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Do men and women have different brains? Previous neuroimage studies sought to

answer this question based on morphological difference between specific brain regions,

reporting unfortunately conflicting results. In the present study, we aim to use a deep

learning technique to address this challenge based on a large open-access, diffusion

MRI database recorded from 1,065 young healthy subjects, including 490 men and

575 women healthy subjects. Different from commonly used 2D Convolutional Neural

Network (CNN), we proposed a 3D CNN method with a newly designed structure

including three hidden layers in cascade with a linear layer and a terminal Softmax

layer. The proposed 3D CNN was applied to the maps of factional anisotropy (FA) in

the whole-brain as well as specific brain regions. The entropy measure was applied

to the lowest-level image features extracted from the first hidden layer to examine the

difference of brain structure complexity between men and women. The obtained results

comparedwith the results from using the Support Vector Machine (SVM) and Tract-Based

Spatial Statistics (TBSS). The proposed 3D CNN yielded a better classification result

(93.3%) than the SVM (78.2%) on the whole-brain FA images, indicating gender-related

differences likely exist in the whole-brain range. Moreover, high classification accuracies

are also shown in several specific brain regions including the left precuneus, the left

postcentral gyrus, the left cingulate gyrus, the right orbital gyrus of frontal lobe, and the

left occipital thalamus in the graymatter, andmiddle cerebellum peduncle, genu of corpus

callosum, the right anterior corona radiata, the right superior corona radiata and the left

anterior limb of internal capsule in the while matter. This study provides a new insight into

the structure difference between men and women, which highlights the importance of

considering sex as a biological variable in brain research.

Keywords: gender difference, deep learning, neural network, diffusion MRI, entropy

INTRODUCTION

Recent studies indicate that gender may have a substantial influence on human cognitive functions,
including emotion, memory, perception, etc., (Cahill, 2006). Men and women appear to have
different ways to encode memories, sense emotions, recognize faces, solve certain problems, and
make decisions. Since the brain controls cognition and behaviors, these gender-related functional
differences may be associated with the gender-specific structure of the brain (Cosgrove et al., 2007).
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Diffusion tensor imaging (DTI) is an effective tool for
characterizing nerve fibers architecture. By computing fractional
anisotropy (FA) parameters in DTI, the anisotropy of nerve fibers
can be quantitatively evaluated (Lasi et al., 2014). Differences
in FA values are thought to associate with developmental
processes of axon caliber, myelination, and/or fiber organization
of nerve fibers pathways. By computing FA, researchers has
revealed subtle changes related to normal brain development
(Westlye et al., 2009), learning (Golestani et al., 2006), and
healthy aging (Kochunov et al., 2007). Nevertheless, existing
studies are yet to provide consistent results on exploring
the difference of brain structure between men and women.
Ingalhalikar et al. (2014) argued that the men have greater
intra-hemispheric connection via the corpus callosum while
women have greater interhemispheric connectivity. However,
other studies reported no significant gender difference in brain
structure (Raz et al., 2001; Salat et al., 2005). A recent critical
opinion article suggested that more research is needed to
investigate whether men and women really have different brain
structures (Joel and Tarrasch, 2014).

Most existing DTI studies used the group-level statistical
methods such as Tract-Based Spatial Statistics (TBSS) (Thatcher
et al., 2010; Mueller et al., 2011; Shiino et al., 2017). However,
recent studies indicated that machine learning techniques may
provide us with a more powerful tool for analyzing brain images
(Shen et al., 2010; Lu et al., 2017; Tang et al., 2018). Especially,
deep learning can extract non-linear network structure, realize
approximation of complex function, characterize distributed
representation of input data, and demonstrate the powerful
ability to learn the essential features of datasets based on a
small size of samples (Zeng et al., 2016, 2018a; Tian et al.,
2018; Wen et al., 2018). In particular, the deep convolutional
neural network (CNN) uses the convolution kernels to extract
the features of image and can find the characteristic spatial
difference in brain images, which may promise a better result
than using other conventional machine learning and statistical
methods (Cole et al., 2017).

In this study, we performed CNN-based analyses on the FA
images and extracts the features of the hidden layers to investigate
the difference between man and woman brains. Different from
commonly used 2D CNN model, we innovatively proposed a 3D
CNN model with a new structure including 3 hidden layers, a
linear layer and a softmax layer. Each hidden layer is comprised
of a convolutional layer, a batch normalization layer, an activation
layer and followed by a pooling layer. This novel CNN model
allows using the whole 3D brain image (i.e., DTI) as the input
to the model. The linear layer between the hidden layers and the
softmax layer reduces the number of parameters and therefore
avoids over-fitting problems.

MATERIALS AND METHODS

MRI Data Acquisition and Preprocessing
The database used in this work is from the Human Connectome
Project (HCP) (Van Essen et al., 2013). This open-access database
contains data from 1,065 subjects, including 490 men and 575
women. The ages range is from 22 to 36. This database represents

a relatively large sample size compared to most neuroimaging
studies. Using this open-access dataset allows replication and
extension of this work by other researchers.

We performed DTI data preprocessing includes format
conversion, b0 image extraction, brain extraction, eddy current
correction, and tensor FA calculation. The first four steps were
processed with the HCP diffusion pipeline, including diffusion
weighting (bvals), direction (bvecs), time series, brain mask, a
file (grad_dev.nii.gz) for gradient non-linearities during model
fitting, and log files of EDDY processing. In the final step we
use dtifit to calculate the tensors to get the FA, as well as mean
diffusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD) values.

The original data were too large to train the model and it
would cause RESOURCE EXAUSTED problem while training
due to the insufficient of GPU memory. The GPU we used
in the experiment is NVIDIAN TITAN_XP with 12G memory
each. To solve the problem, we scaled the size of FA image
to [58 × 70 × 58]. This procedure may lead to a better
classification result, since a smaller size of the input image
can provide a larger receptive field to the CNN model. In
order to perform the image scaling, “dipy” (http://nipy.org/
dipy/) was used to read the .nii data of FA. Then “ndimage”
in the SciPy (http://www.scipy.org) was used to reduce the
size of the data. Scaled data was written into the TFRecord
files (http://www.tensorflow.org) with the corresponding labels.
TFRecord file format is a simple record oriented binary
format that is widely used in Tensorflow application for the
training data to get a high performance of input efficiency.
The labels were processed into the format of one-hot. We
implemented a pipeline to read data asynchronously from
TFRecord according to the interface specification provided by
Tensorflow (Abadi et al., 2016). The pipeline included the reading
of TFRecord files, data decoding, data type conversion, and
reshape of data.

CNN Model
We did the experiments on a GPU work station, which has
four NVIDIA TITAN Xp GPUs. The operation system of the
GPU work station was Ubutnu16.04. We used FSL to preprocess
the data. The CNN model was designed using the open source
machine learning framework Tensorflow (Abadi et al., 2016).

Model Design

The commonly used CNN structures are based on 2D images.
When using a 2D CNN to process 3D MRI images, it needs
to map the original image from different directions to get 2D
images, which will lose the spatial structure information of
the image. In this study, we designed a 3D CNN with 3D
convolutional kernels, which allowed us to extract 3D structural
features from FA images. Besides, traditional CNNmodel usually
uses several fully connected layers to connect the hidden layers
and the output layer. The fully connected layer may be prone to
the over-fitting problem in binary classification when the number
of samples is limited (like our data). To address this problem, we
used a linear layer to replace the fully connected layer. The linear
layer integrates the outputs of hidden layers (i.e., a 3D matrix
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comprised of multiple featuremaps) into the inputs (i.e., a 1D
vector) of the output layer which is a softmax classifier. Moreover,
we performed a Batch Normalization (Ioffe and Szegedy, 2015)
after each convolution operation. The Batch Normalization is
used to avoid internal covariate shift problem in training the
CNN model. Therefore, our designed model is a 3D “pure”
CNN (3D PCNN). The architecture of the 3D PCNN model
is shown in Figure 1. The 3D PCNN consists of three hidden
layers, a linear layer and a softmax layer. Each of the hidden
layer contains a convolutional layer, a Batch Normalization layer,
an activation layer, a pooling layer with several feature maps as
the outputs.

Convolutional layer
The process of convolutional layer is to convolve the input vector
I with the convolution kernelK, represented by I

⊗

K. The shape
of the input vector in our 3D PCNN model was [n, d, w, h, c],
where d, w, h, c represent the depth, width, height and channel
numbers (which is 1 for a grayscale image) of the input vector,
respectively, and n is the batch size which is a hyperparameter
that was set to 45 (an empirical value) in this paper. In the
first layer, the input size was 58 × 70 × 58 × 1, which was
the 3D size (58 × 70 × 58) of the input image plus a single
channel (grayscale image). The shape of the convolution kernel
was [dk,wk, hk, cin, cout], where dk,wk, hk represents the depth,
width, and height of the convolution kernel, respectively. In all
three hidden layers, the kernel size was set to3 × 3 × 3, which
means that dk = wk = hk = 3. The cin is the number
of input channels which is equal to the channel number of the
input vector. The cout is the number of output channels. As each
kernel has an output channel, cout is equal to the number of
convolution kernels, and is also the same as the number of input
channels for the next hidden layer. In all convolution layers, the
moving stride of the kernel was set to 1 and padding mode was
to “SAME.”

Batch normalization layer
Batch normalization was performed after the convolutional layer.
Batch normalization is a kind of training trick which normalizes
the data of each mini-batch (with zero mean and variance of one)
in the hidden layers of the network. To alleviate the gradient
internal covariate shift phenomenon and speed up the CNN
training, an Adam Gradient Decent method was used to train the
model (Kingma and Ba, 2015).

Activation layer
After the batch normalization operation, an activation function
was used to non-linearize the convolution result. The activation
function we used in the model was the Rectified linear unit,
ReLU (Nair and Hinton, 2010).

Pooling layer
Pooling layer was added after the activation layer. Pooling layers
in the CNN summarize the outputs of neighboring groups of
neurons in the same kernel map (Krizhevsky et al., 2012). Max-
pooling method was used in this layer.

The outputs of each hidden layer were feature maps, which
were the features extracted from the input images to the

hidden layer. The outputs from the previous hidden layer
were the inputs to the next layer. In our model, the first
hidden layer generated 32 feature maps, the second hidden
layer produced 64 feature maps, and the third hidden layer
yielded 128 feature maps. Finally, we integrated the last 128
feature maps into the input of the softmax layer through a
linear layer, and then got the final classification results from the
softmax layer.

In our model, the input X ∈ {x(1), x(2), . . . , x(n)}, x(i)

was the ith subject’s FA value. Y ∈ {y(1), y(2), . . . , y(n)},
y(i) was the ith subject’s label that were processed to one-
hot vector where [1 0] represents man and [0 1] woman. We
used h(θ , x) to represent the proposed 3D PCNN model.
Then we had:

ŷ = h(θ , x) (1)

where ŷ represents the predicted value obtained using the 3D
PCNN on a sample x.

Parameters Optimization
The initial values of the weights of the convolution kernels were
random values selected from a truncated normal distribution
with standard deviation of 0.1. We defined a cost function
to adjust these weights based on the softmax cross entropy
(Dunne and Campbell, 1997):

J (θ , x) = −

n
∑

i=1

ŷ(i) log P
(

ŷ(i) = y(i)
∣

∣

∣
x = x(i) ) (2)

As such, the task of adjusting the weight value became an
optimization problem with J (θ , x) as the optimization goal,
where a small penalty was given if the classification result was
correct, and vice versa. We used the Adam Gradient Descent
(Kingma and Ba, 2015) optimization algorithm to achieve this
goal in the model training. All parameters in the Adam algorithm
were set to the empirical values recommended by Kingma and
Ba (2015), i.e., learning rate was α = 0.001, exponential
decay rates for the moment estimates were β1 = 0.9, β1 =

0.999, ε = 10− 8.

Cross-Validation
To ensure the independent training and testing in the cross-
validation. The process of cross-validation is shown in Figure 2.
We implemented a two-loop nested cross-validation scheme
(Varoquaux et al., 2017). We divided the data set into three parts,
i.e., 80% of the data as the training set for model training, 10%
as the verification set for parameter selection, and 10% as the
testing set for evaluating the generalization ability of the model.
To eliminate the random error of model training, we run 10
fold cross validation and then took the average of classification
accuracies as the final result.

Features in First Hidden Layer
CNN has an advantage that it can extract key features by itself
(Zeng et al., 2018c). However, these features may be difficult to
interpret since they are highly abstract features. Thus, in this
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FIGURE 1 | 3D PCNN architecture.

FIGURE 2 | Model training and nested cross validation. (A) General overview. (B) 10 fold cross validation.

study, we only analyzed the features obtained in the first hidden
layer, since they are the direct outputs from the convolution on
the grayscale FA images. In this case, the convolution operation
of the first layer is equivalent to applying a convolution kernel
based spatial filter on the FA images. The obtained features are
less abstractive than those from the second and three hidden
layers. There are totally 32 features in the first hidden layer. These
features are the lowest-level features which may represent the
structural features of FA images. We firstly computed the mean
of voxel values across all subjects in each group (man vs. woman)

for each feature and then evaluated their group-level difference
using a two-sample t-test. Besides, we also computed the entropy
on each feature for each individual:

H = −

255
∑

i=0

pi log pi (3)

where pi indicates the frequency of pixel with value i appears
in the image. The entropy of each feature likely indicates
the complexity of brain structural encoded in that feature.
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We also performed a two-sample t-test on entropy results
to explore the differences between men and women. A strict
Bonferroni correction was applied for multiple comparisons
with the threshold of 0.05/32 = 1.56 × 10−3 to remove
spurious significance.

Discriminative Power of Brain Regions
In order to determine which brain regions may play important
role in gender-related brain structural differences, we repeated
the same 3D PCNN-based classification on each specific
brain region. We segmented each FA image into 246 gray
matter regions of interests (ROIs) according to the Human
Brainnetome Atlas (Fan et al., 2016) and 48 white matter
ROIs according to the ICBM-DTI-81 White-Matter Labels
Atlas (Mori et al., 2005). The classification accuracy was then
obtained for each ROIs. A higher accuracy indicates a more
important role of that ROI in gender-related difference.
A map was then obtained based on the classification
accuracies of different ROIs to show their distribution in
the brain.

Comparisons With Tract Based Spatial
Statistics and Support Vector Machine
To justify the effectiveness of our method, the Tract Based
Spatial Statistics (TBSS) and Support Vector Machine
(SVM) were applied to our dataset as comparisons,
since these are two popular methods for data analysis in
neuroimaging studies (Bach et al., 2014; Zeng et al., 2018b).
We compared the results in following two conditions: (1)
We used the SVM as the classifier while keeping the same
preprocessing procedure in order to compare its results
with our 3D PCNN method. We flatten each sample from
the 3D FA matrix into a vector, and then fed the SVM
with the vector. (2) We used the TBSS to identify the
brain regions where are shown the statistically significant
gender-related difference.

RESULTS

Classification Results on the Whole-Brain
FA Images
Using our 3D PCNN methods on the whole-brain FA images,
we can well-distinguish men and women with the classification
accuracy of 93.3%. This result is much better than using the SVM,
whose classification accuracy is only 78.2%.

As comparisons, we also used MD, AD, and RD to repeat
the same analysis. The classification accuracy of MD is 65.8%,
AD is 69.9%, and RD is 67.8%. All of them are lower than the
classification accuracy obtained by using FA.

Feature Analysis in the First Hidden Layer
of 3D PCNN
The result of two-sample t-test of 32 features of men and women
shows that there are 25 features had significant gender differences
including 13 features that women have larger values and 12
features that men have larger values (see Figure 3). Interestingly,

men have significantly higher entropy thanwomen for all features
(see Figure 4).

Classification on Each Specific ROI
TBSS could not detect any statistically significant gender-related
difference in this dataset. However, using 3D PCNN, we did
find gender-related differences in all ROIs in the both gray
and white matters, as the classification accuracies (>75%) are
much higher than the chance level (50%) for all ROIs. The
maps of classification accuracies for different ROIs are shown
in Figure 5. The detail classification results are provided in
the supplement (see Table S1 for gray matter and Table S2

for white matter). In the gray matter, the top 5 regions with
highest classification accuracies are the left precuneus (Broadman
area, BA 31, 87.2%), the left postcentral gyrus (BA 1/2/3 trunk
region, 87.2%), the left cingulate gyrus (BA 32 subgenual area,
87.2%), the right orbital gyrus of frontal lobe (BA 13, 87.1%)
and the left occipital thalamus (86.9%). In the white matter, the
top 5 regions with highest classification accuracies are middle
cerebellum peduncle (89.7%), genu of corpus callosum (88.4%),
the right anterior corona radiata (88.3%), the right superior
corona radiata (86%), and the left anterior limb of internal
capsule (85.4%).

DISCUSSIONS

Classification on the Whole-Brain FA
The proposed 3D PCNN model achieved 93.3% classification
accuracy in the whole-brain FA. The high classification accuracy
rate indicates that the proposed model can accurately find the
brain structure difference between men and women, which is
the basis of subsequent feature analysis and subreginal analysis.
Most existing classification, regression, and other machine
learning methods are shallow learning algorithms, such as the
SVM, Boosting, maximum entropy, and Logistic Regression.
When complex functions need to be expressed, the models
obtained by these algorithms will then have a limitation with
small size of samples and limited computational resources.
Thus, the generalization ability will be deteriorated as we
demonstrated in the results from the SVM. The benefit of
deep learning algorithms, using multiple layers in the artificial
neural network, is that one can represent complex functions
with few parameters. The CNN is one of the widely used
deep learning algorithms. In compared to the method like
SVM, which is just a classifier, 3D CNN is a method that can
extract the 3D spatial structure features of the input image.
Through constructing the 3D PCNN model, we extracted highly
abstract features from FA images, which may, thusly, improve
the classification accuracy. FA describes the partial anisotropy
index, which indicates the difference between one direction
and others (Feldman et al., 2010). It can reflect alterations in
various tissue properties including axonal size, axonal packing
density, and degree of myelination (Chung et al., 2016). In this
study, we also run the same analysis using MD, AD, and RD
images for comparisons. All their results are lower than that
of FA, indicating that using FA is more effective to find the
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FIGURE 3 | Between-group differences of 32 features in voxel values. The mean (bar height) and standard deviation (error bars) of voxel values across all subjects in

each group were evaluated for each feature. Their group-level difference was examined using a two-sample t-test. Bonferroni correction was applied for multiple

comparisons with the threshold equal to 0.05/32 = 1.56 × 10−3 to remove spurious significance. The features with significantly larger mean voxel values for men are

marked out with*, while features with significantly larger mean voxel values for women are indicated by +.

structure difference between men and women’s brain than using
other images.

Feature Analysis in the First Hidden Layer
of 3D PCNN
The degree of the macroscopic diffusion anisotropy is often
quantified by the FA (Lasi et al., 2014). Previous studies found
that wider skeleton of white matter in woman’s brain but wider
region of gray matter in man’s brain (Witelson et al., 1995;
Zaidi, 2010; Gong et al., 2011; Menzler et al., 2011). These
mean that men appear to have more gray matter, made up
of active neurons, while women may have more white matter
for the neuronal communication between different areas of the
brain. Furthermore, a recent study found that men had higher
FA values than women in middle aged to elderly (between
44 and 77 years old) people by using a statistical analysis
(Ritchie et al., 2018). This study focuses on the young healthy
individuals with the age range between 22 and 36 years old.

The structural features extracted from 3D PCNN reflect the
brain structure difference between men and women. In the first
hidden layer of 3D PCNN model, we found 25 features that have
significant difference between men and women in voxels value.
Moreover, using entropy measure, we found that men’s brains
likely have more complex features as reflected by significantly
higher entropy. These results indicated that the gender-related
differences likely exist in the whole-brain range including both
white and gray matters.

Most Discriminative Brain Regions
Using FA images from each specific brain region as the input to
the 3D PCNN, we found all tested brain regionsmay have gender-
related difference, though the TBSS analysis cannot detect these
differences. The brain regions with high classification accuracies
include the left precuneus (Broadman area, BA 31, 87.2%), the
left postcentral gyrus (BA 1/2/3 trunk region, 87.2%), the left
cingulate gyrus (BA 32 subgenual area, 87.2%), the right orbital
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FIGURE 4 | Between-group differences of 32 features in entropy values. The mean (bar height) and standard deviation (error bars) of entropy value were computed

across all subjects in each group for each feature. Their group-level difference was evaulated using a two-sample t-test. Bonferroni correction was applied for multiple

comparisons with the threshold equal to 0.05/32 = 1.56 × 10−3 to remove spurious significance. The entropy values are significantly larger in men than in women

for features.

gyrus of frontal lobe (BA 13, 87.1%), and the left occipital
thalamus (86.9%) in the gray matter, and middle cerebellum
peduncle (89.7%), genu of corpus callosum (88.4%), the right
anterior corona radiata (88.3%), the right superior corona radiata
(86%), and the left anterior limb of internal capsule (85.4%).

The gender-related morphological difference at the corpus
callosum has been previously reported, which may be associated
with interhemispheric interaction (Sullivan et al., 2001; Luders
et al., 2003; Prendergast et al., 2015). However, likely due to
the limitation of applied methods, not all previous studies have
reported this difference (Abe et al., 2002). Those likely results in
the inconsistent findings were across different studies. Through
3D PCNN model, our results confirm that there is likely a
morphological difference at the genu of corpus callosum between
man and women.

The middle cerebellum peduncle is the brain area connected
to the pons and receiving the inputs mainly from the pontine
nuclei (Glickstein and Doron, 2008), which are the nuclei of
the pons involved in motor activity (Wiesendanger et al., 1979).

Raz et al. (2001) found larger volume in the cerebellum of men
than women. The cerebellar cells release diffusible substances
that promote the survival of thalamic neurons (Tracey et al.,
1980; Hisanaga and Sharp, 1990). Previous studies have reported
gender-difference differences in the basic glucose metabolism
in the thalamus of young subjects between the ages of 20 and
40 (Fujimoto et al., 2008). Beside the thalamus and cerebellum,
the postcentral gyrus was also found in our results as the
brain region with high classification accuracy. Thus, there is
very likely a gender-related difference in the cerebellar-thalamic-
cortical circuitry. This difference may also be related to the
reported gender differences in neurological degenerative diseases
such as Parkinson’s Disease (Lyons et al., 1998; Dluzen and
Mcdermott, 2000; Miller and Cronin-Golomb, 2010), where
the pathological changes are usually found in the cerebellar-
thalamic-cortical circuitry.

The findings of the current study also indicated the gender-
related difference in the limbic-thalamo-cortical circuitry.
Anterior corona radiata is part of the limbic-thalamo-cortical
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FIGURE 5 | Maps of classification accuracies for different ROIs in the gray and white matter of the brain. (A) Results in 246 gray matter regions of interests (ROIs)

according to the Human Brainnetome Atlas (B) Results in 48 white matter ROIs according to the ICBM-DTI-81 White-Matter Labels Atlas.

circuitry and includes thalamic projections from the internal
capsule to the prefrontal cortex. White matter changes in the
anterior corona radiata could result in many of the cognitive and
emotion regulation disturbances (Drevets, 2001). The orbital
gyrus of frontal cortex gray matter areas and cingulate gyrus have
also been reported to be associated with the emotion regulation
system (Fan et al., 2005). Thus, the gender-related difference
in the limbic-thalamo-cortical circuitry may explain the
gender differences in thalamic activation during the processing
of emotional stimuli or unpleasant linguistic information
concerning interpersonal difficulties as demonstrated by
previous fMRI (Lee and Kondziolka, 2005; Shirao et al., 2005).

In summary, by using the designed 3D PCNN algorithm, we
confirmed that the gender-related differences exist in the whole-
brain FA images as well as in each specific brain regions. These
gender-related brain structural differences might be related to
gender differences in cognition, emotional control as well as
neurological disorders.
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