injury (TBI). In
2 years the same team of scientists reported the results of
systemic administration of BM-MSC-derived EVs cultured

under 2D and 3D conditions. This treatment did not alter
cortical lesion volume but significantly improved cognitive
and sensorimotor functional recovery, increased the number
of newly formed mature neurons in the dentate gyrus (DG).
It also increased the number of newly formed endothelial
cells in the lesion boundary zone and DG, as well as reduced
neuroinflammation. BM-MSC-derived EVs cultured under 3D
conditions provided better outcome in spatial learning compared
to EVs from a 2D culture (Zhang et al., 2017).

Kim et al. (2016) demonstrated that BM-MSC-derived EVs
suppressed neuroinflammation after TBI in mice. It was also
shown that an intravenous infusion of the isolated EVs shortly
after induction of TBI rescued pattern separation and spatial
learning impairments 1 month later.

Studies of the therapeutic potential of EVs in spinal cord
injury (SCI) report that systemic administration of BM-
MSC-derived EVs in contused SCI in rats attenuated cell
apoptosis and inflammatory processes, stimulated angiogenesis,
and promoted functional recovery. In particular, there was
a downregulated expression of a pro-apoptotic protein (Bax)
and pro-inflammatory cytokines (TNF-α and IL−1β), increased
expression levels of anti-apoptotic (Bcl-2) and anti-inflammatory
(IL-10) proteins (Huang et al., 2017). Furthermore, Lankford
et al. (2018) demonstrated that intravenously delivered BM-
MSC-derived EVs targeted the SCI site, might contribute to the
therapeutic effects by specifically targetingM2macrophages. EVs
were detected in the area of SCI and the spleen, but not in the
intact region of the spinal cord.

Recently, Wang et al. (2018) confirmed a comparable
therapeutic effect of intravenously administered BM-MSC-
derived EVs and BM-MSCs in SCI. The authors observed that
BM-MSC-derived EVs reduced the proportion of neurotoxic
astrocytes, probably via inhibiting nuclear translocation of NFκB
p65, and exerted anti-inflammatory and neuroprotective effects
following SCI. Similar results were obtained by Ruppert et al.
(2018), who confirmed the anti-inflammatory and functional
effects of intravenously delivered BM-MSC-derived EVs by
means of a decreased in microglia activation markers rather than
skewing microglial polarization.

Clinical Trials Using EVS in the Treatment
of Nerve Disorders
The conceptual advance in our understanding of the therapeutic
application of EVs as a regenerative strategy for neural tissue is
relatively new. Therefore, a considerable number of studies are
non-clinical, relying on in vitro and in vivo models. To date the
Food and Drug Administration (FDA) have approved clinical
trials using EVs as a treatment of ulcers (ClinicalTrials.gov
Identifier: NCT02565264), sepsis (NCT02957279), macular hole
(NCT03437759), and type 1 diabetes mellitus (NCT02138331).
Based on pre-clinical studies of EV-mediated delivery of miR-
124 promoting neurogenesis after ischemia (Yang et al., 2017),
a further clinical trial using MSC-derived EVs in the treatment
of acute ischemic stroke (NCT03384433) is planned for 2018–19,
in which the effect of MSC-generated EVs will be examined in
post-stroke phases 1 and 2.
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CONCLUSION

Studies of the therapeutic potential of EVs in regenerative
strategies strongly support the use of MSC-derived EVs in
the treatment of nerve tissue disorders. MSC-derived EVs are
reported to exert the majority of the positive effects seen with the
direct use of MSCs as a therapy, but without the risks associated
with stem cell transplantation (Gatti et al., 2011; Li et al., 2012;
Konala et al., 2016). The rapid progression from non-clinical to
clinical studies of MSC-derived EVs will uncover the exciting
potential that EV-mediated cell free therapy may offer for the
treatment of nerve disorders.
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