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Manual scoring of polysomnography data is labor-intensive and time-consuming, and
most existing software does not account for subjective differences and user variability.
Therefore, we evaluated a supervised machine learning algorithm, SomnivoreTM, for
automated wake–sleep stage classification. We designed an algorithm that extracts
features from various input channels, following a brief session of manual scoring, and
provides automated wake-sleep stage classification for each recording. For algorithm
validation, polysomnography data was obtained from independent laboratories, and
include normal, cognitively-impaired, and alcohol-treated human subjects (total n = 52),
narcoleptic mice and drug-treated rats (total n = 56), and pigeons (n = 5). Training
and testing sets for validation were previously scored manually by 1–2 trained sleep
technologists from each laboratory. F-measure was used to assess precision and
sensitivity for statistical analysis of classifier output and human scorer agreement.
The algorithm gave high concordance with manual visual scoring across all human
data (wake 0.91 ± 0.01; N1 0.57 ± 0.01; N2 0.81 ± 0.01; N3 0.86 ± 0.01; REM
0.87 ± 0.01), which was comparable to manual inter-scorer agreement on all stages.
Similarly, high concordance was observed across all rodent (wake 0.95 ± 0.01; NREM
0.94 ± 0.01; REM 0.91 ± 0.01) and pigeon (wake 0.96 ± 0.006; NREM 0.97 ± 0.01;
REM 0.86 ± 0.02) data. Effects of classifier learning from single signal inputs, simple
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stage reclassification, automated removal of transition epochs, and training set size were
also examined. In summary, we have developed a polysomnography analysis program
for automated sleep-stage classification of data from diverse species. Somnivore
enables flexible, accurate, and high-throughput analysis of experimental and clinical
sleep studies.

Keywords: machine learning algorithms, polysomnography, signal processing algorithms, sleep stage
classification, wake–sleep stage scoring

INTRODUCTION

Sleep is one of the most critical physiological processes for
all species with a nervous system, ranging from jellyfish and
flatworms (Lesku and Ly, 2017; Omond et al., 2017) to complex
mammals. In humans, sleep is essential for optimal cognitive
performance, physiological processes, emotional regulation, and
quality of life, and research consistently demonstrates that
biological factors leading to disrupted sleep have dramatic effects
on health and well-being (Spiegel et al., 2005; Sabanayagam and
Shankar, 2010; Watanabe et al., 2010). However, basic and clinical
research on sleep has lagged, as the complex dynamics of sleep
make it difficult to study. The characterization of sleep states
is cardinal to the survey of both physiology and therapeutics;
however, the classification of sleep into component stages (or
sub-states) has been a challenge since the inception of sleep
research (Rechtschaffen and Kales, 1968). Currently, sleep stage
scoring remains generally slow, laborious and tedious, and it
can be highly subjective. It is therefore the primary bottleneck
preventing the sleep research field from flourishing, particularly
in light of rapid improvements in polysomnography-related
hardware and the emergence of Big Data.

Human sleep stage scoring criteria are currently standardized,
following the latest update from the American Academy of
Sleep Medicine (AASM) (Berry et al., 2012, 2017). Despite this,
scientists trained through the AASM Inter-scorer Reliability
Program, exhibited an overall inter-scorer agreement of 82.6%,
which decreases to 72–60% for N1, N3 (Rosenberg and Van Hout,
2013) or sleep spindles alone (Wendt et al., 2015). Recent findings
suggest that inter-scorer variability (of human polysomnography
data) was largely attributed to scoring differences stemming
from a large number of equivocal epochs that could legitimately
be assigned to multiple sleep stages (Younes et al., 2016).
This is a major concern, since discrepancies and inter-scorer
disagreements would multiply with experimental parallelization.
While this view pertains to human sleep stage scoring, animal
sleep scoring is even more problematic because there are
no standards comparable to the 10–40 system for electrode
placement in humans or an inter-scorer agreement program
available. These factors limit the reproducibility of sleep studies,
affect overall throughput and underscore the need to develop
automated scoring solutions. Animal sleep research has lacked
an established platform for automated sleep scoring for multiple
reasons, including poor generalization accuracy compared to
manual scoring, low user-friendliness for non-engineer users, and
discordances within the field due to the subjective nature of sleep
scoring. Furthermore, animal sleep-wake states are generally

scored as only wake, rapid eye movement (REM) non-REM
(NREM), and stages within NREM are not further delineated
as they are in humans. Moreover, the majority of automated
solutions have only been validated on baseline recordings
and frequently for only one species, with some notable
exceptions that validated data from both rats and mice
(Rytkonen et al., 2011; Bastianini et al., 2014). To date, no
analysis method has been validated across recordings from
multiple and distantly related species, such as mouse, rat,
bird, and human.

Automated analysis protocols have been attempted extensively
throughout the last five decades and have been validated using
human (Svetnik et al., 2007; Sinha, 2008; Anderer et al., 2010;
Nigro et al., 2011; Penzel et al., 2011; Khalighi et al., 2012;
Malhotra et al., 2013; Stepnowsky et al., 2013; Kaplan et al., 2014;
Koupparis et al., 2014; Punjabi et al., 2015; Wang et al., 2015;
Hassan and Bhuiyan, 2017; Koolen et al., 2017; Sun et al., 2017)
or rodent data (Crisler et al., 2008; Gross et al., 2009; Stephenson
et al., 2009; Rytkonen et al., 2011; McShane et al., 2013; Sunagawa
et al., 2013; Bastianini et al., 2014; Kreuzer et al., 2015; Rempe
et al., 2015; Gao et al., 2016), with some success, but generally
limited adoption by the field. The reasons for this mixed
profile are numerous and include: rigidity in the classification,
which is unable to accommodate individual differences in
polysomnographic data; inadequate ‘user-friendliness’ for
users not proficient in software engineering; and inadequate
validation, rarely using ‘non-control’ subjects, and not analyzing
biological end-measures, limiting metrics to those solely used by
computational engineers or statisticians.

Therefore, to address this long-standing need, we developed a
supervised machine learning algorithm, Somnivore, which
extracts features from a variety of physiological input
channels following a brief session of manual scoring, to
provide flexible, accurate, and high-throughput analysis
of diverse polysomnography data to accelerate the visual
wake-sleep scoring process. Validation of the precision and
sensitivity of the algorithm generalization (i.e., Somnivore’s
ability to predict sleep stage from a learned model built on
training sets) were examined in relation to manual scoring
by a trained and experienced sleep researcher from each
laboratory. For one of the human datasets, we also examined
performance in relation to manual inter-scorer agreement of two
sleep researchers. Importantly, diverse polysomnography
data were used, including data from young, aged, and
mildly, cognitively impaired humans; genetically modified
(narcoleptic) and drug-treated rodents; and pigeons, in addition
to baseline control data.
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Specifically, the aims were to: (i) compare generalization
of automated scoring versus manual scoring (and versus
inter-scorer agreement for one human dataset); (ii) assess the
impact of transition epochs on generalization; (iii) examine
generalization when learning is performed using single channels;
and (iv) assess the impact of different training set sizes on
generalization across pooled data in each species.

MATERIALS AND METHODS

In order to introduce the relevant methodological details
associated with the aims of the study, we first describe the
methods used for in vivo data collection in humans, mice, rats
and pigeons and their manual scoring, followed by the software
architecture of Somnivore, the supervised training phase and
tests of algorithm generalization versus manual scoring, and the
statistical analyses for validating algorithm generalization. All
data are represented as mean± SEM, unless otherwise stated.

In vivo Polysomnography Data Collection
University of Melbourne Human (UMH) Cohort Data
All experiments were conducted with prior approval of The
University of Melbourne Human Subjects Ethics Committee and
informed consent was obtained prior to the screening interview.
The UMH cohort data was obtained from mixed male and
female participants (n = 12), aged between 18 and 21 years,
and were extracted from published studies (Chan et al., 2013,
2015). Briefly, after assessing drug use, socioeconomic status,
and family history of alcoholism, subjects were introduced to a
single blind, repeated measures design with two levels: placebo
and alcohol administration. After one adaptation night for
habituation, subjects attended two experimental non-consecutive
nights at the Melbourne School of Psychological Sciences
Sleep Laboratory, The University of Melbourne, Australia. One
experimental night involved the administration of a pre-sleep
dose of alcohol (vodka mixed with orange juice) designed to
achieve a 0.1% peak breath alcohol concentration. The other
night involved the administration of a placebo (orange juice
with a straw dipped in vodka). The concentration of vodka
in the alcoholic drink was determined according to weight,
height and total body water measurement. Female participants
were tested in the course of their menstrual mid-follicular
phase, and those on a contraceptive pill were tested during
their scheduled week on placebo pill. Six EEG electrodes
(F3:A2, F4:A1, C3:A2, C4:A1, O1:A2, O2:A1), left and right
electrooculogram (EOG), submental electromyogram (EMG),
and electrocardiogram (ECG) were recorded. EEG leads were
recorded to a single, midline forehead reference and then
digitally re-referenced to the contralateral ear. All channels
were captured at a 512 Hz sampling frequency and displayed
with a 0.3–30 Hz band-pass filter. Data were collected using
Compumedics hardware (Siesta) and software (Profusion PSG3)
(Compumedics Ltd., Abbotsford, VIC, Australia), and manually
scored in 30 s epochs according to AASM criteria, by two
experienced scorers from the Sleep Laboratory at the University
of Melbourne, both blinded to the experimental conditions.

Recording durations ranged from 7 – 12 h (mean 10.04± 0.30 h;
n = 24 recordings from 12 participants for 2 nights).

University of Oxford Human (UOH) Cohort Data
The UOH cohort represents data compiled by collecting baseline
recordings from a variety of male and female subjects, including
healthy young adults (HYA, n = 12, 20–34 year-old) extracted
from an unpublished study (Porcheret et al., 2019), as well
as healthy older adults (HOA, n = 9, 65–78 year-old) and
older adults diagnosed with mild cognitive impairment using
established criteria (MOA, n = 7, 72-84 year old), extracted
from a published study (Wams et al., 2017). All recordings
were collected ambulatory. The HYA study was conducted in
accordance with the Declaration of Helsinki and approved by
the National Research Ethics Service (NRES) committee, East
of England, Hatfield (REC number 14/EE/0186). The HOA and
MOA study was conducted in accordance with the Declaration
of Helsinki and approved by the NRES committee, South East
England, Berkshire (REC number 09/H0505/28). A summary of
the cohort composition is provided in Supplementary Table 1.

Briefly, polysomnographic recordings were made using the
Actiwave system (CamNtech Ltd, Cambridge, United Kingdom)
and a nine electrode montage: Fz:A2; Cz:A2; Pz:A2; Oz:A2
(recorded using an EEG/ECG 4 unit), Cz:A1 (recorded using
an EEG/ECG 1 unit), EOG1:A2; EOG2:A1 (recorded using an
EEG/ECG 2 unit) and EMG1:chin; EMG2:chin (recorded using
an EMG 2 unit). The EEG and EOG channels had a sampling
rate of 128 Hz and EMG channels had a sampling rate of
256 Hz. Recording durations ranged from 11 to 14 h (mean
11.75± 0.17 h; n = 28 recordings). Data were manually scored in
30 s epochs by an experienced scorer at the University of Oxford,
according to AASM criteria (Wams et al., 2017).

University of Bologna Mouse (UBM) Cohort Data
Experiments were conducted with prior approval of the
Ethical-Scientific Committee of the University of Bologna, in
accordance with the European Union Directive (86/609/EEC)
and under the supervision of the Central Veterinary Service of
the University of Bologna and the National Health Authority.
A summary of all subjects in the rodent data validation studies
is provided in Supplementary Table 2.

The UBM cohort represents data of two age-matched
sub-cohorts extracted from a published study (Bastianini et al.,
2011). The data were from adult hemizygous hypocretin-ataxin3
transgenic mice (n = 9), with a C57BL/6J genetic background,
that exhibited the selective postnatal ablation of hypocretinergic
neurons and wild type C57BL/6J littermates (n = 9) with intact
hypocretinergic neurons (Bastianini et al., 2011). Transgenic
mice expressed the neurotoxin ataxin-3 under the control
of the hypocretin promoter, thus, this toxin compound
only accumulated in hypocretinergic neurons leading to
their complete ablation before adulthood. This procedure is
designed to mirror the pathogenesis of narcolepsy in human
patients. Surgery and recordings were performed as described
(Hara et al., 2001).

Mice were implanted with two pairs of electrodes to acquire
EEG and EMG signals. In particular, 2 stainless-steel screws
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(2.4 mm length, Plastics One, Roanoke, VA, United States)
were positioned in contact with the dura mater through burr
holes in the frontal (2 mm anterior and 2 mm lateral to
bregma) and parietal (2 mm anterior and 2 mm lateral to
lambda) bones to obtain a differential EEG signal. A second
pair of Teflon-coated stainless-steel electrodes (Cooner Wire,
Chatsworth, CA, United States) was inserted bilaterally in the
nuchal muscles to obtain a differential EMG signal. All the
electrodes were connected to a miniature custom-built socket,
which was cemented to the skull with dental cement (Rely X ARC,
3M ESPE, Segrate, Milano, Italy), and dental acrylic (Respal NF,
SPD, Mulazzano, Italy). After at least 10 days of recovery, mice
were tethered by cable on a rotating swivel and a balanced weight
to allow for free-movement and let to habituate to the recording
setup for 1 more week. Both EEG and EMG were respectively
filtered at 0.3–100 Hz and 100–1000 Hz and captured at a 128 Hz
sampling rate. Recordings were continuously collected for 3 days
and manually scored in 4 s epochs using visual scoring criteria
by an experienced scorer at the University of Bologna (Silvani
et al., 2009). The final 30 h of each scored recording was used
for these validation studies. Analysis of sleep microstructure
was performed with a threshold of 12 s (i.e., three consecutive
4-s epochs) with no other contextual scoring rules (e.g., REM
can be scored consecutive to wake). Epochs containing artifacts
or undetermined states in manually scored hypnograms were
excluded from the automated scoring.

University of Bologna Rat (UBR) Cohort
Data
Experiments were conducted with prior approval of the
Ethical-Scientific Committee of the University of Bologna, in
accordance with the European Union Directive (86/609/EEC)
and under the supervision of the Central Veterinary Service of
the University of Bologna and the National Health Authority.

The UBR cohort represents data from two age-matched sub-
cohorts extracted from a published study (Supplementary
Table 2) (Cerri et al., 2013). Data were from male
Sprague-Dawley rats microinjected in the rostral ventromedial
medulla (RVMM) with the GABAA agonist, muscimol in vehicle
solution (n = 8) or vehicle alone (n = 8) (Cerri et al., 2013).
Briefly, rats were implanted with electrodes for EEG (first
electrode: 3.0 mm anterior − 3.0 mm lateral; second electrode:
4.0 mm posterior – 1.5 mm lateral to bregma) and nuchal
EMG; a thermistor mounted in a stainless steel needle to record
deep brain temperature (Tbrain); and a microinjection cannula
positioned stereotaxically to deliver vehicle or muscimol into the
RVMM. EEG was captured at a 1 kHz sampling rate and filtered
at 0.3 Hz highpass and 30 Hz lowpass; EMG was captured at a
1 kHz sampling rate and filtered 100 Hz highpass and 1 kHz
lowpass; Tbrain was captured at 100 Hz sampling rate and filtered
0.5 Hz highpass. For treatment, each rat received 6 injections,
one per hour, of either muscimol (MT group, 1 mM muscimol in
100 nl saline solution (0.9% NaCl w/v) or saline alone (100 nl).
EEG, EMG and Tbrain were captured for a total of 24 h, and
manually scored at 1 s resolution, taking into account the EEG
power spectrum (calculated from a 4 s long, 1 s sliding window)

by an experienced scorer at the University of Bologna, using
published criteria (Cerri et al., 2005). Scoring consistency rules
were set at 4 s for wake and 8 s for NREM/REM sleep, while no
other contextual scoring rules were applied (Cerri et al., 2013).
All UBR recordings were 24 h duration.

SRI International Rat (SRI) Cohort Data
Experimental procedures involving animals were approved by
SRI International’s Institutional Animal Care and Use Committee
and were in accordance with National Institutes of Health
guidelines. The SRI cohort represents data from 3 sub-cohorts
extracted from one published study (Morairty et al., 2014) and
one unpublished study (Supplementary Table 2). Data were
from male Sprague-Dawley rats that received an intraperitoneal
injection of vehicle or caffeine (10 mg/kg) at circadian time 0
(CT0) during lights on (SRI-CAF; n = 7), vehicle or zolpidem
(30 mg/kg) at CT12 during lights off (SRI-ZOL; n = 2), and
vehicle or almorexant (100 mg/kg) at CT12 during lights off
(SRI-ALM; n = 2) (Morairty et al., 2014). Therefore, a total of 22
scored recordings were used in these validation studies.

Briefly, rats were implanted intraperitoneally with a sterile
telemetry transmitter (DSI F40-EET, Data Sciences Inc., St
Paul, MN, United States). Biopotential leads were guided
subcutaneously to the head (for EEG recording) and neck (for
EMG recording). The 2 EEG electrodes were placed in reference
to bregma at 1.5 mm AP, 1.5 mm ML and at −4.0 mm AP,
3.0 mm ML. Recordings were made for 12 h in the zolpidem
and almorexant cohorts and 6 h in the caffeine cohort. Data
were collected in 10 s epochs and scored manually by an
experienced scorer at SRI International, using DSI NeuroScore
software (Data Sciences Inc.). There were no restrictions on
what an epoch could be scored, regardless of what the previous
epoch was scored. All treatments were administered orally;
vehicle was 1.25% hydroxypropyl methylcellulose, 0.1% dioctyl
sodium sulfosuccinate and 0.25% methylcellulose in water. All
SRI recordings were 6–12 h duration.

Max Planck Institute Pigeon Cohort Data
Experiments were conducted with prior approval by the
Government of Upper Bavaria and adhered to the National
Institutes of Health standards for using animals in research. This
cohort represents data compiled by collecting baseline recordings
from Tippler (Columba livia) pigeons (n = 5), purchased from a
local breeder in Upper Bavaria, Germany.

To record the EEG, the pigeons were implanted with
electrodes over the anterior (AP +13.0 mm) hyperpallium (L
+2.0 mm) and mesopallium (L +6.0 mm) of the left and right
hemisphere (Karten and Hodos, 1967). A reference electrode
was positioned over the cerebellum, and a ground electrode was
implanted over the left hemisphere, halfway between the medial
recording electrode and the reference. Birds were given at least
2 weeks to recover after surgery before recordings commenced.
EEG signals were obtained using a data logger that records
the EEG along with fine/gross head movements measured by
a triaxial accelerometer (Neurologger 2A)1 (Lesku et al., 2012;

1http://www.evolocus.com
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Rattenborg et al., 2016). The pigeons were habituated to the data
logger prior to the onset of data collection.

Recordings of 42–83 h duration (mean 50.11 ± 8.1 h) were
imported into REMLogic (Natus; Embla RemLogic 3.4.0) and
were visually scored for wakefulness, NREM and REM using 4
s epochs with the aid of video recordings, by an experienced
scorer at La Trobe University. NREM (or slow wave sleep) was
scored when more than half of an epoch displayed low-frequency
activity with an amplitude approximately twice that of alert
wakefulness. In each case, the onset of scored NREM typically
corresponded with the onset of sleep behavior (e.g., immobility,
head drawn into the chest). REM sleep was characterized by
periods of EEG activation (>2 s) occurring in association with
bilateral eye closure and behavioral signs of reduced muscle tone
(e.g., head dropping, swaying, and sliding of the wings off the
side of the body).

Software Architecture
Somnivore was written in MATLAB (Mathworks, Natick, MA,
United States), compiled to run stand-alone and is compatible
with Microsoft Windows (version 7, 8, 8.1, and 10; Microsoft Inc.,
Seattle, WA, United States). It has been designed to classify 4,
10, or 30 s epochs, and the overall analysis procedure is divided
into several steps starting with data import, followed by a brief
training bout of manual scoring using training sets within each
recording, automated wake-sleep stage scoring of the remaining
recording using the algorithm-generated learning model, and
finally, setting of contextual scoring rules.

All recordings were uploaded to, and analyzed with, a Lenovo
ThinkPad laptop W540 with an Intel R© CoreTM i7-4900MQ
central processing unit, 32 GB of total physical memory, Intel R©

HD Graphics 4600 principal display adapter, NVIDIA-Quadro
K1100M secondary display adapter, and a OCZ-VERTEX4 512
GB solid-state drive.

Training Phase
All previously manually scored animal and human data files
were provided in .edf or .txt format. The size of the training
sets was set a priori with the aim of optimizing the classifier
around this parameter. Different training set sizes for different
epoch lengths were set according to arbitrary amounts of manual
training, addressing both assumptions of user-friendliness and
preliminary tests of training dynamics in a supervised machine
learning model (data not shown). The training set size for 4 s
epoch length cohorts (mouse [UBM] and rat [UBR] data collected
at the University of Bologna; pigeon data scored at La Trobe
University) was set at 100 epochs per stage (Wake, NREM, REM),
totalling 6.67 min of manual scoring per state. For the 10 s epoch
length cohort (rat data collected at SRI International [SRI]), the
training set size was set at 50 epochs per stage (Wake, NREM,
REM), totalling 8.33 min of manual scoring per state. For 30 s
epoch length cohorts (human data collected at the University of
Oxford [UOH] and the University of Melbourne [UMH]), the
training set size was set at 40 epochs per vigilance stage (Wake,
N1, N2, N3, REM), totalling 20 min of manual scoring per state.
Training sets were built by random epoch selection from the
manually scored hypnograms.

For cohorts where subjects were tested twice with recordings
of baseline activity followed by treatment (UMH and SRI),
algorithm generalization from two training sets within
each subject were assessed: ‘longitudinal-trained’ training
sets comprised of a subset of epochs from the baseline
and treatment recordings; and ‘baseline only trained’
training sets comprised of a subset of epochs from the
baseline recording only.

Performance Evaluation of the Algorithm
Assessing Agreement Between Automated Scoring
and Manual Scoring
Following the training phase and optimization of the learning
model for each recording, automated wake-sleep stage
scoring of the remaining recording was conducted and its
agreement with manual scoring was analyzed. The metric
used to ensure the most rigorous evaluation of algorithm
generalization accuracy versus manual scoring was the
F-measure (Powers, 2011).

The F-measure, also known as F-score or F1-score, combines
precision and sensitivity together as one measure (Powers, 2011).
It is one of the most stringent metrics available, as both high
sensitivity and high precision are required for high F-measure.
It is calculated as: F-measure = 2· sensitivity·precision

sensitivity+precision where

sensitivity = TP
(TP+FN) and precision = TP

(TP+FP) . TP, also called
hits, represent data points that were correctly classified in a
specific class by the algorithm. False positives (FP) are type
I errors, where the algorithm flagged a data point as being a
member of the class considered, when in fact the manual scoring
classified it as being part of another class. False negatives (FN)
are type II errors, or misses, where the algorithm labeled a data
point as being part of another class from that considered.

In accordance with the literature on the inter-scorer
agreement reported for human sleep data (Kelley et al., 1985;
Himanen and Hasan, 2000; Norman et al., 2000; Danker-
Hopfe et al., 2004), five arbitrary generalization threshold ratings
were set throughout Somnivore’s human validation studies for
F-measure: intra-scorer ≥ 0.9, excellent ≥ 0.85, strong ≥ 0.8,
average ≥ 0.7, and inadequate < 0.7.

Since each level of optimization was determined by a
comparison between two subject-matched groups, Student’s
paired t-tests were used to determine statistical significance,
with significance set at p < 0.05. For analysis involving two
Student’s paired t-tests, a priori alpha adjustment was applied via
Bonferroni correction to a significance level of p < 0.025.

Effect sizes were also evaluated via Hedges’ g: g = M1−M2√
SD_pooled

where M1 is the mean of the first group, M2 is the mean of the
second group, and SD_pooled is the pooled standard deviation.
The use of g over the more established Cohen’s d relies on the
fact that the former is considered a more rigorous and robust
metric for smaller sample sizes (Hofmann et al., 2010). Hofmann
et al. (2010) also argued that the magnitude for g, just like
Cohen’s d, was interpretable using the same guidelines set by
Cohen (1988), i.e., small 0.2 ≤ g < 0.5, medium 0.5 ≤ g < 0.8,
and large g ≥ 0.8. Effect sizes of g < 0.2 were termed ‘miniscule.’
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Effects of Treatments and Genetic Phenotype on
Algorithm Generalization
Because the UMH human cohort data was manually scored by
two investigators, inter-scorer agreement between hypnograms
manually scored by scorer 1 or 2 (MS1; MS2) was evaluated, and
versus the hypnograms automatically scored by Somnivore using
training sets derived from either scorer 1 or 2 (AS1; AS2). To
assess effects of alcohol treatment on generalization performance,
the manually scored hypnograms of only scorer 1 were assessed
using both longitudinal- and baseline only training training sets.

For the mouse and rat data, agreement between manual
scoring and algorithm generalization was examined in control
animals, in addition to the impact of genetic phenotype or
pharmacological treatment. Generalization accuracy of UBM
and UBR cohorts were compared between wildtype and
transgenic (transgenic) cohorts and vehicle-treatment and
muscimol-treatment cohorts, respectively. Since the groups were
independent, an independent samples t-test was used, with
p < 0.05 considered significantly different. SRI cohorts, on the
other hand, were tested twice, and all treatment groups (caffeine,
zolpidem and almorexant) were compared between vehicle
and treatment recordings, with both longitudinal-trained and
baseline only trained training sets. Since the SRI data represents
a within-subjects design, a Student’s paired t-test was used. While
the SRI cohort was tested twice, Bonferroni correction was not
used, to increase test stringency.

Effects of Transition Epochs on Algorithm
Generalization
Generalization for each species of pooled human (n = 52), mouse
and rat (n = 54) and pigeon (n = 5) recordings was assessed
in conditions where transition epochs were excluded from
the analysis, and compared against the standard configuration
inclusive of transition epochs. Transition epochs were defined as
the first and the last epoch of each sleep stage bout. For their
exclusion, generalization was ignored at the level of transition
epochs from the automated scoring versus human scoring, such
that the transition epochs from the automated hypnogram were
excluded, and the corresponding epochs of the manually scored
hypnogram were not analyzed.

Effects of Single Input Channels on Algorithm
Generalization
For the human cohort data, the impact of training Somnivore’s
classifiers with one EEG channel or two EOG channels only, was
assessed in pooled human recordings (n = 52). Generalization
was evaluated in three training input channel configurations: all
channels (standard configuration): one EEG channel only (Cz,
C3, or C4 based on configuration), and two EOG only. While
three Student’s t-tests were applied when comparing different
training channel configurations correcting statistical significance
a priori would favor the outcome of the validation by containing
type II errors, as performance is expected to fall significantly.
Therefore, no Bonferroni correction was applied to increase
stringency in the evaluation.

The impact of simplified human sleep stages on generalization
was also assessed in pooled human recordings (n = 52), including

the effects of N1 reclassified as either wake or N2. Classifiers were
also trained with simplified human sleep stages to resemble those
used in rodent studies, where N1 was reclassified as wake, and N2
and N3 were both reclassified as NREM (W1NREM23); or N1,
N2 and N3 were reclassified as NREM (NREM123).

For the mouse and rat cohort data, recordings were
pooled (n = 54) and evaluated in three training input
channel configurations: EEG+EMG, EEG only, and EMG only.
Comparisons were evaluated within and between configurations.
While multiple Student’s t-tests were applied (three for
EEG+EMG including all epochs, two for EEG+EMG excluding
transitions), correcting statistical significance a priori would favor
the outcome of the validation by containing type II errors.
Therefore, no Bonferroni correction was applied to increase
stringency in the evaluation.

For the pigeon cohort data, generalization (n = 5) was
evaluated in three training input channel configurations:
EEG+accelerometer (ACC), EEG only, and ACC only.
Comparisons were then evaluated within and between
configurations. While multiple Student’s t-tests were applied,
no Bonferroni correction was applied to increase stringency
in the evaluation.

Effects of Training Set Size on Algorithm
Generalization
‘Training set size’ response curves were generated for pooled
human (n = 52), mouse and rat (n = 54), and pigeon (n = 5)
cohorts using standard configurations inclusive of transition
epochs. For the human data, classifiers were trained with a range
of 5–80 training epochs per vigilance stage. Accordingly, three
training set sizes were chosen for statistical comparison in the
following order: (i) the smallest training set size to output strong
overall generalization (F-measure > 0.8); (ii) the default training
set size for epoch lengths of 30 s; and (iii) the maximum training
set size deemed to remain user-friendly.

For the rodent data, classifiers were trained with a range of 5–
200 training epochs per vigilance state. Accordingly, four training
set sizes were chosen for statistical comparison, in the following
order: (i) the smallest training set size to output adequate
generalization across all cohorts (F-measure ≥ 0.9 across all
states); (ii) the default training set size for epoch lengths of 10 s;
(iii) the default training set size for epoch lengths of 4 s; and (iv)
the maximum training set size for the range considered.

For the pigeon data, classifiers were trained with a range of 5-
400 training epochs per vigilance state. Accordingly, four training
set sizes were chosen for statistical comparison.

RESULTS

Validation of the Algorithm With Human
Data
Manual Versus Algorithmic Inter-Scorer Agreement
The UMH cohort data was manually scored by two researchers,
so agreement between hypnograms manually scored by scorer 1
or 2 (MS1; MS2) versus algorithmic hypnograms automatically
scored using training data drawn from manual scoring of scorer
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1 or 2 (AS1; AS2) was evaluated. All comparative combinations
of manually and automatically scored hypnograms were
assessed against the gold-standard, which is the inter-scorer
agreement between MS1 and MS2 (MS1-MS2) (Figure 1).
Algorithm generalization (i.e., automated wake-sleep stage
scoring agreement with manual scoring) was strong to excellent
(F-measure = 0.84-0.90) across all groups for wake, with only
AS2-MS2, AS1-MS2, and AS2-MS1 comparisons significantly
lower. N1 generalization across all comparisons was inadequate
(0.30–0.61), with only AS1-MS2 significantly lower, and AS1-AS2
significantly higher. N2 generalization across all comparisons
was strong to excellent (0.83–0.89), with only AS1-MS1,
AS1-MS2, and AS2-MS1 significantly lower. N3 generalization
across all comparisons was excellent to intra-trainer level
(0.87–0.92). Interestingly, only AS1-MS1, AS1-MS2, and
AS1-AS2 comparisons were significantly different, and all were
higher than the gold-standard MS1-MS2, thus performing at
intra-trainer level. REM generalization across all comparisons
was excellent to intra-trainer level (0.85–0.90), with only
AS1-MS2, AS2-MS1, and AS1-AS2 significantly lower, the
latter with small effect size. Overall generalization across all
comparisons was strong to excellent (0.81–0.87), with only
AS1-MS1, AS1-MS2, and AS2-MS1 significantly lower.

Generalization Across Experimental Groups
To assess algorithm generalization across UMH experimental
groups, the effects of treatment on generalization accuracy,
and use of longitudinal and baseline only training sets, the
manually scored hypnograms of only scorer 1 were assessed (i.e.,
AS1-MS1 comparisons). Generalization significantly differed
between placebo and alcohol groups only for N1 scoring, which
remained inadequate overall and significantly decreased from
0.55 ± 0.02 to 0.49 ± 0.02 (p < 0.05) with medium effect
size (g = 0.78) (Figure 2A). Generalization for the baseline
only trained alcohol group (i.e., training sets from placebo
recording only) significantly decreased for a number of stages:

N1 F-measure was inadequate overall and further decreased to
0.38± 0.03 compared to longitudinal-trained placebo (p < 0.001)
or alcohol (p < 0.05) groups (i.e., training sets from placebo and
alcohol recordings) with large effect size (placebo g = 1.8; alcohol
g = 1.22); REM F-measure significantly decreased only between
alcohol longitudinal- and baseline only trained groups, from
excellent (0.88 ± 0.01) to strong (0.81 ± 0.02) (p < 0.05) with
large effect size (g = 1.04); while the overall F-measure remained
strong between the alcohol longitudinal- and baseline only
trained groups, albeit significantly decreased from 0.84 ± 0.01 to
0.80± 0.01 (p < 0.05) with large effect size (g = 0.96).

Generalization did not significantly differ for any individual
sleep stage or overall in the UOH cohort between healthy young
adults (HYA) and healthy old adults (HOA) groups (Figure 2B).
However, generalization for the group of older adults diagnosed
with mild cognitive impairment (MOA) decreased for a number
of stages: N1 generalization remained inadequate throughout,
significantly decreasing from 0.65± 0.03 to 0.49± 0.01 compared
to HYA (p < 0.01) and HOA (p < 0.001), with large effect sizes
(HYA, g = 1.69; HOA, g = 2.12); N3 F-measure significantly
decreased from excellent (HYA, 0.88 ± 0.01) and strong (HOA,
0.84 ± 0.02) to average (MOA, 0.70 ± 0.04) (HYA, p < 0.001;
HOA, p < 0.05) with large effect sizes (HYA, g = 2.26;
HOA, g = 1.65). Overall F-measure significantly decreased from
excellent (HYA, 0.87± 0.01; HOA, 0.86± 0.01) to strong (MOA,
0.81 ± 0.0; p < 0.01) with large effect sizes (MOA vs. HYA,
g = 1.86; HOA, g = 1.73). Despite some significant decreases in
F-measure, specifically for N3 (excellent to average) and overall
(excellent to strong), the practical relevance of these decreases
would be minimal. Thus, treatment or cognitive capacity of
human subjects has minimal practical impact on the accuracy of
automated wake–sleep stage scoring of this algorithm.

Impact of Transition Epochs
The impact of transition epochs on generalization across pooled
human recordings (n = 52) was assessed. Automated removal

FIGURE 1 | Manual versus automated scoring inter-scorer agreement for UMH cohort. Generalization of all UMH recordings (n = 24) between different combinations
of manual (MS1, MS2) and automated scoring (AS1, AS2) inter-scorer agreements. Data analyzed by paired t-test, represented as mean ± SEM. #p < 0.01;
+p < 0.001. Symbol color represents effect size (g): black, small; red, medium; green, large.
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FIGURE 2 | Generalization of UMH and UOH human cohorts across
experimental groups. (A) Generalization of UMH cohort (n = 12) across
experimental groups: longitudinal-trained placebo and alcohol, and baseline
only-trained alcohol (BOT), analyzed by paired t-test. (B) Generalization of
UOH cohort (HYA, n = 12; HOA, n = 9; MOA, n = 6) across experimental
groups, analyzed by independent sample t-test. Data represented as
mean ± SEM. ∗p < 0.05; #p < 0.01; +p < 0.001.

of transition epochs (i.e., the first and last epoch of each
sleep stage bout) resulted in exclusion of 24.6 ± 0.95% of
total epochs, which had a significant impact on algorithm
generalization (Figure 3A). Generalization of wake remained
at intra-scorer level, significantly increased from 0.91 ± 0.01
to 0.97 ± 0.01 (p < 0.0001) with large effect size (g = 1.63).
N1 generalization significantly increased from inadequate
(0.57 ± 0.01) to average (0.70 ± 0.02) (p < 0.0001) with
large effect size (g = 1.09). N2 generalization significantly
increased from strong (0.81 ± 0.01) to excellent (0.89 ± 0.01)
(p < 0.0001) with large effect size (g = 0.98). N3 generalization
significantly increased from excellent (0.86± 0.01) to intra-scorer
level (0.91 ± 0.01) (p < 0.0001) with medium effect size
(g = 0.75). REM generalization significantly increased from
excellent (0.87 ± 0.01) to intra-scorer level (0.94 ± 0.01)
(p < 0.0001) with large effect size (g = 1.14). Overall
generalization significantly increased from excellent (0.85± 0.01)
to intra-scorer level (0.92 ± 0.01) (p < 0.0001) with large effect
size (g = 2.55). These results indicate that the variability of
algorithm-generated automated wake-sleep stage scoring largely
lies in the determination of transition epochs, particularly in
the analysis of N1 stages. In practical terms, automated tagging
of transition epochs for subsequent refinement of the machine
learning process would potentially provide substantial increases
in algorithmic accuracy to intra-scorer level for all stages
(except N1) and overall.

FIGURE 3 | Impact of automated removal of transition epochs, and learning
with one EEG channel or two EOG channels on generalization of human
recordings. (A) Generalization of all human recordings (n = 52), with and
without consideration of transition epochs. (B) Generalization of all human
recordings across three different input channel configurations: all channels;
Cz/C3/C4 only; or EOG only. Data analyzed by paired t-test compared to all
channels, and represented as mean ± SEM. +p < 0.001.

Generalization on Training With One EEG Channel or
Two EOG Channels Only
Generalization using training sets from one EEG channel (Cz, C3,
or C4) or two EOG channels only, inclusive of transition epochs,
was assessed (Figure 3B). When compared with learning using
all available channels, generalization decreased for all stages.
Wake generalization significantly decreased from intra-scorer
level (0.91 ± 0.01) for all channels configuration to excellent
(0.89 ± 0.01) for one EEG channel only (p < 0.0001) with
small effect size (g = 0.46); and strong for EOG channels only
(0.81 ± 0.01) (p < 0.0001) with large effect size (g = 1.24).
N1 generalization was inadequate for all configurations, and
significantly decreased from 0.57 ± 0.01 to 0.49 ± 0.01 for all
channels configuration for one EEG channel only (p < 0.0001;
g = 0.74), and to 0.38 ± 0.02 for EOG channels only
(p < 0.0001, g = 1.57). N2 generalization significantly decreased
from strong (0.81 ± 0.01) for all channels configuration to
average (0.78 ± 0.01) for one EEG channel only (p < 0.0001)
with small effect size (g = 0.44); and to inadequate for EOG
channels only (0.65 ± 0.01) (p < 0.0001) with large effect
size (g = 1.65). N3 generalization significantly decreased from
excellent (0.86 ± 0.01) for all channels configuration to strong
(0.84 ± 0.01) for one EEG channel only (p < 0.001) with
small effect size (g = 0.22); and to average for EOG channels
only (0.77 ± 0.02) (p < 0.0001) with medium effect size
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(g = 0.72). REM generalization significantly decreased from
excellent (0.87 ± 0.01) for all channels configuration to strong
(0.80 ± 0.01) for one EEG channel only (p < 0.0001) with
medium effect size (g = 0.79); and to inadequate for EOG
channels only (0.61 ± 0.02, p < 0.0001) with large effect size
(g = 2.56). Overall generalization significantly decreased from
excellent (0.85 ± 0.01) for all channels configuration to strong
(0.81 ± 0.01) for one EEG channel only (p < 0.0001) with
large effect size (g = 1.02); and average for EOG channels only
(0.7 ± 0.01) (p < 0.0001) with large effect size (g = 2.54). Taken
together, these results suggest that a single EEG channel was
sufficient to generate strong automated scoring > 0.80 of wake,
N3, and REM stages, with scoring N2 marginally lower at 0.78.
Furthermore, two EOG channels was sufficient to generate strong
automated scoring (>0.80) of wake, and average performance for
N3 stages (0.77), but was inadequate for REM. N1 generalization
was inadequate overall.

Generalization of Sleep Stage Simplified
Configurations
N1 is a volatile stage that systematically produces inadequate
agreement and is an inherently difficult stage to score (Wendt
et al., 2015; Younes et al., 2016). Thus, we assessed the effects
of reclassifying N1, to either wake or N2 on generalization
accuracy. The NREM stages of rodent data are not delineated
into the sub-stages used for humans. Thus, we also assessed
the effects of simplifying the human NREM stages to those
in rodent models. Reclassifying N1 as N2 did not significantly
affect wake generalization, but when N1 was reclassified as wake,
generalization significantly decreased from intra-scorer level
(0.91± 0.01) to excellent (0.86± 0.01) (p < 0.001) with medium
effect size (g = 0.56) (Figure 4A). N2 generalization did not
change significantly when N1 was reclassified as wake. However,
when N1 was reclassified as N2, generalization significantly
improved from strong (0.82 ± 0.01) to excellent (0.87 ± 0.01)
(p < 0.0001) with large effect size (g = 0.88). N3 remained strong
for all groups, and F measures did not significantly differ. REM
generalization remained strong across all groups, and marginally
decreased when N1 was reclassified as wake, decreasing from
0.87 ± 0.01 to 0.86 ± 0.01 (p < 0.05) with miniscule effect size
(g = 0.15). Overall, generalization benefited significantly for both
versions of N1 reclassification. When reclassifying N1 as wake,
overall generalization remained strong, significantly increasing
from 0.85 ± 0.01 to 0.87 ± 0.01 (p < 0.0001) with medium
effect size (g = 0.58). Reclassifying N1 as N2, on the other
hand, significantly increased overall generalization to excellent
(0.89± 0.01) (p < 0.0001) with large effect size (g = 1.2).

Simplifying human sleep stages to resemble those in rodent
models had profound effects on generalization (Figure 4B).
When N1 was reclassified as wake, and N2 and N3 were
both reclassified as NREM (W1NREM23), wake generalization
(0.86 ± 0.01) significantly increased in comparison with that
of rodent data (0.95 ± 0.01, p < 0.0001) with large effect
size (g = 1.27). Moreover, when N1, N2, and N3 were
reclassified as NREM (NREM123), the F measure increase was
still significant (0.92 ± 0.01, p < 0.0001) with medium effect
size (g = 0.79). Interestingly, rodent data and W1NREM23

FIGURE 4 | Generalization of human recordings with N1 reclassification or
stage simplification versus rodent recordings. (A) Comparison of
generalization performance of all human recordings (n = 52) between standard
stage classification and two versions of N1 reclassification: N1 reclassified as
wake; N1 reclassified as N2. Data analyzed by paired t-test compared to
control (no reclassification). (B) Generalization of pooled rodent recordings
(n = 54) versus human recordings (n = 52) with two versions of stage
simplification: N1 reclassified as wake, N2 and N3 reclassified as NREM
(W1NREM23); or N1, N2, and N3 reclassified as NREM (NREM123). Data
analyzed by independent samples t-test compared to rodent recordings. Data
represented as mean ± SEM. #p < 0.01; +p < 0.001.

did not differ significantly in terms of NREM generalization.
NREM123 reclassification, however, produced significantly
higher generalization (0.95± 0.01) than rodent data (0.94± 0.01,
p < 0.01) with medium effect size (g = 0.51). REM generalization
was highest for rodent data (0.91 ± 0.01) and was significantly
lower for both W1NREM23 (0.86 ± 0.01, p < 0.0001) and
NREM123 (0.87 ± 0.01, p < 0.01) configurations, with large
(g = 0.82) and medium (g = 0.59) effect sizes, respectively.
Remarkably, overall generalization did not differ significantly
between rodent data and NREM123 reclassification, resulting
in remarkable F measures of 0.95 ± 0.01 and 0.94 ± 0.01,
respectively. Generalization performance was marginally lower
for W1NREM23 reclassification (0.91 ± 0.01, p < 0.001)
with large effect size (g = 1.18). These results indicate that
reclassification of N1 to either wake or N2, improved overall
algorithm generalization. In comparison to rodent NREM
classification, the results indicate that N1 is more similar to N2
and N3, than wake. Furthermore, performance with human and
rodent data was similar despite different epoch sizes.

Impact of Training Set Size
Training set size to F-measure response curves were generated
for pooled human recordings, inclusive of transition epochs,
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which encompass an average of 1315 ± 24.21 total epochs
per recording (n = 52) (Figure 5A). Generalization on most
vigilance states peaked immediately in spite of moderate
training set sizes, and started to plateau after ∼20 training
epochs per stage, with the exception of N1, which steadily
increased. Generalization for all pooled human recordings
(n = 52) was compared in three different conditions:
(i) 20 training epochs per stage, the minimum to reach
overall strong generalization for most vigilance states; (ii)
40 epochs per stage, the guideline minimum for epoch
lengths of 30 s; and (iii) 60 training epochs per stage, the
maximum number assumed to still provide user-friendly
training. Generalization increased dose-dependently with
training set size, consistent with the theory of machine
learning. However, benefits with larger training set sizes were
modest, producing effect sizes from miniscule to medium
(Figure 5B). Training set sizes as small as 20 epochs generated
strong generalization (>0.80) on most stages, while at 40
epochs, all stages besides N1 generalized from strong to
excellent (0.80–0.90).

Scoring Times
Computational times for automated wake-sleep stage scoring of
recordings were 14.98 ± 0.07 s (UOH; n = 28; mean recording
length 11.75 ± 0.17 h) and 14.95 ± 0.15 s (UMH; n = 24; mean
recording length 10.04± 0.30 h).

FIGURE 5 | Impact of training set size on generalization of human recordings.
(A) Training set size to F-measure response curves challenging set guidelines
for human recordings (n = 52). Training epochs refers to training set size per
vigilance state. (B) The impact of three different training set sizes on the
generalization of all pooled human recordings. Data analyzed by paired t-test,
and represented as mean ± SEM. #p < 0.01; +p < 0.001.

Validation of the Algorithm With Mouse
and Rat Data
Generalization Across Experimental Groups
Firstly, the effects of treatment and genetic phenotype on
generalization accuracy of rodent recordings were assessed.
Across experimental groups of the UBR cohort, generalization
of recordings from control rats, or those that received muscimol
microinjection in the RVMM, did not significantly differ for any
individual sleep stage or overall (p > 0.05) (Figure 6A), and all
effect sizes were small to miniscule. On average, generalization
scored ∼0.95 for wake, ∼0.93 for NREM, ∼0.91 for REM and
∼0.94 overall. For the UBM cohorts, generalization performance
was compared between wildtype and transgenic mice. Similarly,
F-measures did not significantly differ for any individual sleep
stage or overall (Figure 6B) (p > 0.05), and all effect sizes were
miniscule. On average, generalization was > 0.98 for wake, >0.96
for NREM,∼0.90 for REM and >0.97 overall.

FIGURE 6 | Generalization across rodent control and experimental UBR, UBM
and SRI groups. Generalization (F-measure) of (A) UBR vehicle and muscimol
treatment groups (n = 8); (B) UBM wildtype and hypocretin-ataxin3 transgenic
narcoleptic mouse groups (n = 9); and (C) SRI pooled vehicle-treated and
drug-treated groups (n = 11). Data analyzed by uncorrected paired t-test, and
represented as mean ± SEM. ∗p < 0.05.
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Similarly, generalization did not significantly differ for any
individual sleep stage or overall for the SRI cohorts that received
caffeine, zolpidem, or almorexant treatment, if Bonferroni
correction was applied. With no correction however, small,
but significant decreases in generalization were observed for
NREM (0.93 ± 0.01 to 0.92 ± 0.01; p < 0.05; medium effect
size [g = 0.72]) and REM sleep (0.91 ± 0.01 to 0.90 ± 0.01;
p < 0.05; small effect size [g = 0.46]), when baseline only
trained training sets were used (Figure 6C). Notably, F-measure
for wake displayed a positive, non-significant trend for both
treatment groups compared to vehicle (p = 0.15 and 0.14;
medium effect sizes g = 0.58 and 0.51, respectively), when
longitudinal- and baseline only trained training sets were used.
Under no circumstance did longitudinal- versus baseline only
trained treatment groups differ significantly (p > 0.05; with effect
sizes above miniscule). Overall generalization across groups was
∼0.95 for wake, ∼0.93 for NREM, ∼0.91 for REM and ∼0.94
overall. These results indicate that experimental protocols, such
as medullary inactivation, transgenic ablation of hypocretinergic
neurons resulting in narcolepsy, or pharmacological treatment,
have negligible effects on algorithm generalization accuracy of
wake-sleep stage scoring of rodent data.

Impact of Transition Epochs
The impact of transition epochs on generalization was also
assessed on pooled rodent recordings (n = 54). Automated
removal of transition epochs resulted in exclusion of
13.0 ± 0.89% of total epochs, which had a positive impact
on the already high level generalization (Figure 7A). Wake
F-measure significantly increased from 0.95 ± 0.01 to
0.98 ± 0.01 (p < 0.0001) with a large effect size (g = 0.82).
NREM F-measure significantly increased from 0.94 ± 0.001
to 0.97 ± 0.01 (p < 0.0001) with a large effect size (g = 1.27).
REM F-measure significantly increased from 0.91 ± 0.01 to
0.95 ± 0.01 (p < 0.0001) with a large effect size (g = 0.82); while
overall F-measure significantly increased from 0.95 ± 0.01 to
0.97± 0.01 (p < 0.0001) with a large effect size (g = 1.16).

The benefits of removing transition epochs from the
computation of F-measures on classifiers that relied on EEG
only for training, were significant (Figure 7B). Wake F-measure
significantly increased from 0.91 ± 0.02 to 0.94 ± 0.02
(p < 0.0001) with a small effect size (g = 0.26). NREM
F-measure significantly increased from 0.86± 0.01 to 0.90± 0.01
(p < 0.0001) with medium effect size (g = 0.61). REM
F-measure significantly increased from 0.57± 0.03 to 0.60± 0.04
(p < 0.001) with a minor effect size (g = 0.13); while the overall
F-measure significantly increased from 0.88± 0.01 to 0.92± 0.01
(p < 0.0001) with a medium effect size (g = 0.54).

When comparing ‘all-epochs’ versus ‘no-transition epochs’
configurations with the standard configuration (EEG+EMG
trained, all epochs considered), NREM EEG-only trained
with no-transition epochs was the only metric that was not
significantly different (with a minor effect size) and therefore
returned to baseline generalization, in spite of lacking EMG data.

The benefits of excluding transition epochs from the
computation of F-measures on classifiers that relied on EMG
only for training, were significant (Figure 7C). Wake F-measure

FIGURE 7 | Impact of transition epochs on generalization of rodent
recordings. Generalization of all rodent recordings (n = 56) trained with (A)
both EEG and EMG; (B) EEG only and (C) EMG only, with and without
consideration of transition epochs. Data analyzed by paired t-test compared
to training with all epochs, and represented as mean ± SEM. +p < 0.001.

significantly increased from 0.91 ± 0.02 to 0.94 ± 0.02
(p < 0.0001) with a small effect size (g = 0.26). NREM
F-measure significantly increased from 0.86± 0.01 to 0.90± 0.01
(p < 0.0001) with medium effect size (g = 0.61). REM
F-measure significantly increased from 0.57± 0.03 to 0.60± 0.04
(p < 0.001) with a miniscule effect size (g = 0.13). Overall
F-measure significantly increased from 0.88± 0.01 to 0.92± 0.01
(p < 0.0001) with a medium effect size (g = 0.54). Thus,
as revealed in the human data analyses, automated ‘tagging’
of transition epochs (in addition to artifacts) for subsequent
refinement of the machine learning process would potentially
increase algorithmic accuracy for all stages and overall.

Generalization on Learning With the EEG or EMG
Channel Only
Generalization was examined for pooled rodent recordings
(n = 54), inclusive of transition epochs, under different conditions
of input channel training (EEG+EMG [A]; EEG alone [B]; EMG
alone [C]) (Figure 8). Different input channel configurations
had a significant, albeit moderate, impact on wake F-measure.
Generalization of wake stages significantly decreased from
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FIGURE 8 | Impact of different training channel configurations on
generalization of rodent recordings. Generalization of all rodent recordings
(n = 56) across three different input channel configurations: EEG+EMG; EEG
only; EMG only. Data analyzed by paired t-test compared to EEG+EMG, and
represented as mean ± SEM. #p < 0.01; +p < 0.001.

0.95 ± 0.01 [A] to 0.93 ± 0.01 [B] (p < 0.0001), and 0.91 ± 0.02
[C] (P ≤ 0.001), with medium effect sizes (g = 0.68 and 0.51,
respectively). The impact on NREM was more pronounced,
where F-measure significantly decreased from 0.94 ± 0.01 [A] to
0.91± 0.01 [B] (P≤ 0.001), and 0.86± 0.01 [C] (p < 0.0001), with
medium and large effect sizes (g = 0.51 and 1.34, respectively). As
expected, REM was most affected, where F-measure significantly
decreased from 0.91 ± 0.01 [A] to 0.74 ± 0.02 [B] (p < 0.0001),
and 0.57 ± 0.03 [C] (p < 0.0001), with medium and large
effect sizes (g = 1.4 and 1.98, respectively). Overall, the decrease
in generalization was minimal, with F-measure significantly
decreased from 0.95 ± 0.01 [A] to 0.92 ± 0.01 [B] (p < 0.0001),
and 0.88 ± 0.01 [C] (p < 0.0001), with large effect sizes (g = 0.86
and 1.18, respectively).

Impact of Training Set Size
Training set size to F-measure response curves were generated
for each rodent cohort, inclusive of transition epochs, which
comprise 27000 (UBM; 4 s epochs), 21600 (UBR; 4 s epochs)
and 2954 ± 226.7 (SRI; 10 s epochs) total epochs per recording.
A similar trend was observed across UBM, UBR and SRI cohorts
(Figures 9A–C). Generalization on most vigilance states peaked
immediately, in spite of very moderate training set sizes, and
started to plateau after ∼30–50 training epochs. Generalization
for pooled rodent recordings (n = 54) was compared between
four different conditions: (i) 30 training epochs, the minimum
to reach F-measure ≥ 0.90 for all vigilance states; (ii) 50 epochs,
the guideline minimum for epoch lengths of 10 s (SRI cohort);
(iii) 100 epochs, the guideline minimum for epoch lengths of
4 s (UBM and UBR cohorts); and (iv) 200 training epochs,
the maximum assumed to still provide user-friendly training.
Generalization increased dose-dependently with training set size,
consistent with the theory of machine learning. However, benefits
with larger training set sizes were modest (Figure 9D).

Scoring Times
Computational times for automated wake-sleep stage scoring of
recordings were 7.07 ± 0.05 s (UBM; n = 18; 30 h recordings),

6.04 ± 0.06 s (UBR; n = 16; 24 h recordings) and 2.04 ± 0.02 s
(SRI; n = 22; mean recording length 8.81± 0.63 h).

Validation of the Algorithm With Pigeon
Data
Because of the lengthy duration and difficult nature of scoring
avian sleep (Lesku et al., 2009), data from only 5 pigeons
with prior manual scoring were used for validation. Despite
the small dataset, algorithm generalization from EEG and ACC
inputs was excellent overall and exhibited high agreement with
manual scoring for wakefulness and NREM. Performance of the
algorithm for identifying REM was somewhat lower, which would
necessitate a follow-up inspection of video recordings during
short EEG activations to check whether the eyes were closed,
along with behavioral signs of reduced skeletal muscle tone that
are more likely to reflect REM than wakefulness.

Impact of Transition Epochs
The impact of automated exclusion of transition epochs on
generalization was assessed (Figure 10). Automated removal
of transition epochs resulted in 20.5 ± 1.44% of total
epochs excluded. Wake F-measure significantly increased from
0.96 ± 0.006 to 0.99 ± 0.002 (p < 0.01) with a large effect
size (g = 2.33). NREM F-measure also marginally increased
from 0.97 ± 0.01 to 0.99 ± 0.005, although this was not
significantly different (p = 0.09). REM F-measure was unchanged,
0.86± 0.02 to 0.86± 0.04 (p = 0.95); while overall generalization
significantly increased from 0.96 ± 0.009 to 0.99 ± 0.004
(p < 0.05) with a large effect size (g = 1.79). In practical terms,
refinement of the machine learning process using transition
epochs would result in marginally increased accuracy for all
stages, except REM.

Generalization on Training With EEG or
Accelerometer Channels Only
F-measure generalization was computed for all pigeon recordings
(n = 5) under different conditions of input channel training
(EEG+ACC [A]; EEG-alone [B]; ACC-alone [C]) (Figure 11).
EEG-alone had a significant impact on wake classification,
whereas ACC-alone reliably classified this stage. Wake
F-measures significantly decreased from 0.96 ± 0.006 [A]
to 0.86 ± 0.01 [B] (p < 0.0001), and 0.95 ± 0.006 [C], which
was not significantly different (p = 0.07), with large effect sizes
(g = 4.42 and 1.19, respectively). The impact on NREM was
significant for both configurations, where F-measure decreased
from 0.97 ± 0.01 [A] to 0.88 ± 0.02 [B] (p < 0.05), and
0.83 ± 0.04 [C] (p < 0.05), with large effect sizes (g = 1.80
and 1.86, respectively). REM was also affected by EEG alone
and could not be classified on ACC alone, where F-measure
significantly decreased from 0.86 ± 0.02 [A] to 0.71 ± 0.06 [B]
(p < 0.05), with large effect size (g = 1.34). Overall, the decrease
in generalization was, in fact, similar with both configurations,
with F-measure significantly decreased from 0.96 ± 0.009 [A]
to 0.86 ± 0.02 [B] (p < 0.01), and 0.86 ± 0.02 [C] (p < 0.0001),
with large effect sizes (g = 2.87 and 2.89, respectively).
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FIGURE 9 | Impact of training set size on the generalization of rodent cohorts. Training set size to F-measure response curves challenging set guidelines for (A) UBM
(n = 18), (B) UBR (n = 16), and (C) SRI cohorts (n = 22). Training epochs refers to training set size per each vigilance state. (D) The impact of four different training
set sizes on the generalization of pooled rodent recordings (n = 56). Data analyzed by paired t-test compared to 30 epochs, and represented as mean ± SEM.
#p < 0.01; +p < 0.001. Symbol color represents effect sizes, red, miniscule; black, small.

FIGURE 10 | Impact of transition epochs on generalization of pigeon
recordings. Generalization of all pigeon recordings (n = 5), with and without
consideration of transition epochs. Data analyzed by paired t-test compared
to training with all epochs, and represented as mean ± SEM. ∗p < 0.05;
#p < 0.01.

Impact of Training Set Size
Training set size to F-measure response curves were generated for
the pigeon recordings (n = 5) using the standard configuration
inclusive of transition epochs, which comprised an average of
45105 ± 7270 total epochs (4 s) per recording (Figure 12A).
Generalization on most vigilance states peaked immediately,
and started to plateau after ∼20–40 training epochs, with
the exception of REM, which steadily increased in spite of
moderate training set sizes. Similar to the rodent data validation,
generalization for pigeon recordings was compared under four

FIGURE 11 | Impact of different training channel configurations on
generalization of pigeon recordings. Generalization of all pigeon recordings
(n = 5) across three different input channel configurations: EEG+ACC; EEG
only; ACC only. Data analyzed by paired t-test compared to EEG+EMG, and
represented as mean ± SEM. ∗p < 0.05; #p < 0.01.

different conditions: 30, 50, 100, and 200 training epochs
(Figure 12B). Generalization F-measure performance increased
size-dependently with training set size. However, benefits with
larger training set sizes were modest for most stages, whereas
REM generalization peaked at 200 epochs (Figure 12B).

Scoring Times
Computational time for automated wake-sleep stage scoring of
recordings was 15.71 ± 5.65 s (n = 5; mean recording length
50.11± 8.1 h).
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FIGURE 12 | (A) Impact of training set size on the generalization of pigeon
recordings. Training set size to F-measure response curves challenging set
guidelines for pigeon recordings (n = 5). Training epochs refers to training set
size for each vigilance state. (B) There were no significant effects of four
different training set sizes on the generalization of pooled pigeon recordings.
Data analyzed by paired t-test compared to 30 epochs, and represented as
mean ± SEM.

DISCUSSION

Somnivore was developed as a multi-layered system capable
of learning from limited training sets, using large input space
dimensionalities from a rich variety of polysomnography inputs,
to provide automated wake-sleep stage scoring with rapid
computational times. As one of the goals for Somnivore
was fast processing speed, design of an a priori selected
feature set required a machine learning algorithm capable of
integrating a large feature space. Other algorithms validated
so far have been limited by use of small group sizes for
validation (Crisler et al., 2008; Sinha, 2008; Gross et al., 2009;
McShane et al., 2013; Sunagawa et al., 2013), analyzed recordings
using non-standard recording conditions (Koley and Dey, 2012;
Stepnowsky et al., 2013; Kaplan et al., 2014; Wang et al., 2015),
or were validated using baseline healthy or control subjects
only (Stephenson et al., 2009; Khalighi et al., 2012; Koupparis
et al., 2014; Kreuzer et al., 2015; Rempe et al., 2015; Gao
et al., 2016), which has restricted their wider implementation
in sleep research.

Automated sleep scoring has a rich, but varied history.
Multiple algorithms have been proposed, tested and validated
across a limited, but variable number of conditions. Several
have produced remarkable results in terms of generalization
(Crisler et al., 2008; Sunagawa et al., 2013; Bastianini et al., 2014),
which poses the question of why these procedures have not
become established in the sleep research field. Thus, we developed

Somnivore to address many of the perceived shortcomings
of earlier systems. One of the major criticisms of previous
systems that attempted to automatically score sleep states was
that they were only validated on baseline, wildtype or control
(placebo/vehicle) data. Subject treatments often alter signal
features that many such algorithms rely on, which leads to
inaccurate generalization. However, it is rare for sleep scientists
to only examine baseline, wildtype or control data. The current
study is the first of its kind to validate an algorithm for automated
wake-sleep stage scoring using large and diverse datasets collected
from multiple species, using diverse methods and differing
epoch sizes, under different treatment or genetic conditions.
All recordings were used for the validation studies and no
outliers were removed. The subjects were sourced from multiple,
independent laboratories, in which they were manually scored by
members of these laboratories, with some subject data extracted
from published studies. This study design reduces perceived bias
or conflict of interest.

In the rodent data analyzed, F-measure-based generalization
was high and unchanged by pharmacological treatment or
genetically induced sleep impairment (narcolepsy). Moreover, the
absolute F-measure generalization was consistently > 0.90 across
all wake-sleep states and overall, which was further increased by
exclusion of transition epochs.

In the human data analyzed, results were comparable with
inter-scorer agreement, with minor discrepancies. For the UMH
recordings, generalization was unchanged between control and
alcohol conditions, although a minor decrease was detected
for the baseline only trained alcohol condition. Nonetheless,
generalization remained strong to excellent across all stages
(except for N1) and overall. In UOH recordings, generalization
was analogous between HOA and HYA, but MOA recordings
registered lower generalization, particularly for N1 and N3.
Nonetheless, generalization for MOA recordings also remained
average to excellent for all stages (except for N1). Reclassification
of N1 to either wake or N2, or simplification to resemble rodent
wake-sleep stages, revealed that the N1 stage is more similar
to N2 and N3 than wake. Furthermore, automated scoring of
human and rodent data were similar despite different epoch
sizes. Similarly, analyses of human and rodent data revealed that
variability of algorithm-generated automated wake-sleep stage
scoring largely lies in the determination of transition epochs.
Thus, in practical terms, it would be worthwhile to include
an additional analysis process following the initial automated
scoring process, whereby the machine learning process is further
refined by manual correction of transition epochs and artifacts
by automated tagging of these epochs, which would provide
substantial increases in the final automated scoring accuracy.
Because of the nominal training set sizes needed to achieve
strong generalization, and the rapid automated scoring process
of Somnivore (∼15 s for 10–12 h human recordings, ∼7 s for
30 h rodent recordings, and ∼16 s for ∼50 h pigeon recordings),
manual assessment and correction of tagged transition and
artifact epochs would be minimal additional work flow, relative
to manual scoring.

While rodent and human data constitutes the overwhelming
bulk of polysomnography sleep data collected for research,
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studies are also conducted in less conventional animal
models, such as dogs (Pickworth et al., 1982), cats (Lancel
et al., 1991), pigeons (Tobler and Borbely, 1988), penguins
(Buchet et al., 1986), dolphins (Oleksenko et al., 1992), seals
(Mukhametov et al., 1985), and non-human primates (Crowley
et al., 1972). Therefore, for comprehensive validation of the
flexibility of Somnivore, a diverse array of recordings was
tested, including data from experimental pigeons. In this
regard, the timescale of REM episodes in birds is markedly
different from that observed in most mammals. In mammals,
REM bouts are typically minutes or tens of minutes long,
whereas in birds, REM episodes are rarely longer than 16 s
(Lesku and Rattenborg, 2014). The validation of Somnivore
on such diverse species indicates that the algorithm is
flexible and sensitive enough to autoscore typical and atypical
polysomnographic sleep data.

Accurate sleep scoring relies on the quality of
polysomnographic data. Unfortunately, due to the nature
of signal acquisition, signals often become corrupted and
unusable. Manual scoring offsets this issue using the excellent
pattern recognition abilities of humans; and ultimately this
is a major reason why this procedure has remained the gold
standard. All automated scoring algorithms validated thus
far have analyzed high quality polysomnography data, and
none have specifically reported using compromised input data.
Thus, it was of interest to assess the capability of Somnivore
to score polysomnography data on limited inputs. Across
all species, performance decreased considerably for REM
sleep when the EEG or EMG was removed from the learning
model, as expected, though remarkably, overall F-measures
remained > 0.90 and ∼0.87 for EEG-only and EMG-only
trained classification, respectively. Overall, generalization
was increased through automated exclusion of transition
epochs (the first and last epoch of each sleep stage bout).
When transition epochs were excluded from EEG-only trained
classification, the detrimental effects of removing the EMG were
normalized in the case of NREM, and recovered for REM, albeit
modestly. The same was observed for EMG-only classification,
although REM scoring became unreliable (F-measure∼0.60).
Overall, this indicates that in the absence of EMG data,
Somnivore is still able to provide adequate generalization,
while in the case of missing EEG data, adequate generalization
can only be maintained for wake and NREM. The case for
which the exclusion of transition epochs produced the most
tangible benefit was the standard EEG+EMG classification.
In spite of generalization being already excellent (wake = 0.95;
NREM = 0.94; REM = 0.91; overall = 0.95), exclusion of transition
epochs raised generalization to unprecedented F-measures of
0.98, 0.97, and 0.95 for wake, NREM and REM, respectively,
leading to an overall generalization of 0.97. This outcome was
achieved with scoring times ranging from ∼2 s (SRI) to 7 s
(UBM) of a large sample size (n = 54).

Somnivore’s development was pursued with the general
aim of providing reliable generalization toward the current
gold-standard of manual, visual scoring, while preserving
user-friendliness. Appropriate metrics of user-friendliness in a
supervised machine learning based automated sleep scoring

protocol pertain to technical settings and the amount of manual
scoring of training sets required. Somnivore’s technical settings
were designed to be minimal, and it mainly relies on consistency
scoring rules, the channels used for training, and chronotype
settings, which were all kept as default configurations. Analysis
of training-set sizes relative to generalization response curves,
indicated that a minimal amount of training was required to
produce adequate generalization for all species. Thus, training-
set sizes of as little as 30 epochs per stage for rodent data
produced F-measure generalization > 0.90 on all wake-sleep
stages and overall. This equated to 2 min (4 s epochs)
to 5 min (10 s epochs) of training per stage. For human
data, 20 epochs (i.e., 10 min) of training per stage produced
strong generalization across all wake–sleep stages (except for
N1) and overall.

Limitations
Comprehensive inter-scorer agreement analysis was conducted
on human data, showcasing how inter-scorer agreement
between manual hypnograms and their associated automatically
scored hypnograms generated by Somnivore was comparable
to the gold-standard inter-scorer agreement between two
trained experts in the same laboratory. Our findings
highlighted inherent problems within the scoring of human
stage N1. However, inter-scorer agreement validation
studies also confirmed previous literature reports that N1
is a volatile stage that systematically produces inadequate
agreement even between trained experts, both within or
outside the same laboratory (Wendt et al., 2015; Younes
et al., 2016). Accordingly, Somnivore performed as well
on N1 as reported in the literature for manually scored
data (Younes et al., 2016). In this regard, inter-scorer
agreement between MS1 and MS2 scorers for UMH data
was inadequate (<0.50), resulting in variable algorithm learning
and thus, variable algorithm generalization (Figure 2). Due
to the high-throughput nature of Somnivore’s analyses of
experimental end-measures, several novel, cautionary findings
were extracted from the recordings provided by external
laboratories for evaluation.

In regard to the analysis of avian sleep, the short timescale
of REM episodes and maintenance of NREM-like muscle
tone (Lesku and Rattenborg, 2014) may require each short
episode of avian EEG activity to be checked against video
recordings to distinguish REM from brief awakenings
from sleep. Unlike wakefulness, REM is associated with eye
closure and behavioral signs of reduced skeletal muscle tone,
including head drops and swaying, that do not consistently
manifest reduced muscle tone. This is a time-consuming
process that has led some to sample the EEG to avoid
the demands of continuous scoring (Lesku et al., 2011).
Somnivore performed well at identifying REM, although its
performance was lower compared to the excellent generalization
of wake and NREM stages. Thus, it may be worthwhile to
review the automated scoring for any necessary manual
adjustments to short EEG activations that may (or may
not) reflect REM.
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CONCLUSION

We developed a supervised machine learning algorithm,
named Somnivore. Validation of the accuracy of algorithm
generalization was evaluated using F-measure, which considers
both precision and sensitivity (Powers, 2011). Somnivore
generated excellent overall generalization across human, rodent
and pigeon polysomnography sleep recordings. These included
data from humans of both genders, younger and older subjects,
young subjects after alcohol consumption, and older subjects
with mild cognitive impairment; from standard experimental rats
and mice (wildtype and transgenic hypocretin neuron-ablated),
and recordings examining the effects of various pharmacological
interventions, such as alcohol, muscimol-inactivation of
medulla, caffeine, zolpidem, almorexant and placebo/vehicle;
and from pigeons.

Somnivore’s generalization was also evaluated under
conditions of ‘signal-challenged’ data, and provided excellent
performance in all conditions using only one EEG channel
for training/learning. Excellent generalization was observed
with learning using only one EMG channel or two EOG
channels for human recordings. Furthermore, validation studies
highlighted that a substantial part of the disagreement between
manual and automated hypnograms was associated with
transition epochs. In this regard, Somnivore was designed to
provide automated detection and exclusion of these epochs
from analysis, which provides further control over automated
wake-sleep stage scoring.

Somnivore, has been comprehensively validated as an
accurate, high-throughput platform for automated classification
of wake-sleep stages from diverse polysomnography data.
Importantly, the flexibility of the analysis enables its use in a
range of experimental situations, including studies of normal
sleep to those for drug discovery, genetically modified rodent
models, and sleep health in ecological studies. This analysis
tool will enable faster insights for the improved treatment of
primary sleep disorders and those associated with psychiatric and
neurodegenerative diseases.
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