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Western societies experienced drastic changes in eating habits during the past century.
The modern nutritional profile, typically rich in saturated fats and refined sugars, is
recognized as a major contributing factor, along with reduced physical activity, to the
current epidemics of metabolic disorders, notably obesity and diabetes. Alongside these
conditions, recent years have witnessed a gradual and significant increase in prevalence
of brain diseases, particularly mood disorders. While substantial clinical/epidemiological
evidence supports a correlation between metabolic and neuropsychiatric disorders, the
mechanisms of pathogenesis in the latter are often multifactorial and causal links have
been hard to establish. Neuroinflammation stands out as a hallmark feature of brain
disorders that may be linked to peripheral metabolic dyshomeostasis caused by an
unhealthy diet. Dietary fatty acids are of particular interest, as they may play a dual
role, both as a component of high-calorie obesogenic diets and as signaling molecules
involved in inflammatory responses. Here, we review current literature connecting diet-
related nutritional imbalance and neuropsychiatric disorders, focusing on the role of
dietary fatty acids as signaling molecules directly relevant to inflammatory processes
and to neuronal function.
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INTRODUCTION

Western society experienced a marked nutritional transition during the past century. Multiple
factors, stemming primarily from the industrial revolution and mass urbanization, have driven
the nutritional profile of the population toward increased consumption of processed and animal-
derived foods, saturated fats and refined sugars, while reducing the intake of vegetables, fruits,
fibers, and fish (Popkin and Gordon-Larsen, 2004; Popkin et al., 2012). Moreover, these altered
eating habits have been associated with larger portion sizes and reduced energy expenditure,
making modern lifestyle highly obesogenic (Bray and Popkin, 1998; Hill and Peters, 1998;
Kopelman, 2000; Berthoud, 2012). During the same time span, the prevalence of mood disorders
has increased significantly in Western countries, even when accounting for evolving diagnostic
criteria and other confounding factors (Hagnell, 1989; Hidaka, 2012). As mechanisms linking diet to
mental health become better understood, accumulating evidence suggests that the modern/Western
diet may be one of the drivers of this increase (Jacka et al., 2010; O’Neil et al., 2014).

To address this link, the nascent field of “nutritional psychiatry” (Logan and Jacka, 2014) focuses
on clinical studies examining the impact of both isolated nutrients and overall quality of diets
on the incidence and progression of prevalent psychiatric conditions, most often anxiety and
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mood disorders. In parallel, the field strives to overcome
challenges associated with the combined complexities of human
diet and behavior, both of which are difficult to control and
evaluate consistently (Jacka, 2017).

Although it is not disputed that the modern lifestyle and
nutritional behavior promote a surplus of energy and its storage
in the form of expanding adipose tissue (Spiegelman and
Flier, 2001), the exact relevance of macronutrient composition–
the balance of protein, carbohydrate and fat—to body weight
regulation remains under discussion. While some authors
argue for a disproportionate contribution of a single type of
nutrient to the development of obesity and metabolic disorders,
others sustain that such pathologies are not significantly
dependent on diet composition, resting instead squarely on a
positive energy balance.

Bray and Popkin (2014), for instance, have suggested that
increased intake of carbohydrates—mainly in the form of
glucose/fructose-sweetened beverages, a primary source of added
sugars in modern society—is a key driver of the modern
pandemic of obesity and metabolic conditions (Bray et al.,
2004; Bray and Popkin, 2014). Indeed, numerous meta-analyses
show a positive correlation between sugar consumption and
increased risk of insulin resistance, non-alcoholic fatty liver
disease (NAFLD), obesity and type 2 diabetes (Ludwig et al.,
2001; Bray et al., 2004; Malik et al., 2006, 2010; Montonen
et al., 2007; Ouyang et al., 2008; Bray and Popkin, 2014;
Mosca et al., 2017). Although such correlations have not been
consistently demonstrated when total energy intake is controlled,
authors argue that added calories obtained from sugar-sweetened
beverages tend to not be compensated elsewhere, as they do
not effectively suppress intake of other calories. Mechanistically,
increased fructose uptake and metabolism in the liver stimulates
de novo lipogenesis (DNL), which results in increased intra-
hepatic lipid content, leading to increased production and
secretion of very low-density lipoprotein and triglycerides. In the
long term, these alterations may result in increased fat storage in
visceral adipose tissue and ectopic lipid deposition in tissues such
as muscle, further contributing to insulin resistance (Lê et al.,
2009; Stanhope et al., 2009; Stanhope, 2016; Mock et al., 2017).

On the other hand, as highlighted by Khan and Sievenpiper
(2016), more recent trends of reduced sugar intake by
United States adults have not been accompanied by a reduction in
obesity and metabolic disorders. In addition, as mentioned above,
most controlled trials using isocaloric diets have not shown a
specific contribution of any type of nutrient to obesity, suggesting
total energy content is the most relevant variable (Kahn and
Sievenpiper, 2014; Khan and Sievenpiper, 2016).

Regarding the role of fat intake, Hu et al. (2018) recently
published a compelling report comparing the long-term effects
of 29 types of diet, with varying proportions of fat, carbohydrates
and protein, on five different mouse strains. Surprisingly, they
found fat content in a diet to be the only factor involved in
increased energy intake and adiposity. This observation was
explained by a hedonic drive linked to fat, but they did not
observe a similar effect with sugar (Hu et al., 2018). The fact
that a certain diet composition may drive higher energy intake
independent of the diet’s own energy density adds an additional

layer of complexity to the field, particularly in the design and
execution of clinical trials.

Hu et al. (2018) present an interesting discussion on the
translatability of this finding, and the feasibility of performing
an equivalent study in humans. However, be it due to its
higher energy content compared to other nutrients, to its reward
value that drives increased caloric intake, or to specific but
not yet fully understood signaling and metabolic dysregulation,
the impact of increased fat consumption on the development
of diet-related diseases has been well documented over the
years (for an excellent recent review, see Ludwig et al., 2018).
Although controversy remains on the relevance of total fat intake
toward body fat accumulation, with several studies indicating no
causal relationship (Curb and Marcus, 1991; Willett, 1998, 2002;
Vergnaud et al., 2013), excessive energy intake from dietary fat is
established as an important factor to increased adiposity (Horton
et al., 1995; Bray and Popkin, 1998).

The fantastic remodeling capacity of adipose tissue allows for
adipocyte hypertrophy and hyperplasia in response to nutrient
availability and energy surplus. However, under pathological
conditions, the need for adaptation exceeds the capacity of the
tissue. Hypoxia and adipocyte cell death result in macrophage
recruitment and polarization, increasing inflammatory markers,
cytokine and chemokine secretion, and dysregulation in free fatty
acid (FFA) fluxes (Sun et al., 2011).

Increased circulating FFAs and proinflammatory factors are
also central to insulin resistance and deregulation of glucose
homeostasis, the core aspects of type 2 diabetes mellitus (T2DM)
(Greenberg and Obin, 2006). Obesity and T2DM currently affect
a large portion of the world population and are considered a
global epidemics, with obesity as the leading risk factor for T2DM
(Barnes, 2011).

Notably, the fatty acid composition of diets has been shown to
impact their obesogenic profile and overall toxicity. Particularly,
enrichment in saturated fatty acids (SFAs) results in a diet
that induces greater accumulation of body fat and lower satiety
than diets enriched in polyunsaturated fatty acids (PUFAs)
(Lawton et al., 2000; Piers et al., 2003; Moussavi et al., 2008;
Phillips et al., 2012). Moreover, excessive SFA consumption was
shown to increase SFAs in the circulation, increase expression
of genes involved in inflammatory processes in adipose tissue,
reduce insulin sensitivity and increase intrahepatic triglyceride
content in humans (Vessby et al., 2001; van Dijk et al., 2009;
Rosqvist et al., 2014).

Long-term longitudinal studies have linked a low intake of
PUFAs and a high intake of cholesterol and SFAs to increased risk
of impaired cognitive function and development of dementia,
including Alzheimer’s disease (Kalmijn et al., 1997; Morris et al.,
2003a,b, 2004; Barnard et al., 2014; Reichelt et al., 2017). In
this context, it has been suggested that metabolic imbalance
caused by high-fat diets and a sedentary lifestyle constitutes an
important AD risk factor, particularly due to its association with
higher levels of plasma FFAs, chronic low grade inflammation,
insulin resistance and T2DM (De Felice, 2013). Further, whereas
moderate intake of PUFAs at midlife appears to decrease the risk
of dementia in aging (Laitinen et al., 2006), saturated and trans-
unsaturated fat consumption have been found to be positively
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associated with increased risk of AD (Morris et al., 2003b).
Adherence to a Mediterranean diet and frequent consumption
of fruits and vegetables, fish, and ω-3 (n-3 PUFA) rich oils
has been proposed as a factor capable of preventing AD and
dementia (Scarmeas et al., 2006; Barberger-Gateau et al., 2007,
2011). Moreover, cognitive performance in elderly people (65–
90 years old), free from significant cognitive impairment, was
better in subjects having high intakes of vegetables, fruits, and
vitamins and lower intakes of monounsaturated fatty acids, SFAs,
and cholesterol (Ortega et al., 1997).

A close relationship exists between metabolic syndrome,
T2DM and brain dysfunction, encompassing both mood
and cognitive disorders (Ott et al., 1996; De Felice, 2013;
Santos et al., 2016; Rebolledo-Solleiro et al., 2017). The
mechanisms underlying this connection appear largely based
on neuroinflammation and dysregulated brain insulin signaling,
both of which can result from nutritional imbalance (reviewed in
Luchsinger, 2012; De Felice and Ferreira, 2014; Holt et al., 2014;
Sevilla-González et al., 2017).

In the following sections, we focus on data available on the
connection between dietary fatty acids and their potential role in
mental health, particularly in depressive disorders. We explore
how, due to their potential as modulators of neuroinflammation
and insulin signaling, fatty acids may be key to the interplay
between diet and mental health. We also discuss some of the
more recent work exploring how the dopaminergic system,
increasingly implicated in the pathophysiology of depression,
may be affected by dietary choices.

HUMAN POPULATIONAL STUDIES

While numerous observational studies have been carried out,
randomized controlled trials (RCTs) on the relationship between
diet and mood disorders are comparatively rare. A meta-analysis
conducted in 2014 (Lai et al., 2014) examined links between
dietary patterns and depression, and found 20 observational
studies meeting inclusion criteria, but only one RCT. These
authors concluded that ‘healthy’ diets, including a high intake
of fruit, vegetables, fish and whole grains, were inversely
correlated with depression. Around the same time, another meta-
analysis carried out by Psaltopoulou et al. (2013) reached similar
conclusions while examining nine observational studies that had
depression as the main outcome and eight studies evaluating
cognitive function. They found a significant association between
adherence to the Mediterranean diet – a diet pattern similar to
what Lai et al. (2014) classified as healthy – and lower rates of
both depression and cognitive impairment.

Since humans do not typically consume any single type of food
in isolation, studies with isolated nutrients, such as fatty acids, are
not only difficult to perform, but also trade potential relevance for
increased power. Thus, to approach questions dealing with the
roles of specific nutrients, authors often rely on supplementation
or on observational studies to seek correlations between study
outcomes and specific biomarkers reflecting a nutrient’s level
of intake or metabolism. Interestingly, a meta-analysis of 13
randomized placebo-controlled trials enrolling a total of 1,233

patients with major depressive disorder (MDD) demonstrated a
beneficial effect of omega-3 PUFA supplementation on depressive
symptoms (Mocking et al., 2016), with a larger effect at
higher doses and in patients being simultaneously treated with
antidepressants, suggesting a potential adjuvant role of omega-3
fatty acids in MDD treatment.

Results from several other meta-analyses and epidemiological
studies suggest that reduced levels of PUFAs could be involved
in the pathogenesis of cognitive and mood disorders, and may
be therapeutic targets in those diseases. A meta-analysis of 14
studies found that subjects with depressive symptoms or social
anxiety disorders had lower circulating levels of the n-3 PUFAs,
eicosapentaenoic acid, 20:5n-3 (EPA) and docosahexaenoic
acid, 22:6n-3 (DHA), and/or higher levels of the n-6 PUFA,
arachidonic acid, 20:4n-6 (ARA), than control subjects (Lin
et al., 2010). In addition, post-mortem analysis of orbitofrontal
and prefrontal cortex of patients with major depression showed
lower DHA levels compared to controls (McNamara et al., 2007,
2013). Moreover, a recent 7-year follow-up study of 69 young
individuals with an ultra-high risk phenotype for psychosis
demonstrated that lower levels of EPA and/or DHA, and higher
n-6/n-3 PUFA ratio in the phosphatidylethanolamine fraction
of erythrocyte membranes, specifically predicted mood disorders
(in this cohort, 24 patients received a diagnosis of MDD and 2
of bipolar disorder during the follow-up period; Berger et al.,
2017). Altogether, these and other studies implicate PUFAs in the
pathogenesis of mood and cognitive disorders, providing a basis
for nutritional psychiatry approaches in these highly prevalent
and incapacitating diseases.

HIGH-FAT DIET IN RODENT MODELS

Many of the current inferences on the impact of HFD on human
health have been based on or influenced by studies in animal
models, mostly rodents. As in humans, fat-enriched diets induce
rapid weight gain and metabolic alterations in animal models.
Although the term ‘high-fat diet’ is widely used to describe studies
in which fat corresponds to the highest proportion of energy
intake, that percentage may range from 20 to 60% of total energy
intake and diet composition may include animal-derived fats
or plant oils. Moreover, the composition of the control diet is
often not standardized, with non-purified chow being used as a
control and some studies omitting to mention the composition
of the control diet altogether (Buettner et al., 2007; Hariri and
Thibault, 2010). Further, the age at which exposure to HFD is
initiated is also variable among studies. Lack of standardization
in studies under the HFD umbrella leads to great variability in
observed outcomes and difficulty in establishing comparisons
between studies.

Despite the different protocols, some of the effects of excess
fat in the diet appear to be central and robust in mice. In a
landmark report by Xu et al. (2003), for instance, obesity induced
in C57BL/6J mice by long-term exposure to a HFD (containing
up to 60% calories from fat) produced increases in adipocyte
number and size, body weight, fasting blood glucose levels, and
induced hyperinsulinemia (Xu et al., 2003). Those metabolic
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changes were later shown to occur even after a short period of
fat-enriched diet consumption (Lee et al., 2011).

Hotamisligil et al. (1993) demonstrated a central role of TNF-
α in diabetes and obesity-induced insulin resistance, using db/db,
ob/ob, tub/tub, and fa/fa mice, genetic models of metabolic
disorders (recently reviewed in Kleinert et al., 2018). In those
mice, Hotamisligil et al. (1993) showed that increased expression
of TNF-α in adipocytes as well as high levels of this cytokine
in the circulation resulted in insulin resistance. In line with
those findings, Xu et al. (2003) went on to show that excessive
macrophage recruitment and upregulated expression of ADAM8,
MIP-1α, MCP-1, MAC-1, F4/80, and CD68 in white adipose
tissue contribute to the establishment of chronic inflammation
and increased production and release of pro-inflammatory
cytokines, notably TNF-α and IL-6, into the circulation. These
results were later corroborated by others, and positioned obesity-
induced inflammation into a broader picture (Hotamisligil et al.,
1993; Wellen and Hotamisligil, 2003; Xu et al., 2003; Lumeng
et al., 2007; Eder et al., 2009).

The HFD mouse model has been instrumental in dissecting
the molecular mechanisms involved in FFA-induced T2DM. It
was first shown in humans that excessive FFAs in the circulation
inhibit insulin signaling and glucose metabolism in several
tissues, such as adipocytes, liver, and muscle. Excessive FFAs
were shown to reduce muscle glucose transport and metabolism
via decreased GLUT4 translocation to the plasma membrane
(Roden et al., 1996) and to inhibit insulin signaling by increasing
IRS-1 serine phosphorylation and reducing insulin-stimulated
PI3-kinase activity (Goodyear et al., 1995; Dresner et al., 1999).
The important role of inflammatory responses in this process,
which culminate in the activation of stress kinases such as
JNK and IKKβ, which in turn target IRS, was described in
HFD mouse models (Yuan et al., 2001; Hirosumi et al., 2002;
Arkan et al., 2005).

Increased saturated FFAs, observed in obesity and high fat
intake models, have an intrinsic pro-inflammatory potential that
impacts important cell functions. Fatty acids may activate Toll-
like receptor 4 (TLR4) signaling in adipocytes and macrophages
and induce inflammatory signaling (Shi et al., 2006), and
mice lacking TLR4 were shown to be protected against high-
fat diet-induced obesity and insulin resistance (Poggi et al.,
2007; Davis et al., 2008). TLRs are a family of type I
transmembrane receptors that recognize a variety of microbial
danger-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) and orchestrate an
intracellular signaling response, playing an important role in
infectious and inflammatory disorders. Amongst at least 13
members of TLRs described in mammals, TLR2 and TLR4 are
best characterized in terms of their involvement in the immune
response (Fessler et al., 2009). TLR4 plays a critical role in
the innate immune system by activating MyD88-dependent and
MyD88-independent proinflammatory signaling pathways, as
well as the NFκB response (Lu et al., 2008).

Mood disorders cannot be fully reproduced in rodent
models. In addition to their incompletely understood etiology,
they involve symptoms that may not exist outside of the
human experience, such as inappropriate guilt and suicidality

(Krishnan and Nestler, 2011). However, rodent models may
exhibit depressive-like symptoms, such as behavioral correlates
of hopelessness or anhedonia. Recent data on rats and mice
fed HFD suggest a positive association between HFD and such
depressed phenotypes (Yang et al., 2016; Arcego et al., 2018;
Hassan et al., 2018), which may be causally linked to diet-induced
inflammatory processes, as discussed below.

SATURATED FATTY ACIDS AND
NEUROINFLAMMATION: POSSIBLE
LINKS TO MOOD DISORDERS

Microglial cells respond rapidly to pathological changes in the
brain, altering their morphology and phagocytic behavior, and
increasing cytotoxic responses by secreting NO, proteases and
cytokines, such as TNF-α and IL-1β (Kreutzberg, 1996). SFAs,
such as palmitic acid, have been shown to induce activation
of TLR4 receptors in hypothalamic microglia and to stimulate
cytokine release (Valdearcos et al., 2014), indicating a potential
mechanism by which HFD leads to brain inflammation. Notably,
the hippocampus—a key brain region involved not only in
learning and memory but also in depression and the effect
of antidepressants—is vulnerable to altered levels of IL-1β,
IL-6, and TNF-α, as these cytokines have important roles in
synaptic plasticity and may inhibit neurogenesis (Sheline, 2011;
Calabrese et al., 2014).

Microglia and astrocytes are essential to normal synaptic
function. Synaptic pruning by microglia is essential to synaptic
maturation and neurotransmission (Paolicelli et al., 2011), while
astrocytes hold important metabolic and plasticity functions
(Beattie et al., 2002; Singh and Abraham, 2017). Importantly,
HFD-induced depressive-like behavior in rodents, as well
as cognitive impairment, has been associated with brain
inflammation. For instance, Dutheil et al. (2016) showed that,
in addition to the classical metabolic alterations, rats fed an
HFD (60% of calories as fat) for 16 weeks show anhedonic
behavior, which presents alongside insulin signaling impairment
and increased levels of cytokines such as IL-6, IL-1β, and TNF-
α in the hippocampus. In turn, mice exposed to long term HFD
were shown to have spatial memory deficits in the Morris water
maze, with increased serum and hippocampal levels of TNF-α
and presence of activated microglia in the hippocampus, as well
as reduced dendritic branching and complexity (Heyward et al.,
2012; Jeon et al., 2012).

In line with the structural similarity between SFAs and the
lipid portion of bacterial lipopolysaccharide (LPS), several lines
of evidence suggest that SFAs act as ligands of TLRs. In vitro
experiments have shown that SFAs activate TLR2 to induce an
inflammatory response (Erridge and Samani, 2009; Huang et al.,
2012), and numerous reports have linked SFAs to TLR4-mediated
signaling pathways in immune cells (Park et al., 2009; Rogero
and Calder, 2018). Using both the BV-2 microglial cell line and
primary microglial cultures, Wang et al. (2012) demonstrated
that palmitic acid and stearic acid induce a reactive microglial
phenotype and increase levels of inflammatory markers in a
TLR4-dependent manner. The SFAs, lauric, palmitic, and stearic
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acids, but not unsaturated fatty acids or PUFAs, were shown
to induce NF-κB activation and expression of COX-2 and
other inflammatory markers in macrophages, effects inhibited
in dominant-negative TLR4 cells (Lee et al., 2001). Further,
the liver secretory protein fetuin-A (FetA) has been suggested
as an adaptor protein between FFAs and TLR4 activation,
connecting FFAs to TLR-mediated inflammation (Pal et al., 2012).
Importantly, however, the role of TLRs as SFA receptors is still
a matter of debate. The most recent challenge to this notion
was a compelling report by Lancaster et al. (2018) suggesting
that SFAs are not direct ligands of TLR4 in macrophages, but
instead contribute to pro-inflammatory signaling by altering
lipid metabolism in these cells. They reconcile these results
with past literature findings by showing that, despite not being
a direct target, TLR4-dependent priming is a requirement for
SFA-induced inflammatory signaling.

Inflammation has emerged as an important factor in mood
disorders. Patients presenting mood disorders show elevated
plasma levels of cytokines such as TNF-α, IL-6, and IL-1β,
as well as increased expression of inflammatory markers in
blood cells (reviewed by Mechawar and Savitz, 2016). Increased
consumption of high fat diet is related to depressive-like behavior
and emotional disorders in mice (Wang et al., 2017; Arcego et al.,
2018; Vagena et al., 2018; Xu et al., 2018), and neuroinflammation
could be an important modulator of these behavioral alterations.
Palmitic acid abolished the migration and phagocytic activity
of microglia in response to interferon-γ, thus affecting the
protective response of these cells after an inflammatory challenge
in vitro (Yanguas-Casás et al., 2018). Post-mortem analysis of
brain tissue from MDD patients indicated a 6.5% increase in
palmitic acid and a 6.2% decrease in oleic acid in the amygdala, as
compared to controls (Hamazaki et al., 2012), further suggesting
that altered levels of specific fatty acids may be implicated in
brain dysfunction.

One potential mechanistic connection between
neuroinflammation and mood disorders is the positive effect
of pro-inflammatory cytokines on microglial expression of
indolamine-2,3-dioxygenase (IDO), the enzyme that converts
tryptophan to kynurenine (Wichers and Maes, 2004; Dantzer
et al., 2008). Lower availability of tryptophan in the brain due
to upregulation of this alternative pathway could slow down
its conversion to 5-hydroxytryptophan, the rate-limiting step
in serotonin synthesis, carried out by tryptophan hydroxylase.
Notably, while far from the only factor involved, serotonin
depletion has been shown to induce depressive-like symptoms in
animal models and impact mood in humans under certain
conditions (Ruhé et al., 2007; O’Connor et al., 2009).
Furthermore, increased kynurenine metabolism may result
in excessive production of 3-hydroxykynurenine, a generator
of reactive oxygen species (ROS), and quinolinic acid, an
NMDA receptor agonist, both of which could have their own
implications to depression (Müller and Schwarz, 2007).

Another possible mechanism linking neuroinflammation to
mood involves precisely the vulnerability of monoaminergic
pathways to oxidative stress. Tetrahydrobiopterin (BH4) is an
essential cofactor, required for certain enzymatic reactions such
as those carried out by tryptophan hydroxylase, phenylalanine

hydroxylase (which coverts phenylalanine to tyrosine) and
tyrosine hydroxylase (which converts tyrosine to L-DOPA, the
rate limiting step in dopamine synthesis). BH4 may be readily
inactivated by ROS, a likely event in strong proinflammatory
contexts, thus affecting dopamine and serotonin levels (reviewed
by Swardfager et al., 2016). Notably, in addition to the role
of serotonin mentioned above, recent reports have shown
that dopamine neurotransmission, particularly in the ventral
tegmental area-nucleus accumbens circuit, is essential for the
expression of depressed phenotypes and social behavior, and thus
its depletion could contribute to mood disorders (Tye et al., 2012;
Gunaydin et al., 2014; Matthews et al., 2016).

POLYUNSATURATED FATTY ACIDS,
NEUROINFLAMMATION AND LINKS TO
MOOD DISORDERS

The nutritional transition observed worldwide in the past few
decades has introduced high amounts of SFAs and omega-6 (n-6)
PUFAs in the human diet through increased intake of dairy
products, vegetable oils and red meat. This change in dietary
profile was further accompanied by a reduction in consumption
of fruits, vegetables, legumes, grains and fish, important sources
of omega-3 (n-3) PUFAs. These changes resulted in an increase in
omega-6/omega-3 ratio from about 1:1 to 10:1, reaching up to 20–
25:1 or higher, and an alarming omega-3 deficiency in the global
population, mainly in Western countries (Simopoulos, 2011).

Omega-3 and omega-6 PUFAs are categorized in these
two groups according to the position of the double bond
closest to the methyl terminus of the hydrocarbon chain, and,
together, comprise the very-long chain family of polyunsaturated
fatty acids (VLC-PUFAs). The main VLC-PUFAs in humans
are the omega-3 PUFAs, EPA and DHA, and the omega-6
PUFA, ARA, which are components of membrane phospholipids
and important signaling molecules (Zárate et al., 2017).
In humans, VLC-PUFAs are endogenously synthesized in
small amounts from dietary intake of the essential fatty
acids, linoleic acid (LA) and alpha-linolenic acid (ALA).
These are precursors of ARA, EPA, and DHA synthesis
through the action of elongase and desaturase enzymes, which
successively elongate and include double bonds into the carbon
chain. Thus, adequate balance of these nutrients in the diet
is necessary for healthy development, survival and aging
(Calder, 2018).

The brain is a lipid-rich organ, and approximately 35% of
those lipids are PUFAs (Yehuda et al., 1999). DHA and ARA are
major PUFA components in brain cells. They are predominantly
found esterified as glycerophospholipids at the plasma membrane
(approximately 10,000 nmol per gram of brain tissue) but are
also found at much lower amounts in non-esterified form
(about 1 nmol per gram of brain tissue). They act as structural
components and signaling molecules in neurons, glial cells, and
endothelial cells (Bazinet and Layé, 2014). Studies in humans
and, mainly, in animal models have revealed that PUFAs enter
the brain via lipoproteins or albumin transport in esterified
form, as lysophosphatidylcholine, or in non-esterified form,
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by passive diffusion through a flip-flop mechanism or through
protein transporters, such as fatty acid binding proteins (FABPs),
fatty acid transport protein (FATP), fatty acid translocases
(FAT/CD36) and major facilitator superfamily domain-
containing protein 2 (Mfsd2a) (Lauritzen et al., 2001; Umhau
et al., 2009; Domenichiello et al., 2014; Nguyen et al., 2014;
Chen et al., 2015; Liu et al., 2015; Pan et al., 2015, 2016; Hachem
et al., 2016). PUFAs play important roles in brain function,
including synaptic plasticity, neurotransmission, metabolism,
neurogenesis, neuroinflammation and neuroprotection (Bazinet
and Layé, 2014). Not surprisingly, therefore, reduced or
unbalanced dietary supply and brain levels of PUFAs (notably,
DHA) are associated with brain disorders, including cognitive
and mood disorders (see below).

In addition to modulation of serotonin (5-HT1 and 5-HT4),
beta-adrenergic and dopamine (D1 and D2) receptor signaling
through increased adenylate cyclase and protein kinase A (PKA)
activities (Liu et al., 2015), PUFAs play an important role
in neuroinflammation, an important etiologic factor of mood
disorders (Chang et al., 2015; Yirmiya et al., 2015; Chen et al.,
2018). Omega-6 and omega-3 PUFAs have opposite effects on
inflammatory modulation. ARA is an important precursor of
eicosanoids, bioactive molecules that regulate the inflammatory
process in immune cells. In response to inflammatory stimuli,
membrane phospholipids are cleaved by phospholipase A2
(PLA-2) and release ARA, a substrate of cyclooxygenase (COX),
lipoxygenase (LOX) and cytochrome P450. This stimulates
synthesis of prostaglandins (PGs), thromboxanes (TXs), and
leukotrienes (LTs), key pro-inflammatory mediators (Innes and
Calder, 2018). Post-mortem analysis of brains from patients with
bipolar disorders indicated a dysregulation of ARA release and
downstream metabolism in frontal cortex (Kim et al., 2009), and
mood stabilizers such as lithium, valproate and carbamazepine
have been found to modify the ARA cascade in the brain (Kim
et al., 2009). These findings suggest that increased levels of ARA
from the diet could lead to exacerbation and dysregulation of
the inflammatory response in brain cells, thus contributing to
mechanisms associated with mood disorders.

In vitro studies showed that omega-3 PUFAs modulate
microglial functions. For instance, EPA treatment inhibited
microglial production of proinflammatory cytokines (IL-1β, IL-
6, and TNF-α) (Liuzzi et al., 2007) in vitro, and supplementation
with omega-3 PUFAs inhibited microglial activation and shifted
microglial profile from the so-called classical pro-inflammatory
M1 to the neuroprotective M2 phenotype in a model of brain
injury in rats (Chen et al., 2018). When incorporated into
microglial membranes, DHA, which has been described as a
potent immunomodulator in brain cells (Antonietta Ajmone-
Cat et al., 2012), blocked the recognition of LPS by cell
surface receptors and inhibited nuclear factor kappa B (NF-
κB) activation and synthesis of IL-1β and TNF-α (De Smedt-
Peyrusse et al., 2008). In addition, DHA prevented LPS-
induced neuroinflammation and restored synaptic structure and
functions in hippocampal CA1 pyramidal neurons (Chang et al.,
2015). In Fat-1 mice, which convert n-6 to n-3 PUFAs in
the brain, feeding with a DHA-enriched diet prevented LPS-
induced increases in pro-inflammatory cytokines, microglial

activation, depressive-like behavior and reduction in BDNF levels
(Gu et al., 2018).

Omega-3 PUFAs, mainly EPA, are competitive substrates
for enzymes involved in the biosynthesis of inflammatory
mediators derived from ARA. Increased PUFA consumption
results in a membrane phospholipid composition with increased
levels of these fatty acids, and in a reduction of ARA-derived
inflammatory mediators (reviewed in Calder, 2015). Moreover,
DHA and EPA are precursors of important lipid mediators with
anti-inflammatory and pro-resolutive actions, such as resolvins
and protectins. Resolvin D1 (RvD1) and resolvin E1 (RvE1),
for example, decrease LPS-induced microglial expression of
proinflammatory cytokines, namely TNF-α, IL-6, and IL-1β

(Rey et al., 2016).

FATTY ACIDS, MICROBIOTA CHANGES,
AND MOOD DISORDERS

Recently, the gut–microbiota–brain axis has been implicated in
neuroinflammation and the development of neuropsychiatric
disorders. A comparative analysis between children from a rural
African village in Burkina Faso (fed a rural diet) and European
children (fed a modern Western diet) indicated significant
differences in gut microbiota between the two groups (De Filippo
et al., 2010), and suggested an important role of the nutritional
transition in altering the human gut microbiome and in the
development of inflammatory diseases.

The gut microbiome rapidly responds to dietary composition.
Using mouse models, David et al. showed that short-term
exposure to diets enriched in animal or plant products changed
microbiota composition and microbial gene expression (David
et al., 2014). Feeding a HFD caused shifts in the gut bacterial
ecosystem in mice (Daniel et al., 2014). More recently, mice
fed a HFD for 8 weeks were shown to present a depressive-like
phenotype accompanied by a relative reduction in the population
of Bacteroidetes and increase in the population of Firmicutes
and Cyanobacteria in their caecal microbiome (Hassan et al.,
2018). Interestingly, MDD patients showed different abundances
of Firmicutes, Actinobacteria and Bacteroidetes when compared
to healthy controls. In the same study, transplantation of fecal
microbiota from MDD patients into mice resulted in depressive-
like behaviors compared with colonization with microbiota
derived from healthy control individuals (Zheng et al., 2016).
Similarly, transplantation of fecal microbiota from depressed
patients to microbiota-depleted rats induced anhedonia and
anxiety-like behaviors (Kelly et al., 2016).

The detailed mechanisms underlying how changes in
microbiota may lead to mood disorders remain unclear, but
neuroinflammation appears as a potential mechanism. Microglia
from germ-free mice showed decreased expression of genes
associated with inflammation and defense responses, and an
immature profile when compared with microglia from control
mice (Matcovitch-Natan et al., 2016; Fung et al., 2017). Moreover,
microbiota complexity has a central role in microglia function,
regulating the neuroinflammatory response in health and disease
(Erny et al., 2015).
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ADIPONECTIN

Adiponectin, a hormone released by adipocytes and found
abundantly in plasma and at lower concentrations in the CSF
(Ebinuma et al., 2007), has been linked to mood disorders,
and may connect dietary changes to behavior, particularly with
respect to long-term effects. Circulating levels of adiponectin and
the response elicited by activation of its receptors, AdipoR1 and
AdipoR2 (found in several organs, including the brain), have
been shown to be modulated by inflammatory and metabolic
conditions, such as obesity and diabetes (Hotta et al., 2000;
Yang et al., 2002). Although consistent human data are lacking,
adiponectin has anti-depressant (Liu et al., 2012) and anti-
inflammatory (Ouchi and Walsh, 2007) properties in mice. It has

also been shown to be a candidate mediator of the positive effects
of exercise and environmental enrichment on neurogenesis,
mood, and cognition (Chabry et al., 2015).

THE INSULIN-DOPAMINE LINK

Kleinridders et al. (2015) showed that reduced insulin signaling in
the brain, as a result of insulin resistance, led to increased levels
of monoamine oxidases and increased dopamine clearance. They
further showed that this change in dopamine metabolism led to
age-related anxiety and depressive-like behavior in mice, results
consistent with the above mentioned increasingly important role
of dopamine signaling in mood disorders.

FIGURE 1 | Pathways linking diet and mental health. The nutritional transition observed in modern society, mainly in Western countries, has resulted in increased
consumption of SFAs and reduced intake of PUFAs. Excessive energy intake from fat-enriched diets increases fatty acid storage and surpasses the remodeling
capacity of adipose tissue, resulting in macrophage recruitment and increasing circulating levels of proinflammatory cytokines. Increased cytokine levels lead to the
activation of stress kinases, such as JNK and IKKβ, resulting in increased IRS-1 serine phosphorylation and reduced insulin-stimulated PI3-kinase activity, causing
central and peripheral insulin resistance. Brain inflammation and insulin resistance have been implicated in cognitive deficits (reviewed in De Felice et al., 2014;
Ferreira et al., 2014). A recent report further suggested that reduced insulin signaling in the brain affects dopamine metabolism and release, contributing to mood
disorders (Cai et al., 2018). Whether this dopaminergic dysfunction is also related to cognitive impairment is a possibility yet unexplored. Excessive energy intake
from dietary fat further results in dysregulation of free fatty acid (FFA) fluxes, reducing PUFAs and increasing SFAs in the circulation. Although the exact mechanism is
still controversial (Lancaster et al., 2018), several reports have shown that SFAs activate TLR4-dependent signaling pathways that increase inflammatory responses
in microglia and induce brain inflammation, another potential mechanism involved in the development of both mood disorders and cognitive impairment. At the same
time, dietary choices are known to impact the gut microbiota, which may regulate neuroinflammatory responses. Together, these interconnecting mechanisms
suggest relevant links between lipid imbalance associated with fat-enriched diets and the onset and progression of neuropsychiatric and cognitive disorders.
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Complementing their previous results (Kleinridders et al.,
2015), the same group later used conditional insulin receptor
knockout mice to show that insulin signaling in astrocytes
has a role in regulating dopaminergic transmission, via the
release of the gliotransmitter ATP (Cai et al., 2018). Their
results suggest that activation of insulin receptors in astrocytes
activates Munc18c to promote ATP exocitosis, which acts on
P2X receptors on dopaminergic neurons to modulate dopamine
release and normal mood behavior. These results also led to
the conclusion that dopamine signaling may be altered and
contribute to mood disorders in an insulin resistance scenario
(Cai et al., 2018).

Moreover, Fordahl and Jones (2017) demonstrated in mice
that prolonged consumption of an HFD impairs insulin signaling
in the nucleus accumbens and reduces dopamine reuptake in
dopaminergic terminals. Notably, restoring insulin signaling
could revert this deficit, suggesting that loss of insulin sensitivity
may be the cause of altered dopaminergic in the region
(Fordahl and Jones, 2017).

PERSPECTIVES AND CONCLUDING
REMARKS

Given the high rate of failure of antidepressant therapies,
with at least 30% of patients being unresponsive to multiple
rounds of pharmacological treatment (Sinyor et al., 2010),
and the lack of effective, disease modifying treatments for
dementia, the prospect of dietary interventions for mood and
cognitive disorders is appealing. Notably, the targets involved
in potential dietary approaches to mental health may in fact
overlap with targets for pharmacotherapy in current clinical
trials, including neuroinflammation (e.g., TLR and cytokine
receptors) and brain insulin signaling (Figure 1). To reach

this goal, an important step will be to understand and
dissect the distinct but interdependent roles of fatty acids
as nutrients and signaling molecules in the brain, and their
impact on brain function and dysfunction. Finally, since no
food is consumed in isolation by humans, this should happen
as part of a larger effort to explore the already proposed
potential of other nutrients, particularly carbohydrates, as
competing players in both inflammation and insulin signaling
(DiNicolantonio et al., 2018).
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