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As smartphone usage has become increasingly prevalent in our society, so have rates
of depression, particularly among young adults. Individual differences in smartphone
usage patterns have been shown to reflect individual differences in underlying affective
processes such as depression (Wang et al., 2018). In the current study, a positive
relationship was identified between smartphone screen time (e.g., phone unlock
duration) and resting-state functional connectivity (RSFC) between the subgenual
cingulate cortex (sgCC), a brain region implicated in depression and antidepressant
treatment response, and regions of the ventromedial/orbitofrontal cortex (OFC), such
that increased phone usage was related to stronger connectivity between these
regions. This cluster was subsequently used to constrain subsequent analyses looking
at individual differences in depressive symptoms in the same cohort and observed
partial replication in a separate cohort. Similar analyses were subsequently performed
on metrics of circadian rhythm consistency showing a negative relationship between
connectivity of the sgCC and OFC. The data and analyses presented here provide
relatively simplistic preliminary analyses which replicate and provide an initial step in
combining functional brain activity and smartphone usage patterns to better understand
issues related to mental health. Smartphones are a prevalent part of modern life and the
usage of mobile sensing data from smartphones promises to be an important tool for
mental health diagnostics and neuroscience research.

Keywords: depression, mental health, smartphone, screen time, fMRI, resting-state, circadian rhythm

INTRODUCTION

Smartphone usage has become nearly ubiquitous in daily life at a time when depression rates are
concurrently rising, particularly among college students. Smartphones contain a variety of sensors
that can allow researchers to passively measure various behaviors of the phone’s user. Previous
research has linked smartphone usage to self-reported depressive symptoms (Matar and Jaalouk,
2017; Twenge et al., 2018; Wang et al., 2018). In parallel, depressive symptoms have been linked to
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brain connectivity using resting-state functional connectivity
(RSFC) MRI (Greicius et al., 2007). The current manuscript
has multiple goals. First, is to provide a proof-of-concept
for linking passive mobile smartphone sensing technologies
to brain connectivity measures that have also been linked
to self-reported depressive symptoms. Second is to replicate
these initial findings in a separate cohort. Third, is to identify
preliminary links between a key behavior inferred from sensing
(e.g., smartphone screen time or circadian rhythm consistency)
and brain connectivity metrics. Fourth, is to briefly describe a
variety of methods which could be used to combine results across
these various data types in the future.

Depression Assessment
Depressive disorders affect over 300 million people worldwide
and is currently ranked as the single largest contributor to
global disability (Ustün et al., 2004; World Health Organization,
2018). Despite this, the diagnosis of depression has remained
largely unchanged; further, a reliable means of identifying
individuals at risk of becoming depressed remains absent.
Psychology, psychiatry and neuroscience have long relied up
self-reported surveys and in-person interviews to measure
symptoms, diagnose mental health disorders and identify
appropriate treatment strategies (Horwitz et al., 2016). As a
result of staggering fiscal and personal costs inflicted at both
individual and societal levels, clinicians and researchers set
out to redefine the way mental disorders are conceptualized
in hopes of creating innovative identification and prevention
strategies. The aforementioned aims have been synthesized
in a research framework known as RDoC (Research Domain
Criteria). RDoC’s objective is to incorporate information across
all planes of analysis ranging from cellular level data to person
level self-report survey data to provide of a holistic picture
of mental disorders (NIMH). A core principle within the
RDoC framework is the notion that neuroscience will inform
future psychiatric classification schemes; in other words, aid
in moving toward the establishment of a neural biomarker
for depression. Thus, of great importance is understanding
the complete range of human behavior (and neurological
functioning) from typical to atypical (Insel et al., 2010). The
Patient Health Questionnaire (PHQ, with two, four, eight and
nine question versions) is a reliable, short survey which has
been validated in clinical settings and can be used to assess
self-reported symptoms of depression that cause significant
impairment and subjective distress (Kroenke et al., 2001,
2009a,b; Cameron et al., 2008), an approach in keeping within
the RDoC research framework, seeking to explain individual
variance in symptoms across domains, constructs, and units of
analysis. Future methods to accurately diagnose depression may
hold promise with the inclusion of techniques that capitalize
on the passive collection of behavioral data through mobile
sensors (e.g., smartphones).

Passive Sensing
Passive sensing using mobile smartphone technology allows for
the assessment of daily activities by the smartphone user without
continual effort on their part. This increases the frequency

with which data can be collected and is less vulnerable to
self-report bias, which is often a problem in prompted surveys
(Rosenman et al., 2011; Ben-Zeev et al., 2015). Smartphone
ownership has increased steadily over the last decade, with
over 75% of the United States population owning one (Smith,
2017). In parallel, depression rates have increased over the
last decade (Twenge et al., 2018). While it is unlikely that
smartphone ownership by itself has prompted increased rates
of depression, has perhaps facilitated increased access to and
usage of social network platforms (Kross et al., 2013). Prevalence
of both smartphone ownership and depression rates are often
reported as being higher in college-age students (Eisenberg
et al., 2013; Nielsen.com, 2016). Screen time, e.g., the amount of
time that the screen is unlocked and being used is a relatively
simple metric to calculate that has been previously related to
depressive symptoms by multiple groups through either passive
sensing or self-reported surveys (Twenge et al., 2018; Wang
et al., 2018). Screen time and unlock duration will be used
interchangeably henceforth.

Depression has been linked to a variety of metrics available
from smartphone sensing applications including amount of
stationary time, GPS patterns, phone usage and conversation
patterns, among others (Burns et al., 2011; Canzian and
Musolesi, 2015; Saeb et al., 2015; Mehrotra et al., 2017;
Wang et al., 2018). The higher amplitude circadian rhythms
as measured by accelerometer are associated with reduced
chances of major depressive disorder and other negative
mental health outcomes (Lyall et al., 2018). Saeb et al.
(2015) determined that circadian movement (regularity in 24-h
patterns), mobility between favorite locations and location
variance were all negatively correlated with depressive symptoms,
while phone usage was positively correlated with depressive
symptoms. Using smartphone passive sensing, distance between
locations visited and a routine index, or the reliability of
the locations visited on a day-to-day basis were related to
depressive symptoms (Canzian and Musolesi, 2015). Links
between features such as location category (home, car, office
etc.) and depression, with further accuracy in prediction
when adding context, such as if the individual is alone, with
other people (particularly friends) or current physical exertion
status (Burns et al., 2011). Self-reported happiness has been
linked to decreased phone usage in the subsequent hour
(Mehrotra et al., 2017). While several groups have started
to characterize traits linked to depression, phone usage and
circadian rhythms are the ones that are most prominent in the
current literature.

Resting-State Functional Connectivity
Blood-oxygenation-level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is a non-invasive way to study
activity in the human brain. Changes in BOLD signal are highly
correlated with changes in neuronal activity in the local area,
particularly local field potentials (Logothetis et al., 2001). RSFC
measures the relationship between the time-courses of different
regions, often by using the correlation of the time-series. While
connectivity across the whole brain, or “functional connectome”
is fairly similar across individuals, there are small individual
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differences in connectivity between individuals which can be
reliably observed across time. There are a variety of factors which
may potentially influence RSFC, including genetics, experiences
across the lifetime and current physiological and emotional state
(Shehzad et al., 2009; Birn et al., 2013; Patriat et al., 2013;
Zuo et al., 2014; Poldrack et al., 2015; Richiardi et al., 2015;
Sinclair et al., 2015).

Depression and Neuroimaging
Resting-state functional connectivity has been used successfully
to distinguish between healthy controls and depressed
individuals, even going so far as to distinguish between
subtypes of depressed individuals (Greicius et al., 2007;
Berman et al., 2013; Kaiser et al., 2015; Drysdale et al., 2016).
Task-based studies of self-referential processing have revealed
that the sgCC is preferentially involved in processing valenced
self-referential information (Moran et al., 2006; Somerville
et al., 2006). Additionally, this region has been associated
with antidepressant treatment response, and an area proximal
to this has been used as a site of deep-brain stimulation
for treatment-resistant depression (Mayberg et al., 2005;
Holtzheimer, 2012).

Combing RSFC and Mobile Smartphone
Passive-Sensing Technology
There are a wide-variety of approaches that can be taken when
combining high-dimensional data from multiple modalities. We
wanted to answer the following question: do smartphone sensing
features previously identified as being related to depression
show correlations with RSFC from a region previously identified
to have aberrant connectivity in depressed individuals? A
targeted approach was used, selecting screen time with mobile
smartphone (e.g., unlock duration), a feature previously shown
to be linked to depressive symptoms (Saeb et al., 2015;
Twenge et al., 2018; Wang et al., 2018) and a brain area, the
subgenual cingulate cortex (sgCC) which has previously been
identified as having aberrant RSFC in depressed individuals,
and more recently has been used as a target for deep brain
stimulation for treatment resistant depression (Mayberg et al.,
2005; Greicius et al., 2007; Holtzheimer, 2012). Furthermore,
if there are regions identified in the passive-sensing unlock
duration analysis and RSFC analysis, do these regions also
show similar connectivity patterns when looking at the same
correlations with brief surveys of self-reported depressive
symptoms (PHQ-2, 4 and 8)? We expect that they would.
Alternatively, depression may be a summation of multiple factors
and may be better understood by interrogating passive-sensing
mobile technology and neuroimaging than self-reported scales.
As a secondary analysis, other passive-sensing features similar
to those previously reported by other groups to be indicative
of depression were explored, specifically, circadian rhythms in
both movement and number of locations visited. Keeping within
the RDoC matrix, a variety of units of analysis including brain
connectivity with fMRI (physiological), passive-sensing of phone
usage (behavioral) and both computer-based and phone-based
depression scales (self-report) were assessed.

MATERIALS AND METHODS

Study Design
In the current study two separate cohorts of first-year
undergraduate students were enrolled and analyzed separately
for test-retest comparison. Individuals were enrolled in three
study components: neuroimaging, smartphone sensing/EMA and
online surveys. Three modified versions of the PHQ-9 were
used: PHQ-2/4/8. PHQ-8 is the same as PHQ-9 with the suicide
ideation question removed. This question was removed before
administration because the survey results are not monitored in
real-time. PHQ-4 is a four-question survey which includes two
questions from the PHQ-8 and two from the GAD-7 as to assess
both depressive and anxiety related symptoms (Kroenke et al.,
2009a,b). They are used because of their brief form. They may
miss some of the nuances that the other inventories pick up on
but have been found to have high internal reliability (Cronbach’s
Alpha > 0.8) and are correlated with diagnoses of clinically
relevant depression (Cameron et al., 2008; Khubchandani et al.,
2016). PHQ-2 is used as a super-brief form of the PHQ-8 that is
slightly more specific to depressive symptoms by excluding the
GAD-related questions (Arroll et al., 2010).

Individuals completed an online survey to assess study
eligibility (safe for MRI per Dartmouth Brain Imaging Center
guidelines, no contraindications that would lead to MRI signal
loss, and owned an Android or iOS smartphone compatible
with StudentLife). If an individual was eligible and interested in
participating in the study, she or he completed a battery of online
surveys, including the PHQ-8 through REDCap (Harris et al.,
2009). Individuals were then scanned during the academic term
and had the StudentLife application (Wang et al., 2014) installed
on their phone at or near the time of scanning. In Cohort 1,
StudentLife data was collected from the time of scanning until the
end of the term. In Cohort 2, StudentLife data was collected from
the time of scanning and data collection is currently ongoing but
the data presented here is only from their first term in college.

StudentLife
A smartphone application, StudentLife is used in the current
study to collect a variety of data about smartphone usage
and mood from participants. The application is installed on a
participant’s phone (iOS or Android) and collects data from the
GPS, microphone, accelerometer and lock/unlock status among
others. Data from StudentLife is uploaded to a secure server
whenever a participant is both using WiFi and charging their
phone, which they were encouraged to do daily. Data from
these sensors are processed on the server to create variables that
assesses the day-to-day and week-by-week impact of workload
on stress, sleep, activity, mood, sociability, mental well-being,
and academic performance of students (Wang et al., 2014).
The workflow of the current study includes data collected
through StudentLife, MRI scanning sessions and self-reported
surveys (Figure 1). Unlock duration is a measurement of time
that the phone is unlocked and the screen is on, calculated
as the time between the user unlocking the phone and the
user either manually relocking the phone or autolocking due
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FIGURE 1 | Summary graphic of the study workflow in the current study, showing raw data collection from both smartphones (StudentLife, passive sensing) and
MRI (resting-state functional connectivity, sgCC seed-based analysis). Calculated features were selected based on previous research. Survey data was collected
with both online (REDCap, PHQ-8) and smartphone (StudentLife, Ecological Momentary Assessments, PHQ-2/4) sources.

to disuse (iOS default of 30 seconds, Android default vary by
manufacturer). Notification and system services do not influence
the measurement of unlock duration. While not an absolute
measurement of phone usage it is the closest approximation
implemented in StudentLife. In Cohort 1, unlock duration
(phone usage) was continually sampled, providing coverage 100%
of the time. This was decreased in Cohort 2 to help conserve
battery usage. In Cohort 2, phones were remotely triggered every
10 min, sampling 1 min every 10 min period (minimum 10%
temporal coverage), unless conversation was detected during the
1-min sampling period, in which case sampling was extended up
to 3 min for a maximum of 30% temporal coverage.

Ecological Momentary Assessments
Students were prompted once a week within the StudentLife
application during the term to complete a few short surveys
as Ecological Momentary Assessments EMA, one of which was
PHQ-4 (Shiffman et al., 2008). In the current study PHQ-4 was
collected weekly as an EMA PHQ-4 is a modified, shorter version
of the PHQ-8 which in four questions provides a glimpse of
depressive and anxious symptoms (two questions related to each,
with the two depression questions comprising the PHQ-2).

Calculation of Circadian Similarity
As part of the StudentLife app, many feature estimates are
calculated for each of the following time-epochs: 9 am – 6 pm
(day), 6 pm – 12 am (evening), 12 am – 9 am (night).
Accordingly, the relative occurrences of behaviors within each
epoch can be estimated and analyzed alongside their daily totals
as features. Similarity of day-to-day variation in these feature

values across these three time periods were calculated using intra-
class correlation, or ICC (Shrout and Fleiss, 1979) which was
slightly modified to still run with missing values, by changing
mean and summation operations to the equivalent NaN operator
in MATLAB. Only individuals with more than 20 days of data for
a given feature were included.

Several motion features such as time spent walking, biking,
running, or in car are calculated, there is some variance in
how they are calculated between Android and iOS. The feature
with the most similarity across platforms, which allows for the
retention of the greatest number of subjects is the feature “time
still,” which is a relatively simple metric which is calculated by
how much time the phone is still or not moving. This was broken
into three time-epochs as mentioned above and the similarity of
activity cycles (or lack thereof) across days was calculated using
ICC and termed Circadian Stillness Similarity.

Previous research has focused on frequency of visits to known
places and the interaction with depression. Within the constraints
of the currently processed data, these features could not be
calculated exactly, but instead the number of unique locations
visited during each time-epoch was calculated (Wang et al., 2014).
The reliability of how many locations a person visited through
the three epochs each day was calculated with ICC and termed
Circadian Location Number Similarity.

Subjects
Subjects were first-year undergraduate students recruited from
the Dartmouth College community. Cohort 1 included 151
subjects (94 female, mean age = 19.59, std = 1.69, range = 18–28)
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which were all scanned during their first year at Dartmouth
and followed for the subsequent academic term. Cohort 2
included 106 subjects (75 female, mean age = 18.25, std = 0.63,
range = 18–22) which were all scanned during the first academic
term of their first year at Dartmouth. In Cohort 2, one subject
was removed from the study for having an incompatible phone
and one MRI session was stopped due to not reporting a
permanent top retainer.

See Table 1 for a summary of the number of individuals
included in each analysis, grouped by Cohort. Subjects were
only included in each analysis if they met the minimum
number of time-points for smartphone-based StudentLife data
and each analysis and had RSFC that passed quality control
(see RSFC analysis methods section below for further details).
Subjects had normal or corrected-to-normal visual acuity. The
Committee for the Protection of Human Subjects at Dartmouth
College approved this study. Each subject provided written
informed consent in accordance with guidelines set by the
above-mentioned committee and received either course credit or
monetary compensation for participating in the study.

RSFC Data Collection
Apparatus
Cohort 1 imaging was performed on a Philips Intera Achieva
3-Tesla scanner (Philips Medical Systems, Bothell, WA,
United States). Cohort 2 imaging was performed on a Siemens
MAGNETOM Prisma 3-Tesla scanner (Siemens Medical
Solutions, Malvern, PA, United States). Data for both cohorts
was collected using a 32-channel phased array head coil. During
scanning, participants viewed a white fixation cross on a black
background projected on a screen positioned at the head end of
the scanner bore, which participants viewed through a mirror
mounted on top of the head coil.

Cohort 1 Imaging
Anatomic images were acquired using a high-resolution
3-D magnetization-prepared rapid gradient echo sequence
(MP-RAGE; 160 sagittal slices; TE, 4.6 ms; TR, 9.9 ms; flip angle,
8◦; voxel size, 1 × 1 × 1 mm). Resting-state functional images
were collected using T2∗-weighted fast field echo, echo planar
functional imaging sensitive to BOLD contrast (TR = 2500 ms;
TE = 35 ms; flip angle = 90◦; 3× 3 mm in-plane resolution; sense
factor of 2). Functional scanning was performed in one or two
runs; during each run, 240 brain volumes (36 slices, 3.5 mm slice
thickness, 0.5 mm skip between slices) were acquired, allowing

TABLE 1 | Summary of the number of subjects in each analysis.

Cohort 1 Cohort 2

Total scanned 151 106

RSFC data (Passed QC) 145 93

PHQ-8 65 89

PHQ-4 (>= 1-Day) 84 89

PHQ-2 (>= 1-Day) 84 89

Unlock duration (>= 20-Days) 77 89

complete brain coverage. As such, each participant completed
between 10 and 20 min of RSFC scanning.

Cohort 2 Imaging
Anatomic images were acquired using a high-resolution
3-D magnetization-prepared rapid gradient echo sequence
(MP-RAGE; 192 sagittal slices; TE, 2.32 ms; TR, 2300 ms; flip
angle, 8◦; voxel size, 1× 1× 1 mm) with a Grappa 2 acceleration
factor. Resting-state functional images were collected using
T2∗-weighted fast field echo, echo planar functional imaging
sensitive to BOLD contrast (TR = 1190 ms; TE = 32 ms; flip
angle = 63◦; 2.4 × 2.4 mm in-plane resolution; SMS factor of
4). Functional scanning was performed in one or two runs;
during each run, 605 volumes (46 slices, 3 mm slice thickness,
no skip between slices) were acquired, allowing complete brain
coverage. As such, each participant completed 12 or 24 min
of RSFC scanning. Initial data acquisition and conversion to
BIDS for cohort 2 was facilitated by the ReproIn specification
and tools (ReproNim project NIH-NIBIB P41 EB019936) and
organized into BIDS format with datalad (Gorgolewski et al.,
2016; Halchenko et al., 2017).

RSFC Analyses
All processing was performed using a standard previously
published processing stream (Power et al., 2014) with two
exceptions: frame-displacement (FD) threshold was set to
0.25 mm (instead of 0.2 mm) and 36 motion parameters (instead
of 24) were used for motion regression. Functional images
were preprocessed to reduce artifacts, including: (i) slice-timing
correction, (ii) rigid body realignment to correct for head
movement within and across runs, (iii) within-run intensity
normalization such that the intensity of all voxels and volumes
achieved a mode value of 1000 scale with 10 units equal to
∼1% signal change, (iv) transformation to a standardized atlas
space (3 mm isotropic voxels) based on (Talairach and Tournoux,
1988), (v) frame censoring, (vi) nuisance regression (excluding
censored frames), (vii) interpolation, and (viii) bandpass filtering
(0.009 < f < 0.08Hz) following Power et al. (2014) and using
exactly the same processing stream as Huckins et al. (2019). Final
correlation calculations between time-courses were calculated
based upon uncensored frames. Preprocessing steps i-v were
completed using custom scripts which call 4dfp Tools1. Steps
specific to resting-state functional-connectivity processing (vi-x)
were completed using custom MATLAB (Version R2012b, by
MathWorks, Natick, MA, United States) scripts.

Nuisance Regressors
To control for motion, a Volterra expansion (Friston et al., 1996)
with 36 motion parameters was used. This expansion includes
motion, motion squared, motion at the previous two frames,
and motion in the previous two frames squared. Tissue-based
nuisance regressors were calculated by taking the mean signal
across voxels within each of the following individual masks from
FreeSurfer2 (Dale et al., 1999; Desikan et al., 2006): an eroded

1ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/
2http://surfer.nmr.mgh.harvard.edu
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(up to 4x) ventricular mask for the cerebrospinal fluid, an eroded
white matter mask for the white matter signal, and a whole-brain
mask for global signal. When eroded masks included no voxels,
lesser erosions were progressive considered until a mask with
qualifying voxels was identified. This occurred infrequently for
white-matter masks while erosions of 1 were often used for CSF
masks. The first derivative for each tissue regressor, as calculated
by the difference from the current from to the previous frame,
was also included.

Volume Censoring and Data Retention
Movement of the head from one volume to the next (FD) was
calculated by the sum of the absolute values of the differentiated
realignment values (x, y, z, pitch, roll, yaw) at each time-point
(Power et al., 2012). A frame displacement threshold of 0.25mm
was used. Volumes with motion above the frame displacement
threshold were identified and replaced after multiple regressions
but prior to frequency filtering. Spectral decomposition of the
uncensored data was performed and used to reconstitute (stage
vii: interpolation) data at censored time-points. The frequency
content of uncensored data was calculated with a least squares
spectral analyses for non-uniformly sampled data (Mathias et al.,
2004) based upon the Lomb-Scargle periodogram (Lomb, 1976).
Segments of data with less than 5 contiguous volumes below the
FD threshold were flagged for censoring. Functional runs were
only included in the final analysis if the run contained 50 or
more uncensored frames. Only subjects with at least 5 min of
uncensored data across runs were included in the current study.
Consistent with Power et al. (2014), only uncensored volumes
were used when calculating temporal correlations.

Neurosynth Analysis and Subgenual
Cingulate Cortex Seedmaps
To identify an unbiased sgCC seed to create voxelwise functional
seed maps, an automated meta-analysis was performed using
Neurosynth for the term “subgenual” (Yarkoni et al., 2011). sgCC
seed maps were created from a 4mm spherical seed placed at
0, 25, −10 (MNI coordinates), which was the peak of the term
“subgenual” as of February 17th, 2017 and are centered around
BA 25. The mean time-course from this seed was correlated with
the time-course from every voxel within the brain. These seed
maps, i.e., maps of resting-state connectivity from the subgenual
region, were produced for each individual that passed quality
control (more than 5 min of uncensored frames, see above
for more details).

Combining Data
Since the version of the StudentLife application used in the
current study generates 182 features automatically, and with
RSFC it is possible to generate thousands of features, it is
necessary to minimize the number of features compared given
the relatively small size of the Cohorts (N < 100). To minimize
the number of features inspected, unlock duration was the only
feature inspected given its simplicity to calculate and previously
identified relationship with PHQ-8 (Wang et al., 2018). While
many features were automatically calculated, unlock duration
(e.g., screen time) was first targeted as a simple feature both to

calculate and to conceptualize as it can be considered a proxy for
total phone screen time.

For all surveys analyzed here, one time-point was sufficient
for a subject to be included in the current analyses. If there were
multiple responses to ecological momentary assessments (EMAs,
e.g., surveys prompted by the application) over the course of the
term those responses were averaged. Individuals were included in
the passive sensing unlock duration analysis if they had 20 days of
quality data with more than 16 h of quality unlock duration data
for each day that was included.

Group Analyses and Statistics
Subgenual cingulate cortex seedmaps from Cohort 1 were
correlated with unlock duration sampled from smartphone usage
with the StudentLife application. For each analysis, the degrees
of freedom was N-2, with N being the number of subjects which
is listed in Table 1. Results from the unlock duration and sgCC
correlational analysis from Cohort 1 were volume corrected to
account for multiple comparisons using AFNI’s 3dClustSim ACF
function. Results from the sgCC/unlock duration analysis were
used to restrict the regions investigated in further analyses. Given
the proof-of-concept and exploratory nature of the current work,
clusters are marked as having passed volume-correction or not.

Visualization
All results were transformed into MNI space (Montreal
Neurological Institute) and mapped onto the Conte69 template
for volume-based slices or inflated surfaces for visualization (Van
Essen et al., 2012). Group results were visualized in Connectome
Workbench Version 1.1.1 (Marcus et al., 2010).

RESULTS

Self-Reported Depression Measures
Depression symptomatology severity was assessed pre-scan with
an online survey using PHQ-8 and during the term using
the StudentLife application to administer the PHQ-4 (which
contains the PHQ-2). PHQ-8 distributions were similar between
Cohort 1 and Cohort 2 (mean = 4.77, 4.52; SEM = 0.58, 0.47,
respectively). Depression severity (as categorized by Kroenke
et al., 2001) revealed that in both Cohorts a large portion of
individuals had minimal depressive symptoms (56.9 and 62.9%,
respectively), leaving roughly 40 percent of individuals with
a range of depressive symptoms (Supplementary Table S1).
PHQ-4 distributions where also similar between Cohort 1 and
Cohort 2 (mean = 2.52, 2.09; SEM = 0.24, 0.18, respectively).
PHQ-2 distributions where also similar between Cohort 1 and
Cohort 2 (mean = 0.77, 0.80; SEM = 0.13, 0.10, respectively).
Density figures for all self-reported depression symptoms can be
found in the Supplementary Figure S1.

Passive Sensing Features Correlated
With sgCC Connectivity
In Cohort 1 exploratory whole-brain analyses of the correlation
between unlock duration and sgCC seedmaps identified a
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large cluster (584 voxels, 15,768mm3) in the ventromedial
prefrontal cortex with a positive linear relationship (Figure 2
and Supplementary Figure S2A). This cluster extended from the
ventral striatum to medial frontal orbitofrontal cortex (OFC) and
dorsally to medial prefrontal cortex. Information about subpeaks
within this cluster can be found in Table 2. To determine if these
results replicated in Cohort 2, the cluster identified in Cohort 1
was used as a mask and voxels which showed a significant positive
relationship between unlock duration and sgCC connectivity
in Cohort 2 were identified. This analysis identified a cluster
with the peak located at −6, 51, −18 (MNI coordinates, peak
T = 2.94, voxel extent = 42, volume-corrected to p < 0.05)
(Supplementary Figure S2B).

Two features estimating the reliability of day-to-day activity
patterns, including phone motion measured as how long the
phone is still at three different time epochs throughout the
day and the number of locations an individual visits per time
epoch were subsequently analyzed. Circadian Stillness Similarity
derived from phone stillness across the three daily time-epochs
did not identify any significant regions in Cohort 1 (N = 77)
after volume-correction within the prefrontal mask from unlock
duration used in other analyses in the main text. Cohort 2
(N = 89) did, however, identify a small cluster (MNI = 12,
45, −12; t = 2.73; 31 voxels) in right medial OFC which was

FIGURE 2 | Exploratory analysis correlation sgCC RSFC seedmaps correlated
with mean unlock duration identified a cluster with a positive relationship to
unlock duration in the ventromedial prefrontal cortex (p < 0.01, volume
corrected using ACF to p < 0.001) shown on inflated lateral (top left), medial
(bottom left) and ventral (right) cortical surfaces. The sgCC seed is
represented as a black 10 mm sphere, larger than the 4 mm sphere used to
create the seedmaps for visualization purposes.

TABLE 2 | Exploratory analysis correlation sgCC RSFC seedmaps correlated with
mean unlock duration (smartphone screen time) identified one cluster in the
ventromedial prefrontal cortex (p < 0.01, volume corrected using AFNI’s ACF to
p < 0.001, k > 449, voxel extent = 548).

Best estimate of region X Y Z T

Caudate −15 21 −9 4.29

Caudate 12 21 −9 3.64

Anterior sgCC 6 33 −12 3.34

Peaks were identified with xjview 9.6, showing 3 maximia within this cluster, at
least 8 mm apart.

negatively correlated with circadian similarity. In other words,
individuals with daily movements patterns that were more similar
had less connectivity between sgCC and medial OFC. Similar
results were observed for Circadian Location Number Similarity,
where no clusters passed volume correction in Cohort 1, but
a small cluster (MNI = −9, 45, −12; t = −2.54; 31 voxels)
was found in left medial OFC (not shown given similarity with
Supplementary Figure S5). Between the two analyses there were
7 voxels which overlapped.

Self-Reported Depression Symptoms
Correlated With sgCC Connectivity
Previous research (Wang et al., 2018) identified a relationship
between depressive symptoms and unlock duration. To
determine if depressive symptoms and unlock duration had
overlap in the brain connectivity (seed based subgenual RSFC)
regressions for both computer-based pre-screening (PHQ-8),
phone based post-scanning (PHQ-2/4 as EMA) were performed.
Results from each of these analyses were masked with the cluster
identified in Cohort 1’s sgCC/unlock duration analysis.

PHQ-8 computer-based surveys correlated with sgCC
connectivity maps identified clusters with a positive relationship
with sgCC connectivity in both Cohorts and identified a cluster
which overlapped between the two. Cohort 1 revealed one
cluster at which passed volume-correction −21, 42, −12 (peak
T = 3.19, voxel extent = 63, volume corrected to p < 0.05), 24,
51, −9 (peak T = 2.55, voxel extent = 15, did not pass volume
correction) (Figure 3 and Table 3). In the PHQ-8 analysis of
Cohort 2, results were further masked by the cluster which

FIGURE 3 | PHQ-8 regression for sgCC connectivity seedmaps for (A) Cohort
1 (MNI Z of –10 to –22 in steps of 4) and (B) overlap between Cohort 1 and
Cohort 2 (MNI Z of –12). Cohort 1 PHQ-8 results were masked with the
volume-corrected cluster identified in the Cohort 1 phone usage analysis
(unlock duration) and Cohort 2 PHQ-8 results were masked with the PHQ-8
results from Cohort 1.
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TABLE 3 | Results for the correlation of sgCC RSFC seedmaps with PHQ-8,
masked by phone screen time results.

Best estimate of region X Y Z T Extent

Cohort 1

Left OFC −21 42 −12 3.19 63

−18 51 −15 3.09 Subpeak

−6 48 −21 3.04 Subpeak

Right OFC∗ 24 51 −9 2.55 15

18 42 −12 2.19 Subpeak

Overlap between cohorts

Left OFC −15 33 −12 2.98 8

Overlap between Cohort 1 and Cohort 2 for sgCC RSFC seedmaps correlated with
PHQ-8 (Bottom). Subpeaks are at least 8 mm apart. ∗signifies that cluster didn’t
pass volume correction. Cohort 1 PHQ-8 results were masked with the cluster
identified in the Cohort 1 phone usage analysis (unlock duration) and Cohort 2
PHQ-8 results were masked with the PHQ-8 results from Cohort 1.

passed volume-correction in the Cohort 1 PHQ-8 analysis (63
voxels), identifying 1 significant cluster in Cohort 2, located at
−15, 33, −12 (peak T = 2.98, voxel extent = 8, volume corrected
to p < 0.05). In addition to identifying a cluster with overlap
between the both Cohorts for the PHQ-8 analysis, qualitative
visual inspection suggests proximal cortical regions in both
cohorts meeting a voxelwise threshold of p < 0.05, with regions
proximal to the mask having overlap at a threshold of p < 0.05
and increased overlap, including right OFC at a more liberal
threshold of p < 0.1.

PHQ-4 EMAs correlated with sgCC connectivity maps
identified peaks in Cohort 1 and 2, but there was no overlap
in the clusters between the Cohorts (Supplementary Figure S3
and Table S2). In Cohort 1 no significant clusters were
identified when PHQ-4 was masked with Cohort 1 unlock
duration. As Cohort 1 didn’t identify any regions which
passed volume-correction, there was no overlap of significant
volume-corrected regions between Cohort 1 and Cohort 2
for PHQ-2 (Supplementary Figure S4). As such, Cohort
2 results were masked with the Cohort 1 unlock duration
cluster which identified one significant cluster with the peak
at −15, 30, −12 (peak T = 3.71, voxel extent = 41, volume
corrected to p < 0.05). Two clusters were identified that
didn’t pass volume correction were also identified at −9, 51,
−18 (peak T = 2.87, voxel extent = 28, volume correction
ns) and 24, 39, −15 (peak T = 1.87, voxel extent = 9,
volume correction ns).

PHQ-4 includes two anxiety questions, so the subsequent
analysis was restricted to the two questions related to depressive
symptoms which comprise the PHQ-2. As Cohort 1 didn’t
identify any regions which passed volume-correction, there was
no overlap of significant volume-corrected regions between
Cohort 1 and Cohort 2 for PHQ-2. As such, Cohort 2 results
were masked with the Cohort 1 Unlock Duration cluster which
identified 1 cluster which passed volume correction, with the
peak at −18, 30, −12 (peak T = 3.81, voxel extent = 60, volume
corrected to p < 0.05). One cluster was identified that didn’t
pass volume correction with peak at −9, 42, −27 (peak T = 2.93,
voxel extent = 40, ns).

Overlap Across Analyses
Given the similarity of regions found across the PHQ analyses
in Cohort 2, the overlap between the results of PHQ 2/4 masked
by the Cohort 1 unlock duration was investigated, with 39 voxels
out of the 41 voxels identified in the PHQ-2 analysis overlapping
with the PHQ-4 analysis. The overlap between Cohort 2 PHQ-2,
4 and 8 identified 11 voxels, which are located around the peaks
of the PHQ-8 analysis.

DISCUSSION

The current manuscript is provided as a proof-of-concept
example of how passive smartphone metrics, active
smartphone-based surveys of mental health and computer-based
surveys of mental health with brain connectivity measures can
be linked. Specifically, RSFC between the subgenual cingulate
cortex, a region previously implicated in depression, and nearby
ventral prefrontal regions, was strongly related to unlock
duration, such that more connectivity was associated with more
screen time, which has been implicated as being related to
self-reported depressive symptoms. The link between RSFC and
individual differences has long been established but extending
that and combining it with an individual’s behavior inferred from
smartphone sensors provides exciting new directions. While the
results presented here are a relatively simple analysis of complex,
highly dimensional data, methods are discussed which could
be used in the future to combine these highly multivariate and
complex datasets in exciting ways.

Phone-related screen time, defined here as the amount of time
a phone is unlocked, or unlock duration, has previously been
shown to be related to self-reported depression levels (Twenge
et al., 2018; Wang et al., 2018). An exploratory analysis in
Cohort 1 of the correlation between unlock duration and sgCC
seedmaps identified a large cluster which extended from the
anterior caudate to medial frontal OFC and dorsally to medial
prefrontal cortex, a result which was replicated in Cohort 2
with a smaller voxel extent, even though the sampling rate for
screen time was greatly reduced, reducing our sensitivity to
pick up individual differences in phone usage for this cohort.
Next, to determine if depressive symptoms showed a similar
pattern of connectivity between sgCC and ventral prefrontal
cortex the cluster from Cohort 1’s unlock duration analysis
was used as a mask with PHQ-8, a commonly used survey
to assess depressive symptoms in the general population. Two
small clusters of overlap were identified in the left OFC, one
of them neighboring voxels that were identified to replicate in
the unlock duration analysis between the Cohorts. While these
clusters are not large and would not necessarily survive volume
correction on their own, observing similar regions across Cohorts
and analyses suggests that there is a link between depressive
symptoms and related behaviors and sgCC-OFC connectivity,
particularly left OFC that should be further investigated. The
PHQ-4, which contains two depression questions and two anxiety
questions, did not show the same robust relationship across
both Cohorts, with no voxels overlapping, although Cohort 2
identified a cluster in the left OFC which overlapped with results
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observed with PHQ-8 in both Cohorts. Connectivity between
the sgCC seed (BA 25), located at 0, 25, −10 and the left OFC
region around −15, 33, −12 shows a consistent relationship
between self-reported depressive symptoms and screen time,
which has previously been associated with depression. Increased
connectivity between sgCC, a region involved in processing of
valenced information about the self (Moran et al., 2006) and OFC,
which is involved in valuation and reward processing has been
linked increased depressive symptoms and screen time across
both Cohorts. Similar results were observed with PHQ-2, which
only contains the two questions directly related to mood. It
seems quite plausible that regions involved in valence processing
related to the concept of self and a more general reward
valuation processing region would have increased connectivity in
individuals with higher depressive symptoms.

Individuals in Cohort 2 with daily movement routines which
were more similar from day-to-day exhibited less connectivity
between sgCC and medial OFC. This is the opposite direction
of a correlation that unlock duration and PHQ depression
surveys identified, which is expected in light of results by Lyall
et al. (2018), where individuals that exhibited activity patterns
with reliable rest/activity cycles were less likely to be depressed.
Similarly, individuals with more similarity in locations visited,
meaning consistent day-to-day schedules had less connectivity
between sgCC and medial OFC, which in the current study is
associated with lower depression levels. The current work used
very large time epochs and could be investigated in more depth
with future modifications to the StudentLife application and
feature generation pipeline to perform finer grained analyses.
Similarly, extending StudentLife to calculate frequently visited
locations such as Burns et al. (2011) could prove fruitful. In
summary, in the current dataset the regularity in the number of
locations visited (as measured by GPS) and regularity in the time
that the phone is not moving are both negatively correlated with
connectivity between the sgCC and medial OFC.

We have shown that RSFC of the brain, as measured with
MRI, in two separate Cohorts of individuals, with two separate
MRI’s and two separate versions of the StudentLife application
and three separate passive-sensing feature show similarity in the
results observed. The cluster identified with the unlock duration
analysis covered an extent similar to that of the limbic network
previously identified (Yeo et al., 2011; Choi et al., 2012). Due to
the constraints we imposed on the analysis, all of the subsequent
results were within this area, but noticeably, many of the results
were proximal to the left OFC, which is also a member of
a set of nodes which are commonly activated during reward
processing and can form their own preferentially coupled system
(Huckins et al., 2018) and is identified as a peak of the term
“reward” in reverse-inference meta-analyses using Neurosynth
(Yarkoni et al., 2011).

LIMITATIONS AND FUTURE DIRECTIONS

The current work is a first-pass at analyzing longitudinal
multi-cohort, multimodality data and has several limitations.
There are several ways in which future research may provide

a more comprehensive survey of the relationships between
the diverse set of features provided from passive smartphone
sensing, functional brain connectivity measures and self-reported
measures of depression or other mental health metrics. The
relatively small number of clinically depressed individual in
the current sample weighs the results heavily on the RSFC
and passive-sensing features from those individuals. Test-retest
within the moderately sized samples allows for identification
of factors with reliable cross-cohort replicability in RSFC both
and passive-sensing features. Ideally, similar sensing features
could be collected across many sites, allow for identification
and characterization of depressive subtypes that span across
passive-sensing and RSFC as has been done by Drysdale et al.
(2016) with RSFC and survey data. Diagnosis of depression by
neuroimaging techniques such as RSFC MRI could potentially be
cost prohibitive in a medical setting. With that said, the medical
costs associated with untreated depression accounts for $26.1
billion per year with a total economic loss about $83 billion in
just the United States alone (Greenberg et al., 2003). As noted in
the current Cohorts, roughly 40 percent of participants had mild
depressive symptoms or worse as measured.

In the current study, particularly Cohort 2 in which data
quality was actively monitored, a relatively large portion of
individuals from those scanned was retained (see Table 1). The
sample sizes used here would have been considered relatively
large several years ago. Increased sample sizes in the current
study would help future analyses given the large number of
features from both passive mobile smartphone sensing and RSFC.
An outstanding question is if long-term changes in depressive
symptoms can be better predicted by RSFC or smartphone
sensing metrics at the initiation of the study or if changes in
either of these over time parallel depressive symptoms. Ideally to
assess this a large number of individuals would be tracked over
multiple years. In the second Cohort our working group aims
to track them over multiple years while eventually increasing the
number of individuals enrolled. Furthermore, including multiple
sites, as the ABCD study does (Volkow et al., 2017), would
increase applicability to a wider population. Multiple research
sites are currently collecting MRI data, self-reported surveys
and smartphone sensing metrics. An unresolved issue is what,
exactly, is the optimal approach to analyze the huge amounts of
multivariate data produced by these methods.

Application Changes Between Cohorts
In the current study, unlock duration data collection changed
between the cohorts. In Cohort 1, unlock duration was
continually sampled, while in Cohort 2 unlock duration was
adaptively sampled between 10 and 30% of the time. This change
was instituted to optimize battery life, a primary limitation
to users being willing to keep the StudentLife app on their
phone. By decreasing the amount of time sampled from 100% to
10–30%, our ability to accurately estimate unlock duration may
decrease slightly as evidenced by an observed decrease in peak
effect (T-value) and voxel extent. As with all passive and active
smartphone features, the ability to collect data must be weighed
against the invasiveness to the user experience, either through app
prompts or decreased battery life and phone speed.
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Feature Selection and Calculation
In the current study, initial analyses focused on unlock duration
as a proxy for general phone usage then investigated the similarity
of individuals circadian rhythms from day to day and how each
of these was related to brain connectivity from a region known
to be involved in depression and many cognitive functions.
Unlock duration on its own in very unlikely to be an optimal
feature to predict depression and this is where generating and
testing a variety of higher-level features may prove fruitful.
Identifying changes in features from day-to-day or week-to-week
may increase predictability, such as an increase in unlock
duration could be associated with increases in depression within
an individual (Wang et al., 2018). Variability or stability of
passive-sensing features may also be able to predict individual
differences in depression. Ideally, a template of passive-sensing
features for non-depressed individuals could be created and
deviance from this template could be calculated as a sort of
depression-index or propensity score. This high-level feature
could then be linked to deviance of brain connectivity patterns
from non-depressed individuals. Critically, future work should
select features that reflect not just phone usage and other standard
passive-sensing metrics, but build upon the current sensing
literature related to depression (Burns et al., 2011; Canzian and
Musolesi, 2015; Saeb et al., 2015; Lyall et al., 2018; Wang et al.,
2018) and calculate higher level features which are likely to better
reflect nuances in behavioral differences across individuals.

Temporal Factors Related to School
The demands of the academic term provide a generally applicable
path of stress which is shaped over the term. Avoiding,
or potentially purposefully collecting MRI data during finals,
which may be particularly stressful, or during popular social
weekends may lead to changes in stress levels, sleep patterns
and other variables which could alter connectivity patterns and
self-reported behavioral data that would have otherwise been
observed. In the study herein, attempts were made to scan before
finals and avoid well-known “party weekends.” Future studies
may be able to capitalize on temporal differences in stress and
depression levels by scanning at these peak times of stress or sleep
deprivation and comparing that data to less stressful times, such
as the beginning of the term.

Functional Differences and Alignment
Across Individuals
Resting-state functional connectivity shows robust and relatively
reliable connectivity across large groups of individuals across
methods (Yeo et al., 2011; Gordon et al., 2016). Meanwhile
there are individual differences in the cortical extent of
large-scale functional regions across individuals and even the
network membership of these regions can vary (Gordon et al.,
2017). Furthermore, critical to identifying group and individual
differences is acquiring a large quantity of high-quality data
(Gratton et al., 2018). Defining networks on an individual basis
will likely help in the pursuit of the individual differences in
brain connectivity that underlie depression. Variability in RSFC
has been observed at the functional parcel level, but what

about at finer resolutions? While a departure of traditional
anatomical alignment methods, hyperalignment is a method
which attempts to align brain based on similar response patterns
in high-dimensional space (Guntupalli et al., 2016). While this
method originated using time-locked dynamic stimuli such as
a movie, it has recently been applied to RSFC as connectivity
hyperalignment (CHA), which revealed both coarse-scale, areal
structure as previously observed, along with fine-scale structure
which was previously inaccessible. Applying CHA to RSFC data
will hopefully allow for increased ability to discern individual
differences in depression and other mental-health metrics.

Voxelwise Resting-State Functional
Connectivity
A relatively simple first-pass method is to target specific region
and feature pairs. If there are a priori hypotheses related to
the topic of interest it may be possible to look at connectivity
from one region using seed maps or between a small number of
regions and relate them to specific passive-sensing features. As
shown here this is plausible but even correlating seed maps with
1 sensing variable leads to potential multiple comparisons issues
based on the 50,000+ voxels in the brain using a 3 mm3 voxel
size. Recent statistical simulations have suggested an increased
false-positive rate associated with older versions of 3dClustSim,
a function of AFNI (Cox et al., 2017). Indeed, the authors
of 3dClustSim now suggest using a different algorithm with
the same program, the autocorrelation function (ACF) with a
high p-value threshold per voxel to minimize the possibility
of false-positives. In some datasets, at lower p-value thresholds
ACF requires a much larger voxel-extent than the old version
of 3dClustSim. The increased voxel-extent may make it less
likely to identify smaller functional regions in a whole-brain
regression using a lower per-voxel p-value threshold (p < 0.05).
This evolution of methods decreases the rate of the false-positives
which is critical but requires a larger expected functional region,
a very strong effect size or a very large number of participants.
Across all possible methods presented here there are a variety of
factors which should be taken into consideration to decrease false
positive rates. Having a large number of subjects to draw data will
increase the portion of the population sampled.

If possible having two distinct Cohorts to analyze then looking
for overlap in results between the Cohorts would decrease false
positives due to random sampling, Cohort specific variance,
and further increase the total size of individuals sampled. The
above factors apply to most any study. With passive smartphone
mobile sensing there are many features which can be measured
or computed based on the intersection of multiple features.
For example, “phone unlock duration” is a very simple metric,
which measures the time that the smartphone was unlocked.
This can be further broken down into location specific features,
such as “phone unlock duration at dorm” or “phone unlock
duration at study places” by looking at the intersection of location
on a geo-tagged campus and “phone unlock duration.” Given
the large number of initial features that can be calculated,
along with the nearly endless number of meta-features that
could potentially be generated, making sure that the feature
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is relatively straightforward to calculate and interpret should
be at the forefront of anyone analyzing passive-mobile phone
sensing features. Features that are difficult to calculate or
interpret could easily be embedded with unforeseen confounds.
Furthermore, such features should be validated to make sure they
are measuring the effect or phenomena they are supposed to in
an accurate manner.

Typically, only features with sensing data from many days
should be used to get a more stable estimate of that features’
value. While putting a sensing application of many students’
phones may seem like a plausible method for maximizing
data collect, there are a variety of factors which can lead to
reduced data collection, potentially rendering an individual’s
sensing data unusable. Phone operating system (OS) updates
can often change application permission or render the sensing
application completely useless. To avoid this beta testing should
be done as early as possible and new versions of the application
that are compatible with the latest OS pushed to participants.
Participant non-compliance or attrition is another important
factor to consider. Individuals may delete the application, limit
its permissions within the OS or otherwise limit the researcher’s’
ability to accurately measure data. Clearly, it is the individual’s
choice to continue to participate in any study, particularly one
where large amounts of data are being collected (anonymously)
on their habits. It may be difficult for the researcher to
determine if the individual has deleted the application or simply
not uploaded their data in while. Finally, a rate of attrition
is expected in all longitudinal studies and some individuals
may simply decide that they do not wish to continue their
participation in the study.

Whole-Brain and Network-Based
Connectivity
A possible method to deal with the large number of comparisons
related to voxelwise or whole-brain connectivity is to simply
look at connectivity between a set of predefined regions or
parcellation (Power et al., 2011; Yeo et al., 2011; Poldrack et al.,
2015; Gordon et al., 2016; Huckins et al., 2018). Connectivity
between each pair of regions can be correlated with the sensing
feature of interest. Unfortunately, many of the commonly used
parcellations have many nodes, which increases the total number
of comparisons in a non-linear manner as the number of nodes
increases. The number of comparisons can soon approach the
number of comparisons evident when using voxelwise seed maps
without methods such as voxel extent to appropriately correct for
the associated multiple comparisons.

A simple but perhaps relatively unsophisticated sophisticated
method is to calculate mean connectivity within a functional
system or network. The system or network would be determined
off of data driven approach such community detection using a
random walk technique like InfoMap (Rosvall and Bergstrom,
2008) or regions identified as being part of a coherent functional
system using another method or even searching Neurosynth.org
for a term of interest. In this approach, the mean of all
Fisher r-to-z transformed correlation values between nodes of
interest is calculated. For example, mean connectivity within

the Cingulo-Opercular network would be calculated between all
nodes or parcels belonging to that network. Between-network
or system connectivity can also be calculated by taking the
mean of all pairwise connections between the two networks of
interest. This can greatly reduce the number of total connections
observed, thus reducing the multiple comparisons problem
mentioned under the whole-brain connectivity section. One
drawback to this method is that it is not selective about which
connections it is using in the calculation – specifically, that
it may be and probably is including connections that are not
physiologically or psychologically relevant.

A plausible may to reduce the number of connections by
selections ones that are likely to be “real,” such that information
may actually travel through that connection on the neural level,
even if not on a first-order or even second-order synapse.
Multiple approaches have been taken to identify meaningful
connections. Within or between networks there are likely to
be positive and negative correlations, which then somewhat
cancel out. One could take the absolute value of each connection
before averaging across the network, but this would introduce
bias in any connections with a distribution of correlation
values that included positive and negative values. Values of
correlation, or connectivity measures in the brain vary by
orders of magnitude. Identifying a multiscale network backbone
that accounts for important connections within and between
communities, regardless of the connectivity strength would be
a method to decrease the number of connections analyzed.
One way of identifying the network backbone is to use the
z-value from each connection as the weight, or amount of
information that could travel between the two brain regions
that the connectivity was estimated from. A group did just
this (Serrano et al., 2009), identifying connections which are
statistically relevant across multiple scales of connectivity,
work which has been extended non-parametrically (Foti et al.,
2011). By identifying the network backbone for each individual
(Huckins et al., 2019), it may be plausible to identify a variety
of subcategories or continuums of depression along which
different symptom severities fall for each individual, along with
passive smartphone monitoring will allow for greater insight into
interactions of behavioral, self-report and physiological RDoC
matrix criteria.

Wrangling High Dimensional Data
A variety of techniques can be used to extract information
from data that are both longitudinal and high-dimensional; that
is, situations where the data are collected from participants at
multiple time points and the number of covariates begins to
approach, or even surpasses the number of subjects in the dataset
(Wang et al., 2012; Cheng et al., 2014; Zipunnikov et al., 2014;
Chu et al., 2016).

As has been mentioned repeatedly above, both with resting-
state and passive smartphone sensing there are a large quantity
of features and analyses that can be generated. In the current
study we chose features that were reasonable based on previous
data but are unlikely to be the optimal features that describe
the relationship between depression, passive mobile sensing and
brain connectivity. Multiple approaches could be taken with data
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from both sources. One approach which would greatly decrease
the number of features that were necessary including trying to
create a singular propensity metric, or biomarker of depression
for both the resting-state fMRI data and a separate one for the
sensing data then observing the relationship between the two.
Alternatively, data reduction techniques such as independent
component analysis could be applied to each group then the
relationship between them could be measured. Many researchers
have taken a “risk” or “propensity” score approach, where they
generate models which contain predictive variables (gender,
substance use, family history) pertinent to the outcome of interest
and use the propensity score as a regressor when doing analyses
at the group or individual difference level (Stuart, 2010; Hansen
et al., 2012). This could be applied to smartphone data, but
only once appropriate sensor features, and model have been
calculated. By creating a unitary risk feature multiple comparison
issues can be greatly mitigated. Data reduction techniques that
account for variance that is common between two data modalities
such as joint ICA, parallel ICA and CCA-Joint ICA, which has
been implemented for combining high-dimension data across
fMRI and genetic data (FusionICA, available from http://mialab.
mrn.org/software/fit/).

Unresolved Questions About
Directionality and Timing
In the current sample, resting-state fMRI data is from 1
time-point while mobile smartphone sensing data is dynamic and
data is collected over a longer period of time. An unresolved
question is if changes in fMRI data across multiple sessions
reflects or predict changes in smartphone usage. Likely a more
sensitive measure would be to do the reverse – using changes in
smartphone usage, which is continuously monitored, to predict
when there may be changes in brain connectivity as measured
by fMRI. Changes in depressive symptoms have been successfully
predicted with passive smartphone features (Wang et al., 2018),
and may be useful for signaling when an individual should be
referred to clinical services or brought in for a subsequent fMRI
session. Longitudinal penalized functional regression is a method
designed to deal with multiple timepoints of both exposure
and outcomes (Goldsmith et al., 2012) which may help provide
insight into the temporal association between brain connectivity,
depression and phone usage.

Moderating Factors of RSFC
Resting-state functional connectivity has repeatedly been shown
to be relatively stable across individuals and time, displaying
similar network structure across thousands of individuals. While
similar network structure and connectivity patterns are observed
between sites, preprocessing methods, and Cohorts, differences
between individuals are observed across individual differences
in personality, affect and current mood have been related to
alterations in RSFC. Furthermore, individual differences in the
network structure on an individual level have been observed.
Properly mapping individual differences in networks across
the cortex would allow for better cross-subject alignment. The
network assignment of particular regions may in itself be linked

to depressive symptoms, while lining up networks would allow
for the proper comparison of networks across individuals.
Additionally, the current state physiological state an individual
is in, such as food satiety or caffeination status can influence
their mood (Rogers and Lloyd, 1994) and has also been shown
to influence an individual’s brain connectivity (Poldrack et al.,
2015). While there are a variety of factors that can influence
RSFC, reliable individual differences across brain disorders have
been observed in previous studies and here. As the predictive
accuracy of RSFC or other neuroimaging methods increases
the field may move closer to using MRI as a biomarker of
depression, as has been done with physical pain (Atlas et al., 2010;
Wager et al., 2013).

CONCLUSION

In summary, the current work identified proof-of-concept
relationships between RSFC of the brain, passive mobile
smartphone sensing features (unlock duration and circadian
similarity of stillness and number of location visited), web-based
self-reported surveys of depressive symptoms (PHQ-8) and
mobile smartphone based ecological momentary assessments
of depressive symptoms (PHQ-4). The results observed here
extend previous work which relates the amount of time spent
using a phone is with depressive symptoms. Further, these
symptoms, both before and after time-of-scanning (PHQ-8 and
PHQ-2/4, respectively), show a relationship with connectivity
between areas implicated in depression, reward and processing of
valenced self-relevant material. Importantly, these initial results
predominantly replicate across the two separate cohorts and
similar results are observed across three passive sensing features,
increasing the applicability and scope of the findings herein.
Although the current results do not elucidate causality in the
relationship between phone usage metrics, depression and brain
connectivity, future work should aim to do so, especially given
recent changes to public policy, with professional groups such
as the American Academy of Pediatrics providing suggesting
screen-time limits and policy and investor groups calling on
media device makes such as Apple and other phone makers.
Previous research was extended, with results that replicate across
multiple MRI scanners and cohorts all while combining data
from a while variety of sources. The analyses done here are by
no means comprehensive and we hope that the findings of this
study and future research methods proposed herein are useful
to a wide-range of researchers. Ultimately continuation and
extensions of this research has the potential to provide important
insights into mental health, as well as inform psychological
treatments and other interventions.
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