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Risk preference, the preference for risky choices over safe alternatives, has a great
impact on many fields, such as physical health, sexual safety and financial decision
making. Ample behavioral research has attested that inadequate self-control can give
rise to high risk preference. However, little is known about the neural substrates
underlying the effect of self-control on risk preference. To address this issue, we
combined voxel-based morphometry (VBM) with resting-state functional connectivity
(RSFC) analyses to explore the neural basis underlying the effect of self-control on
risk preference across two independent samples. In sample 1 (99 participants; 47
males; 20.37 ± 1.63 years), the behavioral results indicated that the scores of self-
control were significantly and negatively correlated with risk preference (indexed by
gambling rate). The VBM analyses demonstrated that the higher risk preference was
correlated with smaller gray matter volumes in right orbitofrontal cortex (rOFC) and
right posterior parietal cortex. In the independent sample 2 (80 participants; 33 males;
20.33 ± 1.83 years), the RSFC analyses ascertained that the functional connectivity
of rOFC and right anterior cingulate cortex (rACC) was positively associated with risk
preference. Furthermore, the mediation analysis identified that self-control mediated
the impact of functional connectivity of rOFC-rACC on risk preference. These findings
suggest the functional coupling between the rOFC and rACC might account for the
association between self-control and risk preference. The present study extends our
understanding on the relationship between self-control and risk preference, and reveals
possible neural underpinnings underlying this association.

Keywords: self-control, risk preference, voxel-based morphometry, resting-state functional connectivity,
mediation

INTRODUCTION

The decisions we make in our daily lives have a pronounced effect on our physical,
psychological, and individual or family economics. Specifically, risks and uncertainties pervade
our decisions across the lifespan, including physical health (Lusk and Coble, 2005), sexual
safety (Harbison et al., 2018), and financial decision making (Engelmann and Tamir, 2009;
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Angkinand and Wihlborg, 2010; Wen et al., 2014). Notably, risk
preference, which is defined as the general tendency to take
risks in a particular decision context (Sitkin and Pablo, 1992;
Mullins and Forlani, 2005), is a crucial indicator of risk decision
making. Individuals with high risk preferences are commonly
associated with more maladaptive behaviors, including alcohol
consumption, drug abuse, smoking, gambling, and unsafe sexual
activity (Donohew et al., 2000; Robbins and Bryan, 2004; Bechara,
2005; Bickel et al., 2012). Prior literature has indicated that
risk preference results from a lack of self-control (Freeman and
Muraven, 2010; Ryan et al., 2013). Although the relationship
between self-control and risk preference has been explored in
the behavioral field, little is known about the neural substrates
underlying the effects of self-control on risk preference.

A large number of human decisions involving a balance
between anticipated rewards and risks are regulated by self-
control, which can resist immediate temptations in favor of
long-term goals (Kool et al., 2013). The dual-system model, a
more systematic explanation for risk behavior, provides a reliable
explanation for the impact of self-control on risk preference.
According to this theory, risk behavior is recognized as the
result of competition between the instinctive affective system
and the controlled deliberative system (Casey et al., 2008;
Steinberg, 2008). The instinctive affective system, also known as
the “hot” system, is spontaneous and automatic, relying upon
affective input, such as the expectation of reward following
risk behavior (Galvan et al., 2006, 2010). Notwithstanding
this, the controlled deliberative system (the “cool” system) is
characterized as involving more purely cognitive processes. The
affective system can be easily triggered, for example by affectively
pursuing rewards due to high risk preference. Meanwhile, the
controlled system could block these affective impulses and
facilitate deliberative decision making (Cohen, 2005; Knoch and
Fehr, 2010). Self-control has been quintessentially deemed a part
of the controlled deliberative system (Kruglanski, 2018). This
system underlies goal-directed behavior and requires a volitional
control or willpower to be effective (Metcalfe and Mischel, 1999).
However, the avoidance of risk preference requires effective self-
control (de Ridder et al., 2012), which is initiated by inner
responses and undesired behavioral tendencies (Tangney et al.,
2004; Carver and Scheier, 2012). According to the process
model of self-control depletion, self-control failure is caused by
the motivated switching to “want-go” goals, which are carried
out for personal enjoyment and gratification, such as reward
seeking (Inzlicht et al., 2014). Taken together, risk behaviors are
performed because the motivation to rewards cannot be resisted
by low cognitive control ability. Accordingly, it is presumable that
the relative strength of the reward evaluation system compared
to the cognitive control system should be highlighted as a
core component of the association between self-control and
risk preference.

The dual system model comprises of two distinct
neurobiological sub-systems: the “cognitive control” system,
which mainly involves the lateral prefrontal cortex (lPFC),
parietal cortices (PC), anterior cingulate cortex (ACC)
(Steinberg, 2008), and the “socioemotional” system, which
is located in the limbic and paralimbic areas of the brain, such as

the ventral striatum and orbitofrontal cortex (OFC). Specifically,
in the “cognitive control” system, the lPFC is closely linked to
deliberative processing and self-control in the suppression of
affective impulses (Mcclure and Bickel, 2015; Su et al., 2018).
The lPFC implements control in part by biasing processing
through the connection with the posterior parietal cortex (PPC).
The activation of the PPC is associated with attending to and
evaluating the risks involved in decision making (Huettel et al.,
2005; Christopoulos et al., 2009). The lPFC, which is responsible
for executive cognitive control, might also collaborate with
regions implicated in conflict monitoring, such as the ACC (Han
et al., 2012; Gowin et al., 2013). In the “socioemotional” system,
this striatum is believed to encode the communication between
expected value and received rewards in risk decisions (Breiter
et al., 2001; Tobler et al., 2009; Wang et al., 2015). Neural activity
in the OFC encodes possible rewards by integrating the history
of the latest outcome into expected outcomes (Elliot, 1999; Ernst
et al., 2002; Akitsuki et al., 2003). Meanwhile, the hyperactivity
of the OFC has been observed when individuals were engaged in
risk-taking behavior (Jentsch et al., 2010). In some pathological
studies, the OFC has been found to be activated in obsessive
compulsive disorders (Breiter et al., 1996; Mataix-Cols et al.,
2004) and in cocaine abusers (Arana et al., 2003); this region
is involved with processing the reward values of stimuli and
motivating behavioral responding to rewards (Goldstein et al.,
2007). The OFC, once activated, needs cognitive control to allow
individuals to, for example, not take a drug (Volkow and Fowler,
2000), but individuals with drug addictions have disrupted
self-control (Baler and Volkow, 2006). Therefore, urges for
reward caused the individuals with low self-control to not be
able to block this motivation to rewards. As a result, harmful
consequences and risk behaviors resulted (Evans et al., 2003).
As alluded to earlier, the high risk preference was induced by
ineffectual self-control at the cognitive level, underlying intense
motivation for reward. Correspondingly, individuals with low
self-control, which means weak “cognitive control,” had high
tendencies toward risk behavior, owing to relative hyperactivity
of the “socioemotional” system (Steinberg, 2008). Taken together,
we postulated that the brain regions in the control network
(i.e., the ACC and the prefrontal cortex) and “socioemotional”
system (i.e., the OFC) could account for the relationship between
self-control and risk preference.

In the present study, we sought to explore the neural
substrates underlying the association between self-control and
risk preference using voxel-based morphometry (VBM), in
conjunction with the resting-state functional connectivity (RSFC)
methods. Previous work has used this method to explore the
brain morphometric and rs-fMRI functional connectivity in
various brain disorders (Liao et al., 2011a,b). To our knowledge,
there are notably few studies that have investigated the
relationship between self-control and risk preference, based on
combination of this two methods. The VBM can characterize the
anatomical trait throughout the brain (Ashburner and Friston,
2000; Bellgrove et al., 2004). This method is also suitable to
detect individual differences in cognitive control and personality
(Spampinato et al., 2009). The RSFC is a technique used to
explore the intrinsic functional architecture of the human brain,
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when subjects were not engaged in external tasks (Lewandowska
et al., 2008). Intriguingly, it has been widely acknowledged
that altered gray matter volumes (GMV) in some regions was
ordinarily accompanied by corresponding changes of RSFCs
(Gili et al., 2011). Whilst combining these two methods can
drastically broaden our knowledge about the neural correlates
of some behavior (Li et al., 2012). Therefore, the Self-control
Scale (SCS) and the Wheel of Fortune task (WOF) were used
to assess individuals’ ability of self-control and risk preference,
respectively. In sample 1, we performed whole-brain VBM
analyses to search the GMV of the regions correlated with
risk preference. In sample 2, we defined the brain regions in
which the GMV had exhibited significant correlation with risk
preference in sample 1 as seed regions to calculate voxel-wise
functional connectivity. The functional connectivity related with
risk preference and self-control were, respectively examined.
Finally, mediation analysis was performed to further explore
whether RSFCs contributed to the relationship between self-
control and risk preference or not.

MATERIALS AND METHODS

Participants and Procedure
Ninety nine healthy college students were recruited as the
sample 1 (47 males; age, 20.37 ± 1.63 years), whilst 90 healthy
college students were enrolled as the independent sample 2.
Ten participants were excluded due to the excessive head
movement [exceed framewise displacement (FD) > 0.2 mm]
during scanning (see details below), and 80 participants remained
in sample 2 (33 males; age, 20.33 ± 1.83 years). Each participant
was right-handed and had normal or corrected-to-normal vision.
No history of psychiatric disorder was reported as well. All
participants gave the informed consent. Prior to MRI scanning,
participants were required to finish the self-control scale and the
WOF. Afterward, they were reimbursed for participation.

Measures
The Self-Control Scale
Self-control ability was measured by the SCS, which has been
widely considered to be able to assess the multiple domains
of individual self-control (Tangney et al., 2004). Specifically,
36 items are included in this scale and can be divided
into 5 dimensions, including general self-discipline (11 items),
impulsive control (10 items), healthy habit (7 items), work/study
ethic (4 items), and reliability (4 items). Each item is rated on
the rank from 1 (strongly disagree) to 5 (strongly agree) (e.g.,
“I am good at resisting temptation”). The score of negative
wording items was reversed so that the higher total score can
represent the better self-control ability. Self-control scores in the
present study were normally distributed (Kolmogorov-Smirnov
z = 0.810, p = 0.528). This scale showed a good internal
consistency (α = 0.89) (Tangney et al., 2004).

The Wheel of Fortune Task
In this study, the risk preference was assessed via the WOF (Ernst
et al., 2004), in which participants indicated their preference

between a certain option and a risk option for monetary rewards.
The certain options were rewarded with fixed U 1, and the risk
options comprised combinations of 19 probabilities (5 to 95%
with an interval of 5%) and 9 monetary amounts (U 1 to 9;
with an interval of U1; averaged U 5), yeilding a total of 171
trials (19 probabilities × 9 monetary amounts) in one session.
During each trial, if risky option was chosen, a blue dot would
stop either in green (indicating win) or red area (indicating they
earned nothing) of the wheel as a feedback. Alternatively, if the
certain option was chosen, the participant would surely acquire
the fixed rewards (see Figure 1). Each subject was informed that
their payment would be the monetary payment they got during
the whole task. Of note, the expected value of rewards can affect
individuals’ choice. Therefore, the expected value of rewards in
the fixed option and risky option were equivalently designed
(Kahneman and Tversky, 2013). In line with previous study, the
gambling rate was obtained from the ratio of risky choice selected
in all trials. Ultimately, the gambling rate was used to measure
risk preference (Ernst et al., 2004). The higher gambling rate
indicates higher risk tolerance.

fMRI Acquisition
The structural MRI and resting-state fMRI scans were
obtained with a Siemens 3T scanner (Siemens MAGNETOM
Trio TIM, Erlangen, Germany). The magnetization
prepared rapid acquisition gradient-echo (MPRAGE)
sequence (128 slices; TR = 2530 ms; TE = 3.39 ms;
flip angle = 7

◦

; 256 × 256 matrix) was used to acquire
high-resolution T1-weighted anatomical images (voxel
size = 1 mm3

× 1 mm3
× 1.33 mm3). Resting-state fMRI

images were acquired using T2∗-weighted Echo Planar Imaging
(EPI) sequence (TR = 2000 ms, TE = 30 ms, flip angle = 90

◦

,
resolution matrix = 64 × 64, FOV = 200 mm2

× 200 mm2, 33
slices, voxel size = 3.1 mm × 3.1 mm × 3.6 mm). Participants
were required to keep their eyes closed without sleeping and
thinking during the scan. These scans lasted for 8 min, and
incorporated 240 volumes.

Date Analyses
VBM Analyses
Voxel-based morphometry analyses were implemented via
SPM12, in conjunction with DARTEL and vbm8 toolbox1.

Preprocessing
Before VBM analyses, the SPM12 was used to display each
MRI image for checking whether there were artifacts and gross
anatomical abnormalities. As indicated by previous guidance
(Ashburner, 2007), all these structural images were manually
adjusted to make the anterior commissar match the origin (0,
0, 0), and 3-dimensional Montreal Neurological Institute (MNI)
space primarily. Then, these reoriented images were segmented
into gray matter, white matter and cerebrospinal fluid. Afterward,
the versions of the gray and white matter tissues imported by
DARTEL were used to generate the flow fields and a series
of template images. Subsequently, those obtained images were

1http://www.fil.ion.ucl.ac.uk/spm/software/spm12/

Frontiers in Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 194

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00194 March 7, 2019 Time: 18:7 # 4

Wang et al. The Self-Control Reduces Risk Preference

FIGURE 1 | The WOF task, only the winning version was displayed here, which meant when an individual chose to accept the risky choice, then he or she would get
U 20 as feedback. The trial-by-trial feedback was real in accordance to the probabilities presented, and participants’ payment was based on their performance on
all trials.

smoothed with 8 mm Gaussian FWHM, modulated, and spatially
normalized to create Jacobian scaled GM images resliced to
2 mm × 2 mm × 2 mm voxel size in MNI space.

Second level modeling analyses
The multiple linear regression was performed to capture the brain
regions that were correlated with risk preference in sample 1 (99
participants). In this model, the gambling rate was defined as a
covariate of interest, whilst the age and gender were included
as covariates of no interest according to previous findings
(Kulynych et al., 1994; Good et al., 2001). Afterward, the mask
with absolute threshold of 0.2 was performed to restrict the
gray matter areas (Guo et al., 2017). Then, the MATLAB script
“get_totals”2 was used to extract the regional GMV. Eventually, T
contrasts were applied to explore the voxels that correlated with
risk preference with a threshold at p < 0.001. The final results
were corrected by small volume correction (Sphere at peak MNI;
radius of VOI = 20 mm).

RSFC Analyses
Preprocessing
The rs-fMRI images were preprocessed in the DPARSF toolbox3

(Yan and Zang, 2010). Firstly, to preserve from the distortion
magnetization disequilibrium and the participant’s adaptation to
the scanning noise, the first 10 volumes of each participant were
discarded. The remaining 230 volumes needed to be corrected
for temporal shifts between slices and correcting for motion.
Following this, all realigned images were normalized to the MNI

2http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
3http://rfmri.org/dpabi

template in 3 mm3
× 3 mm3

× 3 mm3, and smoothed with an
isotropic 4 mm FWHM Gaussian kernel. To reduce the impact
of head movement and nuisance signals, the white matter signal,
cerebrospinal fluid signal (CFS), global signal, and head motion
data were regressed out (Birn et al., 2006; Auer, 2008; Fox et al.,
2009). Then, the temporal filtering (0.01–0.08 Hz) and detrending
were performed to obtain low-frequency fluctuation from resting
state fMRI data. Given the motion-related signal in resting-state
fMRI data cannot be fully removed by regression of motion
estimates (Power et al., 2012; Yan et al., 2013), the frame-wise
motion censoring was performed. The threshold of FD > 0.2 mm
as well as 1 back and 2 forward neighbors were used to remove
volumes (Power et al., 2013). Motion censoring may result in
a large number of eliminated volumes and too few remaining
volumes that can lead to unreliable results. On this account, a
5-min criterion was set. Accordingly, 10 participants who had
less than 5 min data remaining after censoring were excluded
(Power et al., 2013). The mean FD for each participant was
further regressed out at the group-level analyses.

Functional connectivity analyses
In functional connectivity analyses, the right orbitofrontal cortex
(rOFC) derived from the outcomes in sample 1 were identified as
seed region to calculate the whole-brain functional connectivity
maps in the independent sample 2. Similarly, The functional
connectivity was calculated in sample 2 based on seed region of
the right posterior parietal cortex (rPPC). In order to produce
functional connectivity maps, the BOLD time course from seed
regions were extracted, and correlation of time course between
each seed regions and the BOLD of all other brain voxels were
computed. Then, all maps were transformed with the Fisher
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FIGURE 2 | Behavioral results. (A), the distributions of risk preference in sample 1; (B), self-control was negatively correlated with risk preference significantly
(r = –0.397, p < 0.001).

z-values. To further determine the relations between functional
connectivity of seed regions and risk preference, we performed
the correlation analyses between this z-valued functional
connectivity maps and individual’s gambling rate. The regions
from correlation analyses (p < 0.05, AlphaSim correction, and
cluster size ≥187) were saved as ROIs for subsequent analyses.
Afterward, to explore the relationship between self-control and
this functional connectivity correlated with risk preference,
we calculated the correlations between self-control and the
connectivity values which were extracted from the seed regions’
connectivity map of each participant. Finally, the mediation
analysis was performed to explore the influence of this functional
connectivity on the effect of self-control on risk preference.

RESULTS

Behavioral Results
The distribution is normal in self-control (Kolmogorov-Smirnov
z = 0.810, p = 0.528) and gambling rate (Smirnov z = 0.588,
p = 0.880; see Figure 2A). Furthermore, no gender difference was
found in self-control (t = 1.567, df = 97, p = 0.120), or in gambling
rate (t = 1.115, df = 97, p = 0.268). In addition, there were no
significant correlations between age and self-control (r = 0.174,
p = 0.086), or gambling rate (r = −0.107, p = 0.293). Moreover,
in line with previous studies, self-control scores were negatively
associated with gambling rate (r = −0.397, p < 0.001; Figure 2B).

Neuroanatomical Correlates of Risk
Preference
To examine the neural substrates underlying risk preference,
whole-brain VBM analyses were performed in sample 1. The
results demonstrated that the GMV in rOFC (MNI peak
coordinates: 18, 50, −22; voxels = 346; p < 0.001, small volume

correction; see Figure 3A and Table 1) and the rPPC (MNI peak
coordinates: 36, −72, 42; voxels = 119; p < 0.001, small volume
correction; see Figure 3B and Table 1) were negatively associated
with gambling rate. These results suggested that the GMV of
rOFC and rPPC might be the underlying neuroanatomical basis
of risk preference.

RSFC Results
Previous studies have demonstrated that the altered GMV
in brain regions were accompanied by the altered functional
coupling between these altered regions with other related
regions (Lui et al., 2009; Gili et al., 2011). Consequently, we
firstly investigated whether risk preference would be predicted
by functional connectivity with regions (rOFC, MNI: 18, 50,
−22; rPPC, MNI: 36, −72, 42) from the VBM results. The
results showed that the gambling rate was positively correlated
with functional connectivity between rOFC and right anterior
cingulate cortex (rACC) under AlphaSim correction (see Figure 4
and Table 2). Notably, no other functional connectivity had a
significant correlation with risk preference with the seed region
of rPPC. Then, a correlational analysis was conducted to examine
the relationship between self-control and functional connectivity
of rOFC-rACC. The result demonstrated that the functional
connectivity of rOFC-rACC was negatively correlated with self-
control scores (r = −0.320, p = 0.004).

The Mediation Analysis
To investigate how the functional connectivity of rOFC-rACC
contributed to the effect of self-control on risk preference,
mediation analysis using the INDIRECT procedure (Preacher
and Hayes, 2008; Hayes and Scharkow, 2013) with 5000 bootstrap
samples in SPSS (Statistical Product and Service Solutions) was
performed. The estimate of the mediated effect a∗b/c = 0.370, and
the 95% confidence for intervals of 0.031 and 0.235, suggesting
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FIGURE 3 | VBM results. (A) The gambling rates were negatively correlated with the GM volumes in the right orbitofrontal cortex (p < 0.001; small volume
corrected). (B) The similar correlation was found between risk preference and the GM volumes of the right posterior parietal cortex (p < 0.001; small volume
corrected). The scatter plots on the right are presented for visualization and not for statistical inference.

TABLE 1 | Areas of brain structures significantly correlated with risk preference
only -: the brain regions negatively correlated with risk preference
(p < 0.001; corrected).

Brain regions MNI Voxels T

Only -

R. orbitofrontal cortex 18, 50, −22 346 −4.18

R. posterior parietal lobe 36, −72, 42 119 −3.43

that 37% of the prediction of risk preference by functional
connection of rOFC-rACC may have been mediated by self-
control (see Figure 5). This result indicated that the functional
coupling of the rOFC-rACC might be crucially responsible for
the effect of self-control on risk preference.

DISCUSSION

The present study investigated the neural substrates underlying
the effect of self-control on risk preference by combining the
VBM and RSFC analyses. In line with previous behavioral
studies, the score of self-control was negatively associated with
risk preference. The VBM results showed that the GMV of
both rOFC and rPPC were negatively correlated with gambling
rate. Moreover, increased connectivity between rOFC and rACC
was positively correlated with more gambling rate. Finally, the
mediation analysis revealed that self-control robustly mediated
the effect of functional connectivity of rOFC-rACC on risk
preference. Taken together, those findings provide a novel insight

into the neural substrates accounting for the association between
self-control and risk preference, and extend our understanding
on risk preference.

In line with previous research, the scores of self-control were
negatively correlated with gambling rate. A considerable number
of studies have found that inadequate self-control can result in
more maladaptive behaviors, such as addiction (Bechara, 2005;
Fox et al., 2008; Bickel et al., 2012), impulsive buying (Rose, 2007;
Vohs and Faber, 2007). Furthermore, straightforward studies
on the relationship between self-control and risk preference
also found that lacking of self-control could lead to more risky
activities (Wulfert et al., 1999; Martins et al., 2004; Freeman
and Muraven, 2010; Friehe and Schildberg-Hörisch, 2014).
Therefore, in accordance with prior observations, our behavioral
results revealed an intimate relationship between self-control and
risk preference.

The whole-brain VBM analyses demonstrated that the GMV
of the rOFC and rPPC were inversely correlated with risk
preference, indicating that individuals with less GMV in these
regions might have increased the preference for risk. In general,
quite a few studies have found that lesions in the parietal
cortex impede real-time updating of the probability of winning
in gambling. Therefore, this financially challenged adjustment
might lead to the experience of financial loss (Studer et al.,
2015). Functional neuroimaging studies have highlighted that
elevated activation of the parietal cortex assesses high risk in
decision making (Symmonds et al., 2011; Studer et al., 2013).
More remarkably, one robust study proved that the GMV of
rPPC can predict individuals’ risk preference (Gilaie-Dotan et al.,
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FIGURE 4 | Resting-state functional connectivity result. We defined the rOFC and the rPPC bases on the VBM analyses, respectively, as masks. Functional
connectivity between seed regions and rACC was positively correlated with gambling rates (p < 0.05; Alphasim corrected, cluster size >187).

TABLE 2 | Functional connectivity correlated with risk preference (p < 0.05,
Alphasim corrected; rOFC, cluster size >187).

Seed Region BA Voxels MNI Correlation coefficient

R. orbitofrontal
cortex

R. anterior
cingulate cortex

32 320 15, 33, 9 0.327

2014). Thus, these studies demonstrably underscored that the
parietal cortex made a critical contribution to risk preference. It is
worthwhile to note that the OFC was involved in risky decision-
making (Fukui et al., 2005; Jentsch et al., 2010). Increasing
uncertainty of choice, which is ordinarily involved in risk, could
induce the activation of OFC (Critchley et al., 2001). Specifically,
the evaluation of the value of rewards in risk decision-making
was consistently mediated by activation of the OFC (Ernst et al.,
2002; Akitsuki et al., 2003). Additionally, it was confirmed that
less GMV of the OFC was associated with more risky behaviors
(Matsuo et al., 2009; Peper et al., 2013). These studies suggested
that the OFC played a critical role in reward evaluation during
risk decision making. The VBM method can predict individual
differences in cognitive processes by comparing a voxel-wise of
GMV, or neuronal density, and has been increasingly applied in
pathological research (Cousijn et al., 2012). Previous evidence
has suggested that reduced GMV might be expressed by reduced
neuron density, which impedes the transmission efficiency of
cognitive processes (Kanai and Rees, 2011). Accordingly, we
interpret the decrease in GMV of PPC and OFC as limiting
the comprehensive evaluation of risk levels and rewards, due
to the inefficient information process. In brief, the rOFC and
rPPC could be considered as the neuroanatomical substrates of
risk preference.

In order to examine the functional neural substrates of
the relationship between self-control and risk preference, the
functional connectivity analyses were conducted. The results
indicated that the enhanced coupling of the rOFC and rACC
was positively correlated with the gambling rate. Many studies

FIGURE 5 | Mediation result: the association between the functional
connectivity of rOFC-rACC and risk preference was completely mediated by
self-control; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.

have provided convincing evidence that increased rACC activity
was related to a lower probability of options in decision making
(Elliot, 1999; Koechlin et al., 2000; Volz et al., 2003, 2005) or
uncertain conditions that were generally contained in risk choice
(Rao and Davim, 2008; Hewig et al., 2009; Payzan-LeNestour
et al., 2013). Moreover, the risky choices were accompanied by
increased activity in the ACC, which monitored the potential
conflicts (Blair et al., 2006). Furthermore, some pathological
studies found that patients with OFC damage were insensitive
to differing risk conditions (Bechara et al., 2000; Hsu et al.,
2005). Specifically, the OFC was widely observed to be involved
in processing the subjective value of rewards, suggesting that
there is a close relationship between the OFC and risk preference
(Levy and Glimcher, 2011; Lin et al., 2012). More importantly,
there were the greater activations of the ACC and OFC exhibited
when individuals were making relatively high-risk decisions
(Ernst et al., 2004; Rogers et al., 2004). It is paramount to
note that elevated activation in the ACC is associated with
tension between reward seeking and loss avoidance. In other
words, the elevated activity in the ACC can be viewed as a state
of conflict (Paulus et al., 2001), resulted from the preference
for reward under high-risk circumstances (Rao and Davim,
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2008; Hewig et al., 2009). Considering the above, the OFC
and ACC may serve reward seeking and conflict monitoring
functions. The functional connectivity between the rOFC and
rACC might signal the pursuit of larger reinforcers, which
can result in hyperactivation of the “socioemotional” system.
Nevertheless, activation of the rACC in the “cognitive control”
system only monitors conflict in decision making but cannot
successfully override hyperactivation of “socioemotional” system.
Consequently, the enhanced functional connectivity of the rOFC-
rACC may be involved in the intense conflict of reward seeking,
which gives rise to high risk preference. The RSFC is essential
for individuals with high risk preferences. Collectively, our RSFC
results indicated that the functional connectivity of the rOFC-
rACC might be the neural representation of risk preference.

Importantly, the mediation analysis identified that the impact
of the rOFC-rACC functional connectivity on risk preference
was robustly mediated by self-control. Notably, it has been
alluded that the OFC evaluated rewards in risky decision
making (Ernst et al., 2002; Akitsuki et al., 2003), and that
the rACC monitored the state of conflict construed by reward
seeking and loss avoidance (Carter et al., 1998; Botvinick et al.,
2004; Ridderinkhof et al., 2004; Blair et al., 2006). These
findings indicated that the functional connectivity of rOFC-
rACC was a signal of pursuing high-value rewards. Moreover,
high sensitivity for rewards showed an inclination to high
risk preference (Leiserson and Pihl, 2007). However, in favor
of loss avoidance, strong self-control ability can restrain the
desire for obtaining rewards, which triggers activation of the
“socioemotional” system. Such a restraint might restrain reward
seeking elicited by the activation of the OFC and ACC (Jimura
et al., 2013). In contrast, low self-control, or the relatively weak
activity of the “cognitive control” system, led to an inability to
resist irrational reward seeking. Accordingly, heightened activity
of the “socioemotional” system compelled individuals toward
risky activity (Steinberg et al., 2015). In brief, the clue of
monetary reward activated the OFC and ACC. Once these brain
regions are activated, it would motivate individuals to pursuit
a reward that might result in a harmful consequence and self-
control failure. At this point, the more adequate self-control
will be needed to resist this motivation which may cause risk
reference. Therefore, risk behaviors was the fruit of the failure of
self-control induced by reward purchasing. Taken together, the
functional connectivity of rOFC-rACC might present the neural
substrates responsible for the relationship between self-control
and risk preference.

However, the present study inevitably has some limitations.
Primarily, the self-control ability was assessed by a scale, which
is less effective than a behavioral task. It is advocated that a
behavioral task can be used to estimate the self-control ability
under sufficient conditions. It is noteworthy that trait self-control
is relatively malleable (Bergen et al., 2012). In the future, it
would shed light on holding definite promise for ameliorating
the problem of risky behavior, if a reliable way can be found
to help individuals with high risk preference to increase their
self-control strength. As a second limitation, this study is just a
correlative study, which is not able to draw a causal conclusion.
Thus, future research can use more experimental methods, such

as task fMRI method, to explore the causal effect of self-control
on risk preference in depth.

In conclusion, the present investigation showed that self-
control was negatively associated with risk preference, suggesting
that inadequate self-control ability is associated with higher
risk preference. Furthermore, the VBM analyses indicated that
the GMV of the rOFC and rPPC were negatively correlated
with risk preference. These results demonstrated that the rOFC
and rPPC might be the neuroanatomical correlations of risk
preference. Moreover, the RSFC results indicated that the
functional connectivity of rOFC-rACC was positively correlated
with risk preference. We further identified the completely
mediating role of self-control in the relationship between these
functional connectivity and risk preference. Overall, our study
provides a novel insight into the neural substrates underlying
the relationship between self-control and risk preference, and
extends our understanding on risk preference.
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