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Stroke is a leading cause of disability worldwide, and in approximately 60% of
individuals, upper limb deficits persist 6 months after stroke. These deficits adversely
affect the functional use of the upper limb and restrict participation in day to day
activities. An important goal of stroke rehabilitation is to improve the quality of life by
enhancing functional independence and participation in activities. Since upper limb
deficits are one of the best predictors of quality of life after stroke, effective interventions
targeting these deficits may represent a means to improve quality of life. An increased
understanding of the neurobiological processes underlying stroke recovery has led to
the development of targeted approaches to improve motor deficits. One such targeted
strategy uses brief bursts of Vagus Nerve Stimulation (VNS) paired with rehabilitation
to enhance plasticity and support recovery of upper limb function after chronic stroke.
Stimulation of the vagus nerve triggers release of plasticity promoting neuromodulators,
such as acetylcholine and norepinephrine, throughout the cortex. Timed engagement
of neuromodulators concurrent with motor training drives task-specific plasticity in
the motor cortex to improve function and provides the basis for paired VNS therapy.
A number of studies in preclinical models of ischemic stroke demonstrated that VNS
paired with rehabilitative training significantly improved the recovery of forelimb motor
function compared to rehabilitative training without VNS. The improvements were
associated with synaptic reorganization of cortical motor networks and recruitment of
residual motor neurons controlling the impaired forelimb, demonstrating the putative
neurobiological mechanisms underlying recovery of motor function. These preclinical
studies provided the basis for conducting two multi-site, randomized controlled pilot
trials in individuals with moderate to severe upper limb weakness after chronic ischemic
stroke. In both studies, VNS paired with rehabilitation improved motor deficits compared
to rehabilitation alone. The trials provided support for a 120-patient pivotal study
designed to evaluate the efficacy of paired VNS therapy in individuals with chronic
ischemic stroke. This manuscript will discuss the neurobiological rationale for VNS
therapy, provide an in-depth discussion of both animal and human studies of VNS
therapy for stroke, and outline the challenges and opportunities for the future use of
VNS therapy.
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INTRODUCTION

Stroke is a leading cause of disability and a significant health
burden in the United States and worldwide (Murray et al., 2013;
Feigin et al., 2016). Upper limb deficits persist in approximately
60% of individuals after stroke (Wade et al., 1983), limiting
their use in day to day activities and impacting quality of
life of the individual (Franceschini et al., 2010; Morris et al.,
2013). An important goal of stroke rehabilitation research
is to develop effective, evidence-based therapies to reduce
impairment, facilitate functional upper limb use and improve
participation in activities without resorting to compensatory
strategies after chronic stroke.

Neurophysiological and neuroimaging studies have provided
an improved understanding of the neurobiological processes
underlying the brain’s ability to restore function by capitalizing
on residual networks after stroke (Krakauer, 2004; Ward, 2004;
Nudo, 2006; Murphy and Corbett, 2009; Dimyan and Cohen,
2011; Boyd et al., 2017; Sampaio-Baptista et al., 2018). One
approach for improving chronic upper limb deficits is to augment
this capacity to reorganize, referred to as plasticity. Rehabilitation
by itself drives some reorganization of motor networks, but
these changes occur within a framework of architectural and
anatomical constraints which are believed to limit substantial
improvements (Kleim and Jones, 2008). As a result, strategies that
can enhance reorganization in conjunction with rehabilitation
may support greater recovery. Here, we will describe the
neurophysiological basis and implementation of VNS during
rehabilitation as a means to enhance plasticity and improve
post-stroke recovery.

CHOLINERGIC AND NORADRENERGIC
MODULATION OF CORTICAL
PLASTICITY

Activation of neuromodulatory networks is strongly linked
to plasticity (Gu, 2002), thus engaging these mechanisms
provides a potential strategy to enhance plasticity for stroke
recovery. Cholinergic neurons within the nucleus basalis (NB)
and noradrenergic neurons in the locus coeruleus (LC) are
part of the ascending neuromodulatory system that projects
diffusely to wide areas of the cortex. Release of acetylcholine
(ACh) from NB neurons and norepinephrine (NE) from LC
neurons plays an important role in many behavioral and
cognitive processes including arousal, memory consolidation
and attentional modulation of goal-directed behavior (Gu, 2002;
Aston-Jones and Cohen, 2005; Sarter et al., 2005; Hasselmo
and Sarter, 2011). The vagus nerve sends projections to the
nucleus tractus solitarius (NTS), which in turn projects to
the neuromodulatory nuclei. Therefore, understanding the role
of these neuromodulatory networks in cortical plasticity is
instructive for defining the basis for delivering VNS paired with
sensory or motor events to facilitate plasticity.

In a constantly changing world, the brain must extract
behaviorally relevant information to drive useful goal-
directed behaviors. Neuromodulatory networks, including

the cholinergic and noradrenergic systems which provide
diffuse neuromodulatory innervation throughout the cortex, are
uniquely poised to serve that role. Cholinergic and noradrenergic
neurons show phasic discharge during specific epochs of
behavior that may signal cue detection, novelty or reinforcement
feedback (Hasselmo, 1995; Arnold et al., 2002; Bouret and
Sara, 2004; Sarter et al., 2005, 2006, 2009; Parikh et al., 2007;
Hasselmo and Sarter, 2011). For example, transient cholinergic
activity in cortical neurons signals behaviorally relevant cues
while decreased activity is observed with missed cues (Parikh
et al., 2007). Rapid cholinergic activation provides reinforcement
feedback in response to both positive and negative events
(Hangya et al., 2015). Similarly, phasic discharge from LC
neurons predicts correct responses in a visual discrimination
task with increased cross-correlation among LC neurons (Usher
et al., 1999). These studies demonstrate that brief bursts of ACh
or NE are likely involved in the attentional modulation of cortical
neurons to encode the behavioral relevance of stimulus-specific
features during task performance.

The neuromodulator-driven attentional modulation of
cortical neurons must eventually be encoded into long-lasting
changes in synaptic efficacy with successful task learning (Hess
and Donoghue, 1994; Hess and Krawczyk, 1996; Kirkwood
et al., 1999; Rioult-Pedotti et al., 2000; Ziemann et al., 2006;
Seol et al., 2007; Cohen and Maunsell, 2009; Korchounov
and Ziemann, 2011; Carcea and Froemke, 2013; Hasan et al.,
2013). At a systems level, the changes in synaptic efficacy may
underlie reorganization of cortical maps specific to the learned
features of the task (Merzenich et al., 1988; Recanzone et al.,
1992, 1993; Pascual-Leone and Torres, 1993; Elbert et al., 1995;
Buonomano and Merzenich, 1998; Sterr et al., 1998; Feldman
and Brecht, 2005; Feldman, 2009; Froemke, 2015). Furthermore,
depletion of cortical ACh or NE resulting from lesions of their
respective nuclei or pharmacologic modulation with cholinergic
and noradrenergic antagonists blocks cortical plasticity and
impairs learning (Sato et al., 1987; Juliano et al., 1991; Heron
et al., 1996; Kilgard and Merzenich, 1998; Zhu and Waite, 1998;
Conner et al., 2003, 2005; Ramanathan et al., 2009; Vitrac and
Benoit-Marand, 2017). Together, these studies established a
causal role for the neuromodulatory networks in task-specific
learning and plasticity.

The vagus nerve projects to the NTS (Foley and DuBois,
1937; Prechtl and Powley, 1990) and consequently provides
rapid activation of the cholinergic and noradrenergic systems
(Roosevelt et al., 2006; Nichols et al., 2011; Porter et al.,
2012; Hulsey et al., 2017). Therefore, the engagement of these
neuromodulatory systems by VNS led to the prediction that
brief bursts of VNS paired with sensory or motor experience
could enhance cortical plasticity that was specific to the paired
experience. Repeatedly pairing a tone with VNS reorganized the
rat auditory cortex map, resulting in an expansion for the paired
tone (Engineer et al., 2011). A tone paired with trigeminal nerve
stimulation did not result in specific auditory cortex plasticity,
demonstrating that the enhancement of plasticity was unique to
stimulation of the vagus nerve.

Neuromodulatory networks share some features in
mediating plasticity in motor and auditory cortices (Gu,
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2002; Ramanathan et al., 2009). Since VNS paired with sensory
experience drives robust, specific plasticity in the primary
sensory cortex, this raised the possibility that pairing VNS
with motor training could also facilitate plasticity in naïve rat
motor cortex. Indeed, repeatedly pairing VNS with a forelimb
movement during motor training increased the corresponding
map representation of that movement in motor cortex compared
to equivalent training in rats that did not receive VNS (Porter
et al., 2012). These studies laid the groundwork for using
VNS paired with motor training for improving upper limb
deficits after stroke.

VNS IMPROVES MOTOR FUNCTION IN
ANIMAL MODELS OF STROKE

Post-stroke recovery is associated with plasticity in motor
networks (Murphy and Corbett, 2009). The development of
strategies to enhance this plasticity and subsequently generate
greater recovery has been the focus of intense research. Based
on its ability to drive training-dependent neuroplasticity in
uninjured motor networks, a number of animal studies have
evaluated VNS paired with rehabilitative training to support the
recovery of motor function after stroke.

A study performed in an animal model of ischemic stroke
tested the hypothesis that VNS paired with rehabilitative training
could enhance post-stroke recovery (Khodaparast et al., 2013).
This study sought to evaluate the ability of VNS delivered during
motor training to improve recovery of forelimb strength, a main
contributor to disability after stroke (Canning et al., 2004; Harris
and Eng, 2007). Rats were trained to proficiency on a strength-
based forelimb task, and then underwent ischemic lesion of the
motor cortex. Rats that received brief bursts of VNS paired
with forelimb movement during motor training demonstrated
significantly greater recovery of volitional forelimb strength
compared to rats that received equivalent training without VNS.
Recovery persisted when assessed 1 week after the cessation of
stimulation, consistent with the notion that VNS drives stable
plasticity and providing an initial indication that the benefits of
VNS therapy may be lasting.

A second study built upon these initial findings and assessed
the ability of VNS to improve forelimb movement speed after
stroke. Rats were pre-trained on a skilled task that measured rapid
movement of the forelimb and underwent an ischemic lesion
of the motor cortex (Khodaparast et al., 2014). Corroborating
findings from the initial study, VNS paired with forelimb
movement during rehabilitative training resulted in significant
enhancement of functional recovery compared to equivalent
rehabilitation training without VNS (Figure 1A).

Rehabilitation can become less effective with increasing time
after stroke. To evaluate whether a long delay in therapy delivery
would impact the efficacy of VNS, a study evaluated whether VNS
paired with rehabilitative training could improve recovery in a
rat model of chronic ischemic stroke (Khodaparast et al., 2016).
VNS and rehabilitative training were initiated on the 7th week
post-stroke in rats with chronic, stable forelimb impairment.
Despite the delay in starting therapy, VNS delivered with

rehabilitative training produced significantly greater forelimb
recovery compared to equivalent training without stimulation
(Figure 1B). The degree of forelimb recovery after chronic
stroke was comparable to that observed in previous studies
of subacute stroke (Khodaparast et al., 2013, 2014). These
findings provide an initial demonstration that the efficacy
of VNS paired with rehabilitative training is not dependent
on time to begin the intervention after stroke. Additionally,
the observation that VNS therapy improves recovery when
initiated long after stroke suggests that VNS does not act by
augmenting the action of pro-plasticity factors upregulated in
response to stroke (Khodaparast et al., 2016). Alternatively,
VNS likely acts to enhance recovery by generating repeated,
temporally precise, consistent engagement of pro-plasticity
neuromodulatory circuits to reinforce rehabilitation-related
neural activity (Hays et al., 2013; Hays, 2016). The independence
from stroke-related plasticity is consistent with the ability of
VNS paired with training to drive cortical plasticity in uninjured
animals (Porter et al., 2012; Hulsey et al., 2016).

Advanced age is a major risk factor for stroke and is
associated with reduced plasticity, which could in turn influence
the effectiveness of VNS therapy. Thus, a study sought to
determine whether VNS delivered during rehabilitative training
could improve post-stroke recovery in aged rats (Hays et al.,
2016). Rats aged at least 18 months were pretrained on a skilled
forelimb task and subsequently underwent ischemic lesions of the
motor cortex. Pairing VNS with rehabilitative training generated
robust improvements in recovery of forelimb strength compared
to equivalent training without VNS in aged rats. The magnitude
of recovery observed in aged rats that received VNS therapy
was comparable to that reported in previous studies using young
rats receiving the same intervention (Khodaparast et al., 2013).
The similar effectiveness in aged and young rats receiving VNS
is consistent with studies suggesting that age alone is not a
determinant in the benefits of rehabilitation and provides initial
evidence that advanced age does not preclude VNS-dependent
enhancement of post-stroke recovery (Bagg et al., 2002).

Generalization of improved functional recovery to tasks that
are not explicitly trained during rehabilitation is an important
consideration in the translation of therapies for clinical use, as
it has practical implications for administration of the therapy.
Given a fixed duration for a session of rehabilitation, a
therapist would need to determine whether a patient should
receive a greater number of stimulation pairings during a
more constrained set of rehabilitative exercises or whether to
deliver fewer stimulation pairings distributed across a greater
breadth of rehabilitative exercises. To provide data to guide this
determination, a recent study tested whether the VNS-dependent
recovery after stroke would generalize to a similar, untrained
task (Meyers E.C. et al., 2018). Rats were pre-trained on a
task that measured skilled forelimb rotation, then underwent an
ischemic lesion to motor cortex followed by training on the same
rotational task with or without VNS. Delivery of VNS paired
with rehabilitative training significantly enhanced recovery of
forelimb rotation compared to equivalent training without VNS.
After the completion of 6 weeks of motor training on the rotation
task, all rats were tested on a similar, but distinct task that
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FIGURE 1 | Vagus Nerve Stimulation-dependent recovery of motor function in rat models of stroke. (A) VNS paired with rehabilitative training significantly improves
recovery of forelimb motor function compared to equivalent training without VNS in a model of cortical ischemic stroke. The top panel shows a coronal brain section
with a representative ischemic lesion. Similarly, VNS paired with rehabilitative training enhances recovery of forelimb function after (B) chronic combined cortical and
subcortical ischemic and (C) intracerebral hemorrhage. The symbol “∗” indicates p < 0.05 across groups at each time point (Adapted from Hays et al., 2014a,b;
Khodaparast et al., 2016).

measured volitional forelimb strength. Rats that had previously
received VNS paired with rehabilitative training on the rotation
task exhibited significantly improved recovery on the volitional
strength task compared to rats that had previously received
rotation training without VNS, suggesting that VNS-dependent
recovery may generalize to similar untrained movements. The
magnitude of recovery observed on the untrained task was
similar to that observed when VNS was paired with training
on the primary task, providing evidence of generalization.
Moreover, in this study, VNS-dependent recovery persisted
at least 7 weeks following cessation of stimulation, providing
additional corroborating evidence that the benefits of VNS
are long-lasting.

Other studies provide insight into the implementations of
VNS therapy that may be most beneficial. To determine the
stimulation paradigm that yields the greatest enhancement
in recovery, a study evaluated a range of distinct VNS
parameters on recovery of forelimb strength after stroke
(Hays et al., 2014b). Delivery of an equivalent amount
of VNS that is temporally dissociated from rehabilitative
training is less effective at promoting recovery than VNS
that is paired with forelimb movement during rehabilitative
training, suggesting that non-specific effects of stimulation
that do not require precise timing, such as reduction
of inflammation or neurogenesis, do not contribute to
VNS-dependent enhancement of recovery. Additionally, a
paradigm that delivered sixfold more stimulation in rapid
succession generated significantly less recovery than VNS
explicitly paired with forelimb movement rehabilitation.
Together, the results from this study emphasize the need to
optimize both the dose and timing of stimulation paradigms
for VNS therapy.

Additional studies support the use of VNS therapy for
mechanistically distinct forms of cerebrovascular injury.
Intracerebral hemorrhage (ICH) is a common and devastating
subtype of stroke with few post-injury treatment options.
Evidence from preclinical studies indicates that reorganization of
spared circuits supports recovery after ICH, similar to ischemic

stroke (Auriat et al., 2010; Liang et al., 2013; Santos et al., 2013).
Based on the premise that VNS enhances plasticity, a study
evaluated whether VNS paired with rehabilitative training may
lead to improved recovery in a model of ICH (Hays et al., 2014a).
Rats were trained to proficiency on a skilled forelimb task and
then received an injection of collagenase into the dorsolateral
striatum to induce hemorrhage. Delivery of VNS paired
with rehabilitative training significantly enhanced recovery
compared to equivalent training without VNS, providing a
preliminary demonstration that VNS therapy can improve
motor function after ICH (Figure 1C). Emerging evidence
extends these findings to other distinct forms of neurological
damage, indicating VNS can improve recovery in models
of traumatic brain injury (Pruitt et al., 2016), spinal cord
injury (SCI; Ganzer et al., 2018), and peripheral nerve damage
(Meyers E. et al., 2018; Figure 2).

Cognitive deficits are not uncommon in patients following
ischemic stroke (Tatemichi et al., 1994). Preclinical studies
document improvements in memory retention with VNS (Clark
et al., 1995, 1998). While a small number of clinical studies
provide corroborating evidence for the role of VNS in improving
memory function, placebo-controlled studies in larger clinical
populations are needed to determine whether VNS facilitates
long-term improvement in cognitive function in humans after
stroke (Hoppe et al., 2001; Boon et al., 2006; Ghacibeh et al.,
2006; Sun et al., 2017). It is possible that short bursts of VNS
combined with a cognitive rehabilitative training paradigm may
promote plasticity and improve cognitive impairments after
stroke. While considerably more development is needed, these
findings raise the prospect that pairing VNS with cognitive
rehabilitation may represent a potential intervention for post-
stroke cognitive impairment.

Despite the evidence demonstrating VNS-dependent
enhancement of recovery across a range of preclinical models
of neurological injury, the mechanisms that underlie recovery
are not thoroughly characterized. In the following section, we
will discuss the putative mechanisms by which VNS modulates
neural plasticity to support recovery of function.
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FIGURE 2 | Vagus Nerve Stimulation therapy improves recovery in a variety of models of neurological injury. A meta-analysis of recovery across a range of rat models
of neurological damage demonstrates that VNS paired with rehabilitative training (VNS+Rehab) consistently improves recovery of forelimb motor function compared
to equivalent rehabilitative training without VNS (Rehab Alone). The data are presented as a forest plot. Markers denote standardized mean difference for
VNS+Rehab compared to Rehab Alone for each study, and horizontal lines indicate 95% confidence interval. The size of the indicator represents the number of
subjects. The blue diamond represents the summary effect.

NEUROBIOLOGICAL MECHANISMS OF
MOTOR RECOVERY AFTER PAIRED VNS

Structural plasticity in descending cortical spinal circuits has been
associated with recovery after stroke. A recent study evaluated
whether VNS paired with rehabilitative training influenced
reorganization of corticospinal tract (CST) connectivity
(Meyers E.C. et al., 2018). A retrograde transsynaptic tracing
study in rats revealed that VNS paired with rehabilitation tripled
synaptic connectivity in CST networks controlling the impaired
forelimb compared to equivalent rehabilitation without VNS,
providing a direct quantification of VNS-dependent plasticity
in motor networks after stroke. This reorganization of CST
connectivity was observed 2 months after the cessation of
VNS, suggesting that this plasticity is robust and enduring, and
consistent with the notion that this plasticity subserves long-term
restoration of motor function (Figure 3).

Vagus Nerve Stimulation engages a variety of molecular and
neuronal mechanisms via the ascending neuromodulatory
systems that may underlie the observed reorganization
of motor networks. After a stroke, treatment with brain-
derived neurotrophic factor (BDNF) increases functional
recovery, whereas reduction of BDNF levels prevented
the benefits of rehabilitative training (Schabitz et al.,
2004; Ploughman et al., 2009). In rodents, both acute and
chronic VNS increased levels of BDNF in the hippocampus
but the elevated BDNF levels were not associated with
improvements in the forced swim or elevated plus-maze

tests (Follesa et al., 2007). It remains to be determined whether
elevated BDNF levels contribute to motor reorganization and
stroke recovery.

Engagement of neuromodulatory networks that regulate
synaptic plasticity also represents a means by which VNS
likely supports recovery. VNS drives activation of multiple
neuromodulatory networks, including the noradrenergic,
cholinergic, and serotonergic systems (Nichols et al., 2011;
Hulsey et al., 2017). These neuromodulators, in turn, act
synergistically to alter spike-timing dependent plasticity (STDP)
properties in active networks (Dan and Poo, 2004; Seol et al.,
2007). These neuromodulators are known to act within a
short window of approximately 5–10 s after neural activity,
referred to as the synaptic eligibility trace, to allow STDP (He
et al., 2015). Two studies provide initial evidence that VNS
generates temporally precise neuromodulatory feedback within
the synaptic eligibility trace to drive synaptic plasticity. First,
in a study examining plasticity in auditory cortex, only tones
presented concurrently with VNS were reinforced (Engineer
et al., 2011). Tones delayed 15 s after VNS, which falls outside
the time window for synaptic eligibility, failed to generate
plasticity. Second, a study examined the requirement for a
temporal association between VNS and optimal trials during
rehabilitative exercises after SCI (Ganzer et al., 2018). VNS
delivery immediately after or within 2 s of the optimal trials
significantly enhanced recovery of motor function, while a delay
of approximately 25 s from the optimal trials failed to yield any
benefits compared to equivalent rehabilitation without VNS.
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FIGURE 3 | Vagus Nerve Stimulation paired with motor training enhances synaptic reorganization after stroke. Rats that receive VNS paired with motor training (red
bar) after stroke demonstrated a significantly greater increase in corticospinal tract (CST) connectivity to rehabilitated muscles compared to equivalent training
without VNS (blue bar). CST connectivity originating in both the ipsilesional and contralesional hemispheres was increased. These findings indicate that VNS drives
large-scale reorganization in motor networks after stroke which may underlie recovery of function (Adapted from Meyers E.C. et al., 2018). ∗ indicates p < 0.05; ∗∗

indicates p < 0.01.

These studies align well with the time scale of the synaptic
eligibility trace and provide a means by which VNS may drive
temporally precise neuromodulatory release to reinforce ongoing
neural activity related to the paired event.

RANDOMIZED CLINICAL TRIALS TO
ASSESS SAFETY AND EFFICACY OF
PAIRED VNS AFTER CHRONIC
ISCHEMIC STROKE

Transitioning from basic science investigation to clinical
studies moves the field closer to determining if these

promising findings can translate into improvements in
clinical care. Studies are now attempting to translate these
preclinical VNS experiments into clinical practice through
feasibility, safety, and more recently, pivotal clinical trials
in individuals with chronic stroke (Dawson et al., 2016;
Kimberley et al., 2018).

A single-blinded, randomized feasibility study evaluating VNS
paired with motor rehabilitation was performed by Dawson
et al. (2016) in 20 participants with chronic ischemic stroke
who had moderate to severe upper limb weakness. Subjects were
randomized to VNS paired with rehabilitation (n = 9; implanted)
or rehabilitation alone (n = 11; not implanted). VNS was triggered
by a therapist pushing a button during task-specific movements,

FIGURE 4 | Vagus Nerve Stimulation paired with rehabilitation in the clinic and at home, (A) In-clinic rehabilitation with VNS: VNS is delivered by a therapist using a
push button timed with a task-specific movement. Pressing the button delivers a brief burst of VNS (0.5 s) during an active goal-directed movement. The VNS
system includes an implantable pulse generator (implanted device) that is implanted under the individual’s chest wall, an implantable lead, wireless transmitter (for
communication between the device and computer) and custom programming software. (B) Home-based VNS therapy: Participants are provided a magnet (inset) to
swipe over the device once before the start of each rehabilitation session to self-initiate 30 min of VNS (0.5 s burst of VNS every 10 s for 30 min). During the 30 min,
participants performed at-home exercises prescribed by the therapist and adapted to their functional level and goals.
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based on the notion that VNS provides timed engagement of
neuromodulatory networks to support rehabilitation-dependent
plasticity (Figure 4A). Stimulation parameters were selected
based on earlier preclinical studies (Engineer et al., 2011; Porter
et al., 2012; Khodaparast et al., 2013, 2014, 2016; Hays et al.,
2016; Hulsey et al., 2016). The main outcome measures were
a change in upper extremity Fugl-Meyer Assessment (FMA-
UE) score and response rate (FMA-UE change ≥6 points was
considered clinically meaningful, discussed below). After 6 weeks
of in-clinic rehabilitation, participants in the paired VNS group
showed a 9.6-point improvement from baseline while the control
group improved by 3 points in the per-protocol analysis (between
group difference = 6.5 points, CI: 0.4 to 12.6, p = 0.038). The
response rates were 66 and 36.4% in VNS and control groups,
respectively. No serious adverse device effects were reported.
These results demonstrated the feasibility of using paired VNS
and did not raise safety concerns. Two limitations of this
study were the absence of an implanted control VNS group
and the lack of assessment of long-lasting effects of paired
VNS. These limitations were addressed in a second pilot study
(Kimberley et al., 2018).

This second study was a multicenter, fully blinded and
randomized study (Kimberley et al., 2018). All participants
were implanted with the VNS device, which allowed the
control group to crossover to receive paired VNS therapy
after completion of blinded follow-up and permitted within-
subject comparison of gains. To evaluate the lasting effects of
paired VNS, home-based therapy was included as part of the
study (Figure 4B). Differences between the two studies are
highlighted in Table 1.

Seventeen participants with chronic ischemic stroke who
had moderate to severe upper extremity impairment were
enrolled at four sites, with similar surgical procedure and

randomization (Figure 5A) to the first study. The study
design is shown in Figure 5B. Participants performed
6 weeks of in-clinic therapy followed by home-based
therapy. After 6-weeks of in-clinic therapy, participants in
both groups had 1 month of at-home exercises with no
VNS followed by 2 months of home-based therapy. During
home therapy, participants in both groups activated the
VNS device at the start of each 30-min session via a magnet
swipe over the implanted pulse generator to deliver either
Active or Paired VNS (0.8 mA) or Control VNS (0 mA),
respectively (Figure 4B).

After 2 months of home-based therapy, the Paired VNS group
continued the VNS therapy while the Control Group switched
over to receive paired VNS (Figure 5B). After 6 weeks of in-
clinic therapy, the FMA-UE score increased by 7.6 points for
the VNS group and 5.3 points for controls. Three months
after the end of in-clinic therapy (post-90), the FMA-UE
increased by 9.5 in the paired VNS group and 3.8 points
in controls. At post-90, response rate (FMA-UE change ≥6
points) was 88% in the VNS group and 33% in controls
(p = 0.03) (Figures 6A,B).

After controls crossed-over to receive in-clinic Active
VNS, FMA-UE improved by 9.8 points from baseline
(p < 0.001) after 6 weeks. After an additional 2 months of
home-based VNS, FMA-UE improvement was maintained
at 9.7 points (p = 0.01). Therefore, the improvements
in upper limb impairment more than doubled after
rehabilitation paired VNS compared to rehabilitation alone,
an effect of approximately the same magnitude observed
in the preclinical studies of VNS for ischemic stroke
(Khodaparast et al., 2013).

It is of note that controls received similar intensity of in-
clinic and home rehabilitation (without VNS) and showed

TABLE 1 | Comparison of the two pilot VNS studies (Dawson et al., 2016; Kimberley et al., 2018).

Dawson et al., 2016 Kimberley et al., 2018

Number of sites 2 United Kingdom 4 United States and United Kingdom

Study design Randomized, single-blind (Assessor) Randomized, blinded (Assessor, Therapist, Participant),
sham-controlled, cross-over

Number of participants 20 (VNS: n = 9; Control: n = 11) 17 (VNS: n = 8; Control: n = 9)

VNS implantation Only VNS group implanted Both VNS and Control group implanted

Long-term home therapy No Yes

Inclusion criteria ARAT (Action Research Arm Test) FMA-UE (Fugl-Meyer Assessment – Upper Extremity)

Outcome measure
end-points

End of in-clinic (6 weeks) assessment followed by a 30-day
assessment

End of in-clinic (6 weeks) assessment followed by
30-day and 3-month assessment

Imaging (Structural MRI) Yes Yes

Safety (One) Transient vocal cord palsy and dysphagia after implant,
(Five) minor events including nausea, metallic taste in the
mouth. No serious adverse device effects.

(Three) Serious adverse events related to implantation
surgery including wound infection, shortness of breath
with dysphagia and hoarseness. No serious adverse
device effects.

Efficacy (FMA change from
baseline at 6 weeks)

9.6 vs. 3 (between group difference = 6.5 points, CI: 0.4 to
12.6, p = 0.038). ∗Response rate: 66% vs. 36.4%

7.6 vs. 5.3 (between group difference = 2.3 points, CI:
−1.8 to 6.4, p = 0.2). ∗Response rate: 75% vs. 33%. At
3 months, post-therapy, 9.5 vs. 3.8 (between group
difference = 5.7 points, CI: −1.4 to 11.5, p = 0.055).
∗Response rate: 88% vs. 33% (p = 0.03).

∗FMA change ≥6 points.
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FIGURE 5 | (A) Consort Diagram for the pilot study (from Kimberley et al., 2018). Twenty-two participants were enrolled in the study of which 17 were implanted.
Eight participants were randomized to the VNS group and 9 to rehabilitation only (B). Clinical study flowchart. After screening and baseline evaluations, all
participants were implanted with a VNS device and randomized to receive either Active (0.8 mA) or Control VNS (0.0 mA) paired with upper limb rehabilitation.
Participants received 18 sessions of in-clinic therapy for 6 weeks, followed by a home-based therapy for 3 months (no VNS was delivered to either group during the
1st month of home therapy). The 3-month time point is referred to as Post-day 90. After Post-day 90, the Active VNS group continued with home-based Active
VNS, and the Control group crossed over to receive 6-weeks of in-clinic therapy with Active VNS followed by home-based Active VNS, similar to the Active
VNS+Rehab group. Outcome measures were evaluated at baseline, Post-day 1, Post-day 30, and Post-day 90.

FIGURE 6 | (A) Fugl-Meyer assessment–upper extremity (Kimberley et al., 2018). Change in FMA-UE score at three posttreatment assessments from baseline for
Active VNS (solid line) and Control VNS + Rehab (dashed line). Shaded area indicates 6 weeks of in-clinic therapy. Error bars indicated standard error of the mean
(s.e.m). (B) FMA-UE responder rate (defined as FMA-UE change ≥6 points from baseline) for Active VNS (black) and Control VNS + Rehab (gray). ∗p < 0.05, Fisher
exact test.
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minimal improvement in the randomized portion of the
study, especially as more time elapsed following the in-
clinic rehabilitation. After crossover to Active VNS, the
control participants showed a clinically meaningful outcome
that was similar to the initial Active VNS group. This is
consistent with studies suggesting that intense rehabilitation
or standard of care rehabilitation for individuals with chronic
stroke may be insufficient to significantly improve motor
outcomes (van der Lee et al., 1999; Langhorne et al., 2009;
Teasell et al., 2014).

In addition to improving motor impairment, Active VNS
therapy also improved upper limb functional performance. At
post-90 (3 months after the end of in-clinic therapy), the Wolf
Motor Function Test (WMFT-Functional) difference between the
Paired VNS and Control groups was 0.33 points (CI, 0.04 to 0.61;
p = 0.029). Thus, participants showed significant improvements
on both impairment (FMA-UE) as well as functional scales
(WMFT-Functional) after Paired VNS therapy. These results
suggest that improvement reflects true motor recovery rather
than improved movement compensation. The study showed
that rehabilitation paired with VNS was an acceptably safe
and feasible intervention for patients with chronic stroke and
demonstrated sufficient safety and feasibility to support a
larger pivotal trial.

The benefits of Paired VNS require time to emerge
and may suggest that progressive neural reorganization is
facilitated by paired VNS (Porter et al., 2012; Meyers E.C.
et al., 2018). VNS responders had greater cortico-spinal tract
(CST) injury compared to control responders, which suggests
that VNS-induced neuroplastic mechanisms could facilitate
improvements in the VNS responders who would otherwise
not have responded to rehabilitation alone (Dawson et al.,
2016). These findings also mirror the reorganization of the
CST observed with VNS therapy in preclinical models in
which VNS paired with rehabilitation significantly increased
synaptic connectivity in both ipsilesional and contralesional
CST networks controlling the impaired forelimb (Meyers E.C.
et al., 2018; Figure 3). Assessment of plasticity in multiple
brain regions that accompanies improvements in recovery
would strengthen future clinical studies by providing a more
detailed description of the mechanisms that support VNS-
dependent benefits.

A change in FMA-UE score of ≥6 points was used to
indicate a clinically meaningful improvement. Previous
studies have assessed FMA-UE scores using anchor-based
methods to determine the clinically important change
in FMA-UE from baseline. The FMA-UE change ranged
from 4.24 to 7.25 points (Page et al., 2012). A >50%
improvement in the overall arm and hand function, which
was considered an excellent improvement, corresponded
to FMA-UE change of 5.25 points. If the 9.5-point
increase in FMA-UE score observed at day-90 following
Paired VNS and the 9.8-point change from baseline after
crossover to Paired VNS in Controls is a true effect of
VNS, the therapy enhances the modest improvements
seen with rehabilitation alone, up to more clinically
meaningful levels.

CLINICAL AND NEUROPHYSIOLOGICAL
CONSIDERATIONS FOR FUTURE
CLINICAL STUDIES

Although the studies described above present initial evidence
that VNS paired with rehabilitation may support recovery after
stroke, there are several important considerations for continued
translation of the VNS therapy.

Clinical and Neurophysiological
Biomarkers
Clinical and neurophysiological biomarkers are important
for predicting response to interventions, especially in a
heterogeneous chronic stroke population (Milot and Cramer,
2008; Burke and Cramer, 2013; Wu et al., 2015; Boyd et al.,
2017). It would be valuable to identify biomarkers in patient
subpopulations that are non-responsive to the VNS therapy.
Biomarker evaluation across a range of stimulation parameters,
including intensity, frequency, and pulse width, would be useful
to guide the selection of paradigms to maximize plasticity and
recovery after stroke. Future studies with larger sample sizes may
determine whether clinical and neurophysiological markers will
help identify participants more or less responsive to VNS therapy.

A number of characteristics, including age, type of stroke (e.g.,
ischemic or hemorrhagic), stroke location (e.g., supratentorial or
infratentorial), stroke severity, amount of spasticity, associated
contractures that may limit movement, time since stroke
onset, associated sensory loss, comorbidities (e.g., diabetes),
are known to affect outcomes. Moreover, factors that directly
impact neuromodulatory function, including Parkinson’s disease,
Alzheimer’s disease and concomitant use of pharmacotherapeutic
agents, may specifically impact the efficacy of VNS. These factors
will be discussed below.

Supratentorial and Infratentorial Strokes
The clinical VNS studies described above included participants
with supratentorial, ischemic stroke and excluded infratentorial
strokes. Infratentorial or posterior strokes such as those involving
the cerebellum, pons or medulla, were excluded because
the behavioral benefits of paired VNS have not yet been
demonstrated in preclinical models. Furthermore, individuals
with posterior strokes presenting with upper limb weakness
likely have other symptoms including dizziness, double vision,
visual field deficits, dysphagia, clumsiness of the hand and
ataxia that may impact upper limb motor training and therefore
would likely require a different rehabilitation protocol. Previous
studies have demonstrated that brainstem infarcts can result
in the activation or reorganization of motor cortex (Kwon
and Jang, 2010). It is possible that Paired VNS therapy
could recruit upstream spared CSTs to regain lost function.
Furthermore, studies in rat models of SCI showed that VNS
paired with motor training drives plasticity in upstream motor
neurons, suggesting that VNS-dependent plasticity in residual
cortical or subcortical motor circuits could mediate recovery
(Ganzer et al., 2018).
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Hemorrhagic Stroke
In rat models of hemorrhagic stroke, rehabilitation improves
motor outcomes along with changes in dendrite morphology
suggesting that plasticity within residual neurons supported
recovery (Auriat et al., 2010). Furthermore, studies in a rat model
of ICH provide direct evidence that VNS paired with motor
training significantly improves forelimb function compared to
equivalent training alone (Hays et al., 2014a). However, the
clinical VNS studies excluded individuals with hemorrhagic
stroke to maximize the ability to detect effects in ischemic stroke
patients. Considering the flexibility of VNS to enhance recovery
in a wide range of neurological injury animal models including
hemorrhagic stroke, future studies evaluating VNS in patients
with these types of stroke is warranted.

Age
Age is an important non-modifiable risk factor for ischemic
stroke (Bagg et al., 2002; Kelly-Hayes et al., 2003; Saposnik
et al., 2008; Hays et al., 2016; Lui and Nguyen, 2018). Advanced
age is associated with a reduction in neuroplasticity, which
raises the prospect that advanced age may reduce the efficacy
of VNS therapy (Kelly-Hayes et al., 2003; Burke and Barnes,
2006; Freitas et al., 2011). However, preclinical studies provide
an initial demonstration that age does not limit VNS-dependent
enhancement of recovery after stroke, as aged rats benefited
from the therapy as much as young rats (Hays et al., 2016).
The pilot clinical study (Kimberley et al., 2018) included a wide
age-range of participants (37–73 years), and after 3 months
of paired VNS therapy, 50% of participants over 65 years
of age showed significant improvement in FMA-UE scores
(≥6-point change). Therefore, age by itself did not preclude
VNS-dependent benefit in responders; and less improvement
in non-responders suggests that other factors are involved in
determining response to therapy.

Chronic Stroke
The clinical studies included individuals with chronic stroke
for the following reasons: First, highlighting the need for
interventions that are effective long after the acute stroke
episode, an estimated 7.2 million Americans live with chronic
post-stroke disability (Benjamin et al., 2018). Second, evidence
from preclinical studies supports the efficacy of VNS paired
with rehabilitative training when initiated several weeks after
stroke (Khodaparast et al., 2016). Thus, VNS likely acted by
engaging plasticity-enhancing neuromodulatory circuits during
training rather than pro-plasticity factors upregulated by stroke
(Meyers E.C. et al., 2018). Third, since spontaneous recovery
of upper limb motor deficits is often observed during the
first 6 months after stroke, any improvements in upper limb
deficits obtained from interventions carried out during this acute
phase would be difficult to dissociate from this spontaneous
recovery. Indeed, participants with sub-chronic stroke often show
greater improvements on the FMA-UE compared to participants
with chronic stroke (Shelton et al., 2001; Masiero et al., 2007;
Narayan Arya et al., 2011). Finally, acute stroke is a life-changing
event for the majority of individuals, and it is likely that most

individuals, physicians, and other healthcare professionals would
be somewhat reluctant to undergo a non-emergency surgical
procedure. The chronic population was therefore selected as a
starting point for investigation.

Severity of Upper Limb Deficits
The VNS clinical studies excluded individuals with very severe
upper limb deficits who had minimal to no movement in
their upper extremity (typically FMA-UE < 15). VNS could
be combined with other interventions to initiate movements
in this severe population. Since paired VNS in rats facilitated
recruitment of residual neurons and increased synaptic
connectivity in cortico-spinal networks controlling the impaired
forelimb (Meyers E.C. et al., 2018), it is possible that the severity
of CST injury may not preclude recovery of the impaired limb
function in humans. This would be an interesting area for study
once proven effective in a moderately severe population.

Centrally Acting Drugs May Interfere
With the Effects of VNS
Since VNS acts via the activation of neuromodulatory pathways,
it is possible that certain medications could interfere with the
effects of VNS therapy. For example, lipophilic muscarinic
antagonists (e.g., scopolamine) or adrenergic antagonists (e.g.,
metoprolol) easily cross the blood-brain barrier and are known
to have central adverse effects which could interfere with the
effects of VNS. Animal studies provide supporting evidence
that interfering with neuromodulatory networks prevents the
plasticity enhancing effects of VNS (Hulsey et al., 2016; Hulsey,
2018). Unlike pharmacological blockade, animal studies utilized
methods that resulted in a permanent, virtually complete
reduction of neuromodulators. Therefore, pharmacological
antagonism may differentially influence the effects of VNS.
Nevertheless, given the well-documented literature regarding the
central effects of some cholinergic and noradrenergic antagonists
on mood, cognitive processing, behavioral performance and
neurophysiological indicators of plasticity, some drug exclusions
need to be considered in clinical studies.

Sensory Loss
Impaired tactile sensation, stereognosis, and proprioception
are common after stroke. Sensory disruption can affect
motor function and recovery, since sensorimotor integration is
important for successful goal-directed movements (Xerri et al.,
1998; Bolognini et al., 2016). With severe sensory loss, the motor
deficits can appear to be worse, even in the absence of significant
muscle weakness. The motor cortex receives significant input
from somatosensory areas, and peripheral nerve lesions or lesions
in the somatosensory cortex can significantly alter movement
representations in motor cortex and impact motor skill learning
(Donoghue and Sanes, 1987; Xerri et al., 1998). Furthermore,
lesions of motor cortex can also disrupt sensory function
(Nudo et al., 2000).

It is possible that repeatedly pairing VNS with tactile
rehabilitation may improve sensory deficits in individuals with
significant sensory loss. In a case report study involving a
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72-year-old male with sensory deficits, VNS paired with tactile
rehabilitation showed clinically meaningful improvements in
sensory threshold, proprioception and stereognosis that were
long-lasting (Kilgard et al., 2018). It is possible that the
pairing narrowed receptive fields from the hand to individual
fingers, which may have contributed to the improved tactile
perception. Thus, individuals with motor deficits and significant
sensory deficits may benefit from VNS combined with tactile
training and could show improvements in both sensory as well
as motor function.

Comorbid Conditions
Neurodegenerative diseases (e.g., Alzheimer’s disease and
Parkinson’s disease) can deplete neuromodulator reserves in
basal forebrain cholinergic neurons and LC neurons (Whitehouse
et al., 1981; Coyle et al., 1983; Gesi et al., 2000; Zarow et al.,
2003). Since cholinergic and noradrenergic modulation is
essential for the effects of VNS, it is possible that decreased
neuromodulator reserves may impact VNS-induced plasticity.
In such individuals, it is possible that different stimulation
parameters may be needed to generate appropriate activation of
remaining neuromodulatory networks. Future studies evaluating
VNS in both animal models and patients with neurodegenerative
diseases is warranted.

Future preclinical and clinical studies in larger populations
along with neurophysiological biomarkers as predictors of
improvement will help adapt the VNS therapy to different
patient subgroups.

OPTIMIZATION OF VNS PARAMETERS

Identification of stimulation parameters and paradigms that
yield maximal recovery is an important step in the translation
of VNS-based targeted plasticity therapy for stroke. Both
the preclinical and clinical studies evaluating motor recovery
described above utilized identical stimulation settings of 0.8 mA,
100 µs pulse width, 30 Hz frequency and a pulse train of 0.5 s
(Engineer et al., 2011; Porter et al., 2012; Dawson et al., 2016;
Kimberley et al., 2018).

Given that VNS-directed plasticity is believed to underlie
recovery, a number of studies have characterized stimulation
paradigms aimed at increasing the magnitude of VNS-dependent
plasticity. The parameter that has been most thoroughly
investigated is stimulation intensity. Higher intensity stimulation
recruits a larger proportion of vagal fibers and triggers stronger
activation of neuromodulatory nuclei, which may improve stroke
recovery (Roosevelt et al., 2006; Castoro et al., 2011; Mollet
et al., 2013; Hulsey et al., 2017). Paradoxically, a number of
studies examining the effects of VNS on neural plasticity and
memory indicate that moderate intensity stimulation generates
the greatest effects compared to lower and higher intensity
stimulation (Clark et al., 1995, 1998, 1999), suggesting that
non-linear interactions in upstream targets may be responsible
for these effects and VNS operates across a specific range of
stimulation parameters.

Increasing the pulse width can compensate for a reduction in
stimulation amplitude, indicating that total charge delivered to
the nerve is the main predictor of VNS-dependent engagement
of neuromodulatory networks and VNS-dependent plasticity
(Hulsey et al., 2017; Loerwald et al., 2017). Several studies
have examined the influence of varying other stimulation
parameters on VNS-dependent plasticity. Increasing the interval
between stimulation trains increases the magnitude of VNS-
dependent plasticity, an effect ascribed to desensitization of
neuromodulatory receptors (Borland et al., 2018). Additionally,
similar to the effect of stimulation intensity, the pulse frequency
during a VNS train also demonstrates an inverted-U relationship
with plasticity. Trains consisting of pulses delivered at moderate
frequency rates enhanced cortical plasticity, while slower and
faster pulse rates both fail to significantly enhance plasticity (Buell
et al., 2018). Taken together, the studies illustrate the influence
of both the timing and intensity of stimulation parameters
on the magnitude of VNS-dependent plasticity, suggesting
manipulation of either or both parameters may be required to
optimize efficacy for clinical implementation.

The precise mechanisms that underlie the observed inverted-
U relationship between plasticity and several VNS parameters
are not fully understood. However, several possibilities could
explain this response, the most apparent of which is the effect
of stimulation intensity. First, lower stimulation intensities
could recruit pro-plasticity neuromodulatory circuits, while
higher intensities recruit overriding anti-plasticity networks.
As a result, moderate stimulation intensities would produce
the greatest enhancement of plasticity by maximally recruiting
the low threshold system while suppressing activation of the
high threshold system. Other possible explanations relate to
receptor activation. Noradrenergic receptors are required for
VNS effects and are known to display considerable adaptation
(Gainetdinov et al., 2004). Low intensity stimulation may avoid
desensitization and allow repeated effective signaling and thus
drive plasticity, while high intensity stimulation may produce
desensitization that prohibits repeated activation and limits
plasticity. Alternatively, activation of different receptor types
at differing stimulation intensities could produce an inverted-
U effect. Low and moderate intensities of VNS may result
in appropriate norepinephrine release to engage higher-affinity
α2-adrenergic receptors and promote potentiation, whereas
high intensity stimulation may increase norepinephrine levels
further to activate lower-affinity β-adrenergic receptors to oppose
potentiation. Indeed, this concentration-dependent dichotomy
in control of the polarity of plasticity by adrenergic receptors
has been described previously (Salgado et al., 2012). A recent
study demonstrated that stimulation frequency also imposes an
inverted-U effect on the degree of plasticity, consistent with
postsynaptic receptor activation as the primary mediator of the
response (Buell et al., 2018). It is important to note that both
the desensitizing and opposing activation models, as well as
many others, may contribute to the inverted-U, as they are not
mutually exclusive.

It is not known whether the inverted-U response results
from a common underlying principle of cellular and network
activity across all brain regions or whether differences in network
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architecture across different systems would produce different
outcomes. It is possible that non-responders to the standard VNS
therapy may benefit from a different set of stimulation parameters
that operate within this range or circumvent the conditions
that perturb neuromodulatory pathways, such as alterations
in vagal tone or neuromodulatory function. Furthermore,
given the heterogeneity of patient characteristics as well as
stroke manifestations described above, it is possible that some
subgroups may be more responsive to one set of stimulation
settings than others. Clinical studies described above utilized a
standard, non-individualized set of stimulation parameters and
observed significant improvement in motor deficits in most
patients, supporting the notion that a relatively wide effective
therapeutic range exists and individual variability is unlikely
to preclude benefits (Dawson et al., 2016; Kimberley et al.,
2018). Regardless of the underlying mechanism, the differential
responses to stimulation parameters highlight the utility of
optimizing stimulation parameters to yield the greatest response.

NON-INVASIVE VAGUS NERVE
STIMULATION

In recent years, non-invasive transcutaneous methods of
stimulating the vagus nerve have emerged as a potential
alternative strategy to generate VNS without necessitating a
surgical implant. There are two primary ways of delivering non-
invasive VNS. The first method, commonly termed tVNS or
aVNS, targets the auricular branch of the vagus nerve (ABVN)
and consists of the application of stimulation to the skin of
the external ear on the tragus and cymba. The second is
transcutaneous stimulation of the skin in the neck region over the
cervical vagus nerve, commonly referred to as nVNS and targets
the underlying cervical vagus.

The two main sites for auricular VNS include the tragus
and cymba concha. Recent reports suggest that the extent to
which vagal branches innervate the tragus is unclear (Badran
et al., 2018a; Burger and Verkuil, 2018) due to inconsistencies
in a human cadaver study that described the innervation of
the human auricle (Peuker and Filler, 2002). Furthermore,
inconsistencies in electrode placement and skin contact coupled
with the effects of varying tissue impedance on nerve activation
from individual to individual may be impediments to reliable
stimulation with tVNS. For example, the electrode is placed over
the auricular skin in a relatively small area with dense innervation
and it is possible that the spread of current could activate nearby
nerves such as the auriculotemporal branch of the mandibular
nerve. This combined recruitment complicates the assessment
and interpretation of the effects of stimulation of the vagus nerve.

Stimulation parameters using implanted cervical VNS have
been well characterized and strongly influence the plasticity
effects of VNS. The challenge of identifying and consistently
delivering stimulation within a particular range of parameters
is magnified by non-invasive stimulation strategies. While tVNS
may be able to stimulate the auricular branches of the vagus, the
inability to provide consistent, reliable activation may hamper the
ability to observe robust effects. Furthermore, the ABVN has five

times less A-β fibers compared to the cervical vagus nerve (Safi
et al., 2016), which may contribute to its weaker activation of
central targets (Ay et al., 2015).

Therefore, while avoiding surgical implantation has
advantages, the preponderance of evidence in well-controlled
studies points to the failure of these devices to sufficiently and
reliably activate key brain structures. For example, in rat models
of acute ischemic stroke, cervical VNS resulted in a greater
reduction of infarct volume compared to non-invasive VNS
(Ay et al., 2009, 2015). Non-invasive VNS also generated less
intense c-fos staining in NTS neurons compared to cervical
VNS, suggesting less robust activation (Ay et al., 2015). Available
data from human studies describing regional brain activation in
response to non-invasive VNS varies substantially from study to
study (Kraus et al., 2007; Frangos et al., 2015; Yakunina et al.,
2017; Badran et al., 2018a). Moreover, human studies using tVNS
at the tragus failed to demonstrate significant activation of the
locus coeruleus, a key brainstem nucleus in the actions of VNS,
compared to sham stimulation (Yakunina et al., 2017; Badran
et al., 2018b). These studies may explain the reduced efficacy
of human studies with non-invasive VNS compared to cervical
VNS (Bauer et al., 2016; Barbella et al., 2018).

A second non-invasive approach is stimulation delivered
to the neck region above the cervical vagus nerve (nVNS).
This method of non-invasive stimulation has shown efficacy
for the treatment of acute episodes of cluster headaches and
migraine (Silberstein et al., 2016; Goadsby et al., 2018; Grazzi
et al., 2018; Tassorelli et al., 2018). The mechanism of action is
thought to arise from VNS-driven activation of NTS, which in
turn modulates the activity of the trigeminal cervical complex
(TCC) (Moeller et al., 2018) and suppresses the transmission of
nociceptive signals to higher pain processing centers (Bohotin
et al., 2003). However, NTS also receives direct inputs from the
trigeminal and cervical nerves. Since these nerves lie near the
vagus nerve, it is possible that these nerves can also activate NTS
via the spread of current. Indeed, trigeminal nerve stimulation or
peripheral nerve stimulation can modulate nociceptive signals in
the TCC via activation of NTS (Contreras et al., 1982; Lewis et al.,
1987; Du and Zhou, 1990; Zerari-Mailly et al., 2005; Liu et al.,
2014; Mercante et al., 2017) and have therefore been used for
the treatment of headaches (Magis et al., 2007, 2013; Saper et al.,
2011). Activation of these nerves during nVNS could contribute
to headache relief (Henssen et al., 2019). Therefore, both VNS
and TNS can modulate nociceptive input via NTS activation
and may represent a generalized anti-nociceptive response to
stimulation. In contrast, the induction of cortical plasticity is
unique to VNS inputs. Repeatedly pairing a tone with cervical
VNS, but not TNS, resulted in tone-specific plasticity in the
auditory cortex (Engineer et al., 2011).

In addition to NTS, which receives 95% of the vagal input
(Magdaleno-Madrigal et al., 2010), key brain regions activated by
cervical VNS are also activated by non-invasive VNS including
locus coeruleus, amygdala, hippocampus, cingulate and insula
(Chae et al., 2003). This implied that the actions of non-
invasive VNS were similar to cervical VNS since both methods
activate similar upstream targets, and could, therefore, be used
as an alternative to cervical VNS. However, many studies have
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demonstrated these key brain regions are also activated by
peripheral nerve stimulation, trigeminal nerve stimulation, and
cutaneous stimulation (Kwon et al., 2000; Rouzade-Dominguez
et al., 2001; Scherder et al., 2003; Frangos and Komisaruk,
2017; De Cicco et al., 2018). Furthermore, LC neurons can be
activated by both aversive stimulation (e.g., tail pinch) as well
as cervical VNS (Hulsey et al., 2017). In other words, brain
regions activated by VNS are also activated by tactile, arousing
or aversive sensory stimuli, suggesting that the activation of
these regions is not specific to the vagus nerve. Therefore, nVNS
activation of common brain regions does not entail equivalence
to cervical VNS.

Furthermore, cervical VNS stimulation parameters have
been well characterized and have been shown to modulate
plasticity effects across a twofold range of intensities and
suggest the existence of a potentially useful therapeutic range
of activity (Borland et al., 2016). With non-invasive VNS,
the ability to deliver consistent and reliable stimulation
within a particular range of parameters to induce plasticity
for therapeutic use has not yet been demonstrated. Taken
together, these results demonstrate that brain activation of
common targets by cervical VNS and non-invasive VNS
does not entail similar plasticity or behavioral outcomes.
More studies are needed to determine the extent to
which the vagus nerve is activated using non-invasive
approaches along with a parametric characterization of
stimulation parameters.

Recently, two clinical studies were conducted using non-
invasive VNS combined with upper limb rehabilitation in
individuals with chronic upper extremity weakness after stroke.
In a study by Capone et al., (Capone et al., 2017) individuals
with chronic ischemic or hemorrhagic stroke were randomized
to either tVNS combined with robotic rehabilitation (n = 7)
or auricular-sham VNS (ear lobe) combined with robotic
rehabilitation (n = 5). The therapy was delivered for 10 days
over 2 weeks. After 2 weeks, no significant differences between
the tVNS and sham group were observed on the FMA-
UE score (5.4 vs. 2.8 points, p = 0.16). While the results
are interesting, the sample size precludes drawing distinct
conclusions about tVNS efficacy.

In the second single-arm feasibility study (Redgrave et al.,
2018), 13 participants more than 3 months post-stroke
underwent rehabilitation combined with tVNS for 6 weeks.
After tVNS rehabilitation training, the FMA-UE score increased
by 17.1 ± 7.8 points with a >10-point change in 83% of
patients. It should be noted that the FMA-UE scores used
in this study combined motor, sensory, and joint components
(0–126 points score) instead of the 0–66 points score that is
typically used in many upper-limb stroke studies. Therefore
the results are not directly comparable with the cervical VNS
studies (Dawson et al., 2016; Kimberley et al., 2018). Several
limitations of this study are worth considering. First, the
study did not include a sham stimulation control group. Since
stimulation was delivered at the maximally tolerable intensity
and was thus perceptible, a placebo effect of stimulation
cannot be ruled out. Second, some participants were less than
6 months post-stroke, and it is possible that spontaneous

recovery could contribute to some of the improvement (Narayan
Arya et al., 2011). A future randomized, blinded, placebo-
controlled study in chronic stroke patients would be required to
determine the efficacy of non-invasive VNS as applied to upper
limb rehabilitation.

Further studies are needed to explore the effectiveness
of non-invasive VNS, with a specific focus on parametric
characterization. Ideally, any non-invasive VNS effects
would be benchmarked against implanted VNS to determine
the magnitude. As non-invasive stimulation would have
demonstrable advantages for patients over implanted VNS, a
thorough evaluation in robust, well-designed studies is needed to
guide future clinical implementation.

CONCLUSION AND FUTURE
DIRECTIONS

The studies reviewed provide a compelling demonstration that
VNS-based rehabilitation is a potentially useful strategy to target
plasticity and improve motor function for chronic stroke. VNS-
dependent rapid engagement of neuromodulatory networks
provides a signal to facilitate plasticity in pathways activated
by rehabilitative exercises. While the effects of cholinergic
and noradrenergic modulation on cortical plasticity have been
well documented, other neuromodulators could also play a
role in VNS-induced cortical plasticity. Emerging evidence
highlights a similar role of serotoninergic systems in the
VNS-dependent enhancement of plasticity, paralleling studies
demonstrating that VNS activates these neuromodulatory
systems (Manta et al., 2009, 2012; Hulsey, 2018). The
neurophysiological mechanisms underlying VNS-driven
cortical plasticity are complex and likely involve top-down
control of neuromodulatory inputs involved in the planning of
movements, reward, and decision making (Zmarowski et al.,
2005; Convento et al., 2014).

The effects of VNS paired with rehabilitation have been
tested across several different animal models of stroke and
other neurological injuries and consistently demonstrate
significantly greater recovery and enhancement of plasticity
when rehabilitation is paired with VNS compared to equivalent
rehabilitation without VNS. The flexibility to improve recovery
across several injury models demonstrates that VNS engages
a generalized mechanism to potentiate benefits specific to
rehabilitation. The improved behavioral outcomes across
different models along with objective evidence of plasticity
after paired VNS informed clinical studies for the inclusion
of appropriate patient populations who are likely to benefit
from the therapy.

The encouraging findings from the two pilot clinical
studies supported the design of a phase III pivotal,
multi-site, double-blind, randomized trial (VNS-
REHAB) of this intervention with 120 implanted
participants and approximately 20 study sites. This
study is powered to detect the difference seen in the
FMA-UE score at the end of 6-weeks of in-clinic
therapy with 80% power. The VNS-REHAB study is
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approximately 75% enrolled, with enrollment expected to
complete in Spring 2019.

Despite the observed improvements across a range of
conditions, it is possible that additional factors, including
comorbid conditions, stroke etiology, individual variations in
anatomy, and drugs or diseases that influence neuromodulatory
function, could influence the efficacy of VNS therapy.
Evaluation of the clinical effectiveness of paired VNS therapy
in heterogeneous stroke populations along with continued
development of stimulation parameters and rehabilitative
paradigms to individualize and optimize the therapy for specific
patient subgroups will improve the potential of this therapy to
improve human function and well-being.

AUTHOR CONTRIBUTIONS

NE and SH wrote the manuscript. All authors participated
in the discussion of the manuscript and provided significant
revisions. All authors approved the final version of the
manuscript for submission.

FUNDING

The work was supported by MicroTransponder, Inc. This work
was supported by MicroTransponder, Inc. and by the National
Institutes of Health R01 NS094384 (SAH).

REFERENCES
Arnold, H. M., Burk, J. A., Hodgson, E. M., Sarter, M., and Bruno, J. P.

(2002). Differential cortical acetylcholine release in rats performing a
sustained attention task versus behavioral control tasks that do not explicitly
tax attention. Neuroscience 114, 451–460. doi: 10.1016/S0306-4522(02)
00292-0

Aston-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus
coeruleus-norepinephrine function: adaptive gain and optimal performance.
Annu. Rev. Neurosci. 28, 403–450. doi: 10.1146/annurev.neuro.28.061604.
135709

Auriat, A. M., Wowk, S., and Colbourne, F. (2010). Rehabilitation after
intracerebral hemorrhage in rats improves recovery with enhanced dendritic
complexity but no effect on cell proliferation. Behav. Brain Res. 214, 42–47.
doi: 10.1016/j.bbr.2010.04.025

Ay, I., Lu, J., Ay, H., and Gregory Sorensen, A. (2009). Vagus nerve stimulation
reduces infarct size in rat focal cerebral ischemia. Neurosci. Lett. 459, 147–151.
doi: 10.1016/j.neulet.2009.05.018

Ay, I., Napadow, V., and Ay, H. (2015). Electrical stimulation of the vagus nerve
dermatome in the external ear is protective in rat cerebral ischemia. Brain
Stimul. 8, 7–12. doi: 10.1016/j.brs.2014.09.009

Badran, B. W., Brown, J. C., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T.,
Coatsworth, J., et al. (2018a). Tragus or cymba conchae? Investigating the
anatomical foundation of transcutaneous auricular vagus nerve stimulation
(taVNS). Brain Stimul. 11, 947–948. doi: 10.1016/j.brs.2018.06.003

Badran, B. W., Jenkins, D. D., DeVries, W. H., Dancy, M., Summers, P. M., Mappin,
G. M., et al. (2018b). Transcutaneous auricular vagus nerve stimulation (taVNS)
for improving oromotor function in newborns. Brain Stimul. 11, 1198–1200.
doi: 10.1016/j.brs.2018.06.009

Bagg, S., Pombo, A. P., and Hopman, W. (2002). Effect of age on functional
outcomes after stroke rehabilitation. Stroke 33, 179–185. doi: 10.1161/hs0102.
101224

Barbella, G., Cocco, I., Freri, E., Marotta, G., Visani, E., Franceschetti, S.,
et al. (2018). Transcutaneous vagal nerve stimulation (t-VNS): an adjunctive
treatment option for refractory epilepsy. Seizure 60, 115–119. doi: 10.1016/j.
seizure.2018.06.016

Bauer, S., Baier, H., Baumgartner, C., Bohlmann, K., Fauser, S., Graf, W., et al.
(2016). Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-
resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain
Stimul. 9, 356–363. doi: 10.1016/j.brs.2015.11.003

Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R.,
Cheng, S., et al. (2018). Heart Disease and Stroke Statistics - 2018 Update: A
Report from the. Dallas, TX: American Heart Association. doi: 10.1161/CIR.
0000000000000558

Bohotin, C., Scholsem, M., Multon, S., Martin, D., Bohotin, V., and Schoenen, J.
(2003). Vagus nerve stimulation in awake rats reduces formalin-induced
nociceptive behaviour and fos-immunoreactivity in trigeminal nucleus
caudalis. Pain 101, 3–12. doi: 10.1016/S0304-3959(02)00301-9

Bolognini, N., Russo, C., and Edwards, D. J. (2016). The sensory side of post-stroke
motor rehabilitation. Restor. Neurol. Neurosci. 34, 571–586. doi: 10.3233/RNN-
150606

Boon, P., Moors, I., De Herdt, V., and Vonck, K. (2006). Vagus nerve stimulation
and cognition. Seizure 15, 259–263. doi: 10.1016/j.seizure.2006.02.014

Borland, M., Vrana, W., Moreno, N., and Fogarty, E. (2016). Cortical map plasticity
as a function of vagus nerve stimulation intensity. Brain Stimul. 9, 117–123.
doi: 10.1016/j.brs.2015.08.018

Borland, M. S., Engineer, C. T., Vrana, W. A., Moreno, N. A., Engineer, N. D.,
Vanneste, S., et al. (2018). The interval between VNS-tone pairings determines
the extent of cortical map plasticity. Neuroscience 369, 76–86. doi: 10.1016/j.
neuroscience.2017.11.004

Bouret, S., and Sara, S. J. (2004). Reward expectation, orientation of attention and
locus coeruleus-medial frontal cortex interplay during learning. Eur. J. Neurosci.
20, 791–802. doi: 10.1111/j.1460-9568.2004.03526.x

Boyd, L. A., Hayward, K. S., Ward, N. S., Stinear, C. M., Rosso, C., Fisher, R. J., et al.
(2017). Biomarkers of stroke recovery: consensus-based core recommendations
from the stroke recovery and rehabilitation roundtable. Neurorehabil. Neural
Repair 31, 864–876. doi: 10.1177/1545968317732680

Buell, E. P., Loerwald, K. W., Engineer, C. T., Borland, M. S., Buell, J. M.,
Kelly, C. A., et al. (2018). Cortical map plasticity as a function of vagus
nerve stimulation rate. Brain Stimul. 11, 1218–1224. doi: 10.1016/j.brs.2018.
07.045

Buonomano, D. V., and Merzenich, M. M. (1998). Cortical plasticity: from synapses
to maps. Annu. Rev. Neurosci. 21, 149–186. doi: 10.1146/annurev.neuro.21.
1.149

Burger, A. M., and Verkuil, B. (2018). Transcutaneous nerve stimulation via the
tragus: are we really stimulating the vagus nerve? Brain Stimul. 11, 945–946.
doi: 10.1016/j.brs.2018.03.018

Burke, E., and Cramer, S. C. (2013). Biomarkers and predictors of restorative
therapy effects after stroke. Curr. Neurol. Neurosci. Rep. 13:329. doi: 10.1007/
s11910-012-0329-9

Burke, S. N., and Barnes, C. A. (2006). Neural plasticity in the ageing brain. Nat.
Rev. Neurosci. 7, 30–40. doi: 10.1038/nrn1809

Canning, C. G., Ada, L., Adams, R., and O’Dwyer, N. J. (2004). Loss of strength
contributes more to physical disability after stroke than loss of dexterity. Clin.
Rehabil. 18, 300–308. doi: 10.1191/0269215504cr715oa

Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simonetti, D., Bressi, F.,
et al. (2017). Transcutaneous vagus nerve stimulation combined with robotic
rehabilitation improves upper limb function after stroke. Neural Plast
2017:7876507. doi: 10.1155/2017/7876507

Carcea, I., and Froemke, R. C. (2013). Cortical plasticity, excitatory–inhibitory
balance, and sensory perception. Prog. Brain Res. 2013, 65–90. doi: 10.1016/
B978-0-444-63327-9.00003-5

Castoro, M. A., Yoo, P. B., Hincapie, J. G., Hamann, J. J., Ruble, S. B., Wolf, P. D.,
et al. (2011). Excitation properties of the right cervical vagus nerve in adult dogs.
Exp. Neurol. 227, 62–68. doi: 10.1016/j.expneurol.2010.09.011

Chae, J.-H., Nahas, Z., Lomarev, M., Denslow, S., Lorberbaum, J. P., Bohning,
D. E., et al. (2003). A review of functional neuroimaging studies of vagus nerve
stimulation (VNS). J. Psychiatr. Res. 37, 443–455. doi: 10.1016/S0022-3956(03)
00074-8

Clark, K. B., Krahl, S. E., Smith, D. C., and Jensen, R. A. (1995). Post-
training unilateral vagal stimulation enhances retention performance in the rat.
Neurobiol. Learn. Mem. 63, 213–216. doi: 10.1006/nlme.1995.1024

Frontiers in Neuroscience | www.frontiersin.org 14 March 2019 | Volume 13 | Article 280

https://doi.org/10.1016/S0306-4522(02)00292-0
https://doi.org/10.1016/S0306-4522(02)00292-0
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.1016/j.bbr.2010.04.025
https://doi.org/10.1016/j.neulet.2009.05.018
https://doi.org/10.1016/j.brs.2014.09.009
https://doi.org/10.1016/j.brs.2018.06.003
https://doi.org/10.1016/j.brs.2018.06.009
https://doi.org/10.1161/hs0102.101224
https://doi.org/10.1161/hs0102.101224
https://doi.org/10.1016/j.seizure.2018.06.016
https://doi.org/10.1016/j.seizure.2018.06.016
https://doi.org/10.1016/j.brs.2015.11.003
https://doi.org/10.1161/CIR.0000000000000558
https://doi.org/10.1161/CIR.0000000000000558
https://doi.org/10.1016/S0304-3959(02)00301-9
https://doi.org/10.3233/RNN-150606
https://doi.org/10.3233/RNN-150606
https://doi.org/10.1016/j.seizure.2006.02.014
https://doi.org/10.1016/j.brs.2015.08.018
https://doi.org/10.1016/j.neuroscience.2017.11.004
https://doi.org/10.1016/j.neuroscience.2017.11.004
https://doi.org/10.1111/j.1460-9568.2004.03526.x
https://doi.org/10.1177/1545968317732680
https://doi.org/10.1016/j.brs.2018.07.045
https://doi.org/10.1016/j.brs.2018.07.045
https://doi.org/10.1146/annurev.neuro.21.1.149
https://doi.org/10.1146/annurev.neuro.21.1.149
https://doi.org/10.1016/j.brs.2018.03.018
https://doi.org/10.1007/s11910-012-0329-9
https://doi.org/10.1007/s11910-012-0329-9
https://doi.org/10.1038/nrn1809
https://doi.org/10.1191/0269215504cr715oa
https://doi.org/10.1155/2017/7876507
https://doi.org/10.1016/B978-0-444-63327-9.00003-5
https://doi.org/10.1016/B978-0-444-63327-9.00003-5
https://doi.org/10.1016/j.expneurol.2010.09.011
https://doi.org/10.1016/S0022-3956(03)00074-8
https://doi.org/10.1016/S0022-3956(03)00074-8
https://doi.org/10.1006/nlme.1995.1024
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00280 March 28, 2019 Time: 18:56 # 15

Engineer et al. Vagus Nerve Stimulation for Stroke

Clark, K. B., Naritoku, D. K., Smith, D. C., Browning, R. A., and Jensen, R. A.
(1999). Enhanced recognition memory following vagus nerve stimulation in
human subjects. Nat. Neurosci. 2, 94–98. doi: 10.1038/4600

Clark, K. B., Smith, D. C., Hassert, D. L., Browning, R. A., Naritoku, D. K., and
Jensen, R. A. (1998). Posttraining electrical stimulation of vagal afferents with
concomitant vagal efferent inactivation enhances memory storage processes
in the rat. Neurobiol. Learn. Mem. 70, 364–373. doi: 10.1006/nlme.1998.
3863

Cohen, M. R., and Maunsell, J. H. R. (2009). Attention improves performance
primarily by reducing interneuronal correlations. Nat. Neurosci. 12, 1594–1600.
doi: 10.1038/nn.2439

Conner, J. M., Chiba, A. A., and Tuszynski, M. H. (2005). The basal forebrain
cholinergic system is essential for cortical plasticity and functional recovery
following brain injury. Neuron 46, 173–179. doi: 10.1016/j.neuron.2005.
03.003

Conner, J. M., Culberson, A., Packowski, C., Chiba, A. A., and Tuszynski, M. H.
(2003). Lesions of the Basal forebrain cholinergic system impair task acquisition
and abolish cortical plasticity associated with motor skill learning. Neuron 38,
819–829. doi: 10.1016/S0896-6273(03)00288-5

Contreras, R. J., Beckstead, R. M., and Norgren, R. (1982). The central
projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an
autoradiographic study in the rat. J. Auton. Nerv. Syst. 6, 303–322. doi: 10.1016/
0165-1838(82)90003-0

Convento, S., Bolognini, N., Fusaro, M., Lollo, F., and Vallar, G. (2014).
Neuromodulation of parietal and motor activity affects motor planning and
execution. Cortex 57, 51–59. doi: 10.1016/j.cortex.2014.03.006

Coyle, J. T., Price, D. L., and DeLong, M. R. (1983). Alzheimer’s disease: a
disorder of cortical cholinergic innervation. Science 219, 1184–1190. doi: 10.
1126/science.6338589

Dan, Y., and Poo, M. (2004). Spike timing-dependent plasticity of neural circuits.
Neuron 44, 23–30. doi: 10.1016/j.neuron.2004.09.007

Dawson, J., Pierce, D., Dixit, A., Kimberley, T. J., Robertson, M., Tarver, B., et al.
(2016). Safety, feasibility, and efficacy of vagus nerve stimulation paired with
upper-limb rehabilitation after ischemic stroke. Stroke 47, 143–150. doi: 10.
1161/STROKEAHA.115.010477

De Cicco, V., Tramonti Fantozzi, M. P., Cataldo, E., Barresi, M., Bruschini, L.,
Faraguna, U., et al. (2018). Trigeminal, visceral and vestibular inputs may
improve cognitive functions by acting through the locus coeruleus and the
ascending reticular activating system: a new hypothesis. Front. Neuroanat.
11:130. doi: 10.3389/fnana.2017.00130

Dimyan, M. A., and Cohen, L. G. (2011). Neuroplasticity in the context of motor
rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85. doi: 10.1038/nrneurol.
2010.200

Donoghue, J. P., and Sanes, J. N. (1987). Peripheral nerve injury in developing rats
reorganizes representation pattern in motor cortex. Proc. Natl. Acad. Sci. U.S.A.
84, 1123–1126. doi: 10.1073/pnas.84.4.1123

Du, H. J., and Zhou, S. Y. (1990). Involvement of solitary tract nucleus in control
of nociceptive transmission in cat spinal cord neurons. Pain 40, 323–331. doi:
10.1016/0304-3959(90)91129-7

Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., and Taub, E. (1995). Increased
cortical representation of the fingers of the left hand in string players. Science
270, 305–307. doi: 10.1126/science.270.5234.305

Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta,
S. P., et al. (2011). Reversing pathological neural activity using targeted
plasticity. Nature 470, 101–106. doi: 10.1038/nature09656

Feigin, V. L., Roth, G. A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S.,
et al. (2016). Global burden of stroke and risk factors in 188 countries, during
1990-2013: a systematic analysis for the Global Burden of Disease Study 2013.
Lancet Neurol. 15, 913–924. doi: 10.1016/S1474-4422(16)30073-4

Feldman, D. E. (2009). Synaptic mechanisms for plasticity in neocortex. Annu. Rev.
Neurosci. 32, 33–55. doi: 10.1146/annurev.neuro.051508.135516

Feldman, D. E., and Brecht, M. (2005). Map plasticity in somatosensory cortex.
Science 310, 810–815. doi: 10.1126/science.1115807

Foley, J. O., and DuBois, F. S. (1937). Quantitative studies of the vagus nerve in
the cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67, 49–67.
doi: 10.1002/cne.900670104

Follesa, P., Biggio, F., Gorini, G., Caria, S., Talani, G., Dazzi, L., et al.. (2007).
Vagus nerve stimulation increases norepinephrine concentration and the gene

expression of BDNF and bFGF in the rat brain. Brain Res. 1179, 28–34. doi:
10.1016/j.brainres.2007.08.045

Franceschini, M., La Porta, F., Agosti, M., and Massucci, M. (2010). Is health-
related-quality of life of stroke patients influenced by neurological impairments
at one year after stroke? Eur. J. Phys. Rehabil. Med. 46, 389–399.

Frangos, E., Ellrich, J., and Komisaruk, B. R. (2015). Non-invasive access to the
vagus nerve central projections via electrical stimulation of the external ear:
fMRI evidence in humans. Brain Stimul. 8, 624–636. doi: 10.1016/j.brs.2014.
11.018

Frangos, E., and Komisaruk, B. R. (2017). Access to vagal projections via cutaneous
electrical stimulation of the neck: fMRI evidence in healthy humans. Brain
Stimul. 10, 19–27. doi: 10.1016/j.brs.2016.10.008

Freitas, C., Perez, J., Knobel, M., Tormos, J. M., Oberman, L., Eldaief, M., et al.
(2011). Changes in cortical plasticity across the lifespan. Front. Aging Neurosci.
3:5. doi: 10.3389/fnagi.2011.00005

Froemke, R. C. (2015). Plasticity of cortical excitatory-inhibitory balance. Annu.
Rev. Neurosci. 38, 195–219. doi: 10.1146/annurev-neuro-071714-034002

Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J., and Caron,
M. G. (2004). Desensitization of G protein-coupled receptors and neuronal
functions. Annu. Rev. Neurosci. 27, 107–144. doi: 10.1146/annurev.neuro.27.
070203.144206

Ganzer, P. D., Darrow, M. J., Meyers, E. C., Solorzano, B. R., Ruiz, A. D.,
Robertson, N. M., et al. (2018). Closed-loop neuromodulation restores network
connectivity and motor control after spinal cord injury. eLife 7:e32058. doi:
10.7554/eLife.32058

Gesi, M., Soldani, P., Giorgi, F. S., Santinami, A., Bonaccorsi, I., and Fornai, F.
(2000). The role of the locus coeruleus in the development of Parkinson’s
disease. Neurosci. Biobehav. Rev. 24, 655–668. doi: 10.1016/S0149-7634(00)
00028-2

Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M., and Heilman, K. M.
(2006). The influence of vagus nerve stimulation on memory. Cogn. Behav.
Neurol. 19, 119–122. doi: 10.1097/01.wnn.0000213908.34278.7d

Goadsby, P. J., de Coo, I. F., Silver, N., Tyagi, A., Ahmed, F., Gaul, C., et al. (2018).
Non-invasive vagus nerve stimulation for the acute treatment of episodic and
chronic cluster headache: a randomized, double-blind, sham-controlled ACT2
study. Cephalalgia 38, 959–969. doi: 10.1177/0333102417744362

Grazzi, L., Tassorelli, C., de Tommaso, M., Pierangeli, G., Martelletti, P., Rainero, I.,
et al. (2018). Practical and clinical utility of non-invasive vagus nerve
stimulation (nVNS) for the acute treatment of migraine: a post hoc analysis
of the randomized, sham-controlled, double-blind PRESTO trial. J. Headache
Pain 19:98. doi: 10.1186/s10194-018-0928-1

Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role
in cortical plasticity. Neuroscience 111, 815–835. doi: 10.1016/S0306-4522(02)
00026-X

Hangya, B., Ranade, S. P., Lorenc, M., and Kepecs, A. (2015). Central cholinergic
neurons are rapidly recruited by reinforcement feedback. Cell 162, 1155–1168.
doi: 10.1016/j.cell.2015.07.057

Harris, J. E., and Eng, J. J. (2007). Paretic upper-limb strength best explains
arm activity in people with stroke. Phys. Ther. 87, 88–97. doi: 10.2522/ptj.
20060065

Hasan, M. T., Hernández-González, S., Dogbevia, G., Treviño, M., Bertocchi, I.,
Gruart, A., et al. (2013). Role of motor cortex NMDA receptors in learning-
dependent synaptic plasticity of behaving mice. Nat. Commun. 4:2258. doi:
10.1038/ncomms3258

Hasselmo, M. E. (1995). Neuromodulation and cortical function: modeling the
physiological basis of behavior. Behav. Brain Res. 67, 1–27. doi: 10.1016/0166-
4328(94)00113-T

Hasselmo, M. E., and Sarter, M. (2011). Modes and models of forebrain cholinergic
neuromodulation of cognition. Neuropsychopharmacology 36, 52–73. doi: 10.
1038/npp.2010.104

Hays, S. A. (2016). Enhancing rehabilitative therapies with vagus nerve stimulation.
Neurotherapeutics 13, 382–394. doi: 10.1007/s13311-015-0417-z

Hays, S. A., Khodaparast, N., Hulsey, D. R., Ruiz, A., Sloan, A. M., Rennaker, R. L.,
et al. (2014a). Vagus nerve stimulation during rehabilitative training improves
functional recovery after intracerebral hemorrhage. Stroke 45, 3097–3100. doi:
10.1161/STROKEAHA.114.006654

Hays, S. A., Khodaparast, N., Ruiz, A., Sloan, A. M., Hulsey, D. R., Rennaker,
R. L., et al. (2014b). The timing and amount of vagus nerve stimulation

Frontiers in Neuroscience | www.frontiersin.org 15 March 2019 | Volume 13 | Article 280

https://doi.org/10.1038/4600
https://doi.org/10.1006/nlme.1998.3863
https://doi.org/10.1006/nlme.1998.3863
https://doi.org/10.1038/nn.2439
https://doi.org/10.1016/j.neuron.2005.03.003
https://doi.org/10.1016/j.neuron.2005.03.003
https://doi.org/10.1016/S0896-6273(03)00288-5
https://doi.org/10.1016/0165-1838(82)90003-0
https://doi.org/10.1016/0165-1838(82)90003-0
https://doi.org/10.1016/j.cortex.2014.03.006
https://doi.org/10.1126/science.6338589
https://doi.org/10.1126/science.6338589
https://doi.org/10.1016/j.neuron.2004.09.007
https://doi.org/10.1161/STROKEAHA.115.010477
https://doi.org/10.1161/STROKEAHA.115.010477
https://doi.org/10.3389/fnana.2017.00130
https://doi.org/10.1038/nrneurol.2010.200
https://doi.org/10.1038/nrneurol.2010.200
https://doi.org/10.1073/pnas.84.4.1123
https://doi.org/10.1016/0304-3959(90)91129-7
https://doi.org/10.1016/0304-3959(90)91129-7
https://doi.org/10.1126/science.270.5234.305
https://doi.org/10.1038/nature09656
https://doi.org/10.1016/S1474-4422(16)30073-4
https://doi.org/10.1146/annurev.neuro.051508.135516
https://doi.org/10.1126/science.1115807
https://doi.org/10.1002/cne.900670104
https://doi.org/10.1016/j.brainres.2007.08.045
https://doi.org/10.1016/j.brainres.2007.08.045
https://doi.org/10.1016/j.brs.2014.11.018
https://doi.org/10.1016/j.brs.2014.11.018
https://doi.org/10.1016/j.brs.2016.10.008
https://doi.org/10.3389/fnagi.2011.00005
https://doi.org/10.1146/annurev-neuro-071714-034002
https://doi.org/10.1146/annurev.neuro.27.070203.144206
https://doi.org/10.1146/annurev.neuro.27.070203.144206
https://doi.org/10.7554/eLife.32058
https://doi.org/10.7554/eLife.32058
https://doi.org/10.1016/S0149-7634(00)00028-2
https://doi.org/10.1016/S0149-7634(00)00028-2
https://doi.org/10.1097/01.wnn.0000213908.34278.7d
https://doi.org/10.1177/0333102417744362
https://doi.org/10.1186/s10194-018-0928-1
https://doi.org/10.1016/S0306-4522(02)00026-X
https://doi.org/10.1016/S0306-4522(02)00026-X
https://doi.org/10.1016/j.cell.2015.07.057
https://doi.org/10.2522/ptj.20060065
https://doi.org/10.2522/ptj.20060065
https://doi.org/10.1038/ncomms3258
https://doi.org/10.1038/ncomms3258
https://doi.org/10.1016/0166-4328(94)00113-T
https://doi.org/10.1016/0166-4328(94)00113-T
https://doi.org/10.1038/npp.2010.104
https://doi.org/10.1038/npp.2010.104
https://doi.org/10.1007/s13311-015-0417-z
https://doi.org/10.1161/STROKEAHA.114.006654
https://doi.org/10.1161/STROKEAHA.114.006654
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00280 March 28, 2019 Time: 18:56 # 16

Engineer et al. Vagus Nerve Stimulation for Stroke

during rehabilitative training affect poststroke recovery of forelimb strength.
Neuroreport 25, 676–682. doi: 10.1097/WNR.0000000000000154

Hays, S. A., Khodaparast, N., Sloan, A. M., Fayyaz, T., Hulsey, D. R., Ruiz,
A. D., et al. (2013). The bradykinesia assessment task: an automated method
to measure forelimb speed in rodents. J. Neurosci. Methods 214, 52–61. doi:
10.1016/j.jneumeth.2012.12.022

Hays, S. A., Ruiz, A., Bethea, T., Khodaparast, N., Carmel, J. B., Rennaker, R. L. II,
et al. (2016). Vagus Nerve Stimulation during rehabilitative training enhances
recovery of forelimb function after ischemic stroke in aged rats. Neurobiol.
Aging 43, 111–118. doi: 10.1016/j.neurobiolaging.2016.03.030

He, K., Huertas, M., Hong, S. Z., Tie, X. X., Hell, J. W., Shouval, H., et al. (2015).
Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88,
528–538. doi: 10.1016/j.neuron.2015.09.037

Henssen, D. J. H. A., Derks, B., van Doorn, M., Verghoot, N., van Walsum, A.-
M. V. C., Staats, P., et al. (2019). Vagus nerve stimulation for primary headache
disorders: An anatomical review to explain a clinical phenomenon. Cephalalgia
1–5. doi: 10.1177/0333102419833076

Heron, C., Gould, T. J., and Bickford, P. (1996). Acquisition of a runway motor
learning task is impaired by a beta adrenergic antagonist in F344 rats. Behav.
Brain Res. 78, 235–241. doi: 10.1016/0166-4328(95)00252-9

Hess, G., and Donoghue, J. P. (1994). Long-term potentiation of horizontal
connections provides a mechanism to reorganize cortical motor maps.
J. Neurophysiol. 71, 2543–2547. doi: 10.1152/jn.1994.71.6.2543

Hess, G., and Krawczyk, R. (1996). Cholinergic modulation of synaptic
transmission in horizontal connections of rat motor cortex. Acta Neurobiol.
Exp. 56, 863–872.

Hoppe, C., Helmstaedter, C., Scherrmann, J., and Elger, C. E. (2001). No evidence
for cognitive side effects after 6 months of vagus nerve stimulation in epilepsy
patients. Epilepsy Behav. 2, 351–356. doi: 10.1006/ebeh.2001.0219

Hulsey, D. R. (2018). Neuromodulatory Pathways Required for Targeted
Plasticity Therapy. Doctoral dissertation, The University of Texas at Dallas,
Richardson, TX.

Hulsey, D. R., Hays, S. A., Khodaparast, N., Ruiz, A., Das, P., Rennaker, R. L., et al.
(2016). Reorganization of motor cortex by vagus nerve stimulation requires
cholinergic innervation. Brain Stimul. 9, 174–181. doi: 10.1016/j.brs.2015.
12.007

Hulsey, D. R., Riley, J. R., Loerwald, K. W., Rennaker, R. L., Kilgard, M. P., and
Hays, S. A. (2017). Parametric characterization of neural activity in the locus
coeruleus in response to vagus nerve stimulation. Exp. Neurol. 289, 21–30.
doi: 10.1016/j.expneurol.2016.12.005

Juliano, S. L., Ma, W., and Eslin, D. (1991). Cholinergic depletion prevents
expansion of topographic maps in somatosensory cortex. Proc. Natl. Acad. Sci.
U.S.A. 88, 780–784. doi: 10.1073/pnas.88.3.780

Kelly-Hayes, M., Beiser, A., Kase, C. S., Scaramucci, A., D’Agostino, R. B., and
Wolf, P. A. (2003). The influence of gender and age on disability following
ischemic stroke: the Framingham study. J. Stroke Cerebrovasc. Dis. 12, 119–126.
doi: 10.1016/S1052-3057(03)00042-9

Khodaparast, N., Hays, S. A., Sloan, A. M., Fayyaz, T., Hulsey, D. R., Rennaker, R. L.,
et al. (2014). Vagus nerve stimulation delivered during motor rehabilitation
improves recovery in a rat model of stroke. Neurorehabil. Neural Repair 28,
698–706. doi: 10.1177/1545968314521006

Khodaparast, N., Hays, S. A., Sloan, A. M., Hulsey, D. R., Ruiz, A., Pantoja, M.,
et al. (2013). Vagus nerve stimulation during rehabilitative training improves
forelimb strength following ischemic stroke. Neurobiol. Dis. 60, 80–88. doi:
10.1016/j.nbd.2013.08.002

Khodaparast, N., Kilgard, M. P., Casavant, R., Ruiz, A., Qureshi, I., Ganzer, P. D.,
et al. (2016). Vagus nerve stimulation during rehabilitative training improves
forelimb recovery after chronic ischemic stroke in rats. Neurorehabil. Neural
Repair 30, 676–684. doi: 10.1177/1545968315616494

Kilgard, M. P., and Merzenich, M. M. (1998). Cortical map reorganization enabled
by nucleus basalis activity. Science 279, 1714–1718. doi: 10.1126/science.279.
5357.1714

Kilgard, M. P., Rennaker, R. L., Alexander, J., and Dawson, J. (2018). Vagus
nerve stimulation paired with tactile training improved sensory function in
a chronic stroke patient. Neurorehabilitation 42, 159–165. doi: 10.3233/NRE-
172273

Kimberley, T. J., Pierce, D., Prudente, C. N., Francisco, G. E., Yozbatiran, N.,
Smith, P., et al. (2018). Vagus nerve stimulation paired with upper limb

rehabilitation after chronic stroke. Stroke 49, 2789–2792. doi: 10.1161/
STROKEAHA.118.022279

Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F., and Bear, M. F. (1999).
Modulation of long-term synaptic depression in visual cortex by acetylcholine
and norepinephrine. J. Neurosci. 19, 1599–1609. doi: 10.1523/JNEUROSCI.19-
05-01599.1999

Kleim, J. A., and Jones, T. A. (2008). Principles of experience-dependent neural
plasticity: implications for rehabilitation after brain damage. J. Speech Lang.
Hear. Res. 51, S225–S239. doi: 10.1044/1092-4388(2008/018)

Korchounov, A., and Ziemann, U. (2011). Neuromodulatory neurotransmitters
influence LTP-Like plasticity in human cortex: a pharmaco-TMS study.
Neuropsychopharmacology 36, 1894–1902. doi: 10.1038/npp.2011.75

Krakauer, J. W. (2004). Functional imaging of motor recovery after stroke:
remaining challenges. Curr. Neurol. Neurosci. Rep. 4, 42–46. doi: 10.1007/
s11910-004-0010-z

Kraus, T., Hösl, K., Kiess, O., Schanze, A., Kornhuber, J., and Forster, C. (2007).
BOLD fMRI deactivation of limbic and temporal brain structures and mood
enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm.
114, 1485–1493. doi: 10.1007/s00702-007-0755-z

Kwon, Y., Kang, M., Ahn, C., Han, H., Ahn, B., and Lee, J. (2000). Effect of high or
low frequency electroacupuncture on the cellular activity of catecholaminergic
neurons in the brain stem. Acupunct. Electrother. Res. 25, 27–36. doi: 10.3727/
036012900816356235

Kwon, Y. H., and Jang, S. H. (2010). Cortical activation pattern in hemiparetic
patients with pontine infarct. Eur. Neurol. 64, 9–14. doi: 10.1159/000
313976

Langhorne, P., Coupar, F., and Pollock, A. (2009). Motor recovery after stroke:
a systematic review. Lancet Neurol. 8, 741–754. doi: 10.1016/S1474-4422(09)
70150-4

Lewis, J. W., Baldrighi, G., and Akil, H. (1987). A possible interface between
autonomic function and pain control: opioid analgesia and the nucleus tractus
solitarius. Brain Res. 424, 65–70. doi: 10.1016/0006-8993(87)91193-0

Liang, H., Yin, Y., Lin, T., Guan, D., Ma, B., Li, C., et al. (2013). Transplantation
of bone marrow stromal cells enhances nerve regeneration of the corticospinal
tract and improves recovery of neurological functions in a collagenase-induced
rat model of intracerebral hemorrhage. Mol. Cells 36, 17–24. doi: 10.1007/
s10059-013-2306-9

Liu, K., Gao, X.-Y., Li, L., Ben, H., Qin, Q.-G., Zhao, Y.-X., et al. (2014).
Neurons in the nucleus tractus solitarius mediate the acupuncture analgesia
in visceral pain rats. Auton. Neurosci. 186, 91–94. doi: 10.1016/j.autneu.2014.
08.004

Loerwald, K. W., Borland, M. S., Rennaker, R. L., Hays, S. A., and Kilgard, M. P.
(2017). The interaction of pulse width and current intensity on the extent of
cortical plasticity evoked by vagus nerve stimulation. Brain Stimul. 11, 271–277.
doi: 10.1016/j.brs.2017.11.007

Lui, S. K., and Nguyen, M. H. (2018). Elderly stroke rehabilitation: overcoming
the complications and its associated challenges. Curr. Gerontol. Geriatr. Res.
2018:9853837. doi: 10.1155/2018/9853837

Magdaleno-Madrigal, V. M., Martínez-Vargas, D., Valdés-Cruz, A., Almazán-
Alvarado, S., and Fernández-Mas, R. (2010). Preemptive effect of
nucleus of the solitary tract stimulation on amygdaloid kindling in
freely moving cats. Epilepsia 51, 438–444. doi: 10.1111/j.1528-1167.2009.
02337.x

Magis, D., Allena, M., Bolla, M., De Pasqua, V., Remacle, J.-M., and Schoenen, J.
(2007). Occipital nerve stimulation for drug-resistant chronic cluster headache:
a prospective pilot study. Lancet Neurol. 6, 314–321. doi: 10.1016/S1474-
4422(07)70058-3

Magis, D., Sava, S., d’Elia, T. S., Baschi, R., and Schoenen, J. (2013). Safety and
patients’ satisfaction of transcutaneous Supraorbital NeuroStimulation (tSNS)
with the Cefaly R©device in headache treatment: a survey of 2,313 headache
sufferers in the general population. J. Headache Pain 14:95. doi: 10.1186/1129-
2377-14-95

Manta, S., Dong, J., Debonnel, G., and Blier, P. (2009). Enhancement of the
function of rat serotonin and norepinephrine neurons by sustained vagus nerve
stimulation. J. Psychiatry Neurosci. 34, 272–280.

Manta, S., El Mansari, M., and Blier, P. (2012). Novel attempts to optimize vagus
nerve stimulation parameters on serotonin neuronal firing activity in the rat
brain. Brain Stimul. 5, 422–429. doi: 10.1016/j.brs.2011.04.005

Frontiers in Neuroscience | www.frontiersin.org 16 March 2019 | Volume 13 | Article 280

https://doi.org/10.1097/WNR.0000000000000154
https://doi.org/10.1016/j.jneumeth.2012.12.022
https://doi.org/10.1016/j.jneumeth.2012.12.022
https://doi.org/10.1016/j.neurobiolaging.2016.03.030
https://doi.org/10.1016/j.neuron.2015.09.037
https://doi.org/10.1177/0333102419833076
https://doi.org/10.1016/0166-4328(95)00252-9
https://doi.org/10.1152/jn.1994.71.6.2543
https://doi.org/10.1006/ebeh.2001.0219
https://doi.org/10.1016/j.brs.2015.12.007
https://doi.org/10.1016/j.brs.2015.12.007
https://doi.org/10.1016/j.expneurol.2016.12.005
https://doi.org/10.1073/pnas.88.3.780
https://doi.org/10.1016/S1052-3057(03)00042-9
https://doi.org/10.1177/1545968314521006
https://doi.org/10.1016/j.nbd.2013.08.002
https://doi.org/10.1016/j.nbd.2013.08.002
https://doi.org/10.1177/1545968315616494
https://doi.org/10.1126/science.279.5357.1714
https://doi.org/10.1126/science.279.5357.1714
https://doi.org/10.3233/NRE-172273
https://doi.org/10.3233/NRE-172273
https://doi.org/10.1161/STROKEAHA.118.022279
https://doi.org/10.1161/STROKEAHA.118.022279
https://doi.org/10.1523/JNEUROSCI.19-05-01599.1999
https://doi.org/10.1523/JNEUROSCI.19-05-01599.1999
https://doi.org/10.1044/1092-4388(2008/018)
https://doi.org/10.1038/npp.2011.75
https://doi.org/10.1007/s11910-004-0010-z
https://doi.org/10.1007/s11910-004-0010-z
https://doi.org/10.1007/s00702-007-0755-z
https://doi.org/10.3727/036012900816356235
https://doi.org/10.3727/036012900816356235
https://doi.org/10.1159/000313976
https://doi.org/10.1159/000313976
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1016/0006-8993(87)91193-0
https://doi.org/10.1007/s10059-013-2306-9
https://doi.org/10.1007/s10059-013-2306-9
https://doi.org/10.1016/j.autneu.2014.08.004
https://doi.org/10.1016/j.autneu.2014.08.004
https://doi.org/10.1016/j.brs.2017.11.007
https://doi.org/10.1155/2018/9853837
https://doi.org/10.1111/j.1528-1167.2009.02337.x
https://doi.org/10.1111/j.1528-1167.2009.02337.x
https://doi.org/10.1016/S1474-4422(07)70058-3
https://doi.org/10.1016/S1474-4422(07)70058-3
https://doi.org/10.1186/1129-2377-14-95
https://doi.org/10.1186/1129-2377-14-95
https://doi.org/10.1016/j.brs.2011.04.005
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00280 March 28, 2019 Time: 18:56 # 17

Engineer et al. Vagus Nerve Stimulation for Stroke

Masiero, S., Celia, A., Rosati, G., and Armani, M. (2007). Robotic-assisted
rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil.
88, 142–149. doi: 10.1016/j.apmr.2006.10.032

Mercante, B., Enrico, P., Floris, G., Quartu, M., Boi, M., Serra, M. P., et al.
(2017). Trigeminal nerve stimulation induces Fos immunoreactivity in selected
brain regions, increases hippocampal cell proliferation and reduces seizure
severity in rats. Neuroscience 361, 69–80. doi: 10.1016/j.neuroscience.2017.
08.012

Merzenich, M. M., Recanzone, G. H., Jenkind, W. M., Allard, T. T., and Nudo,
R. J. (1988). “Cortical representational plasticity,” in Neurobiology Neocortex,
eds P. Rakic and W. Singer (Hoboken, NJ: John Wiley & Sons Limited), 41–67.
doi: 10.1152/jn.00493.2013

Meyers, E., Kasliwal, N., Lai, E., Romero-Ortega, M., Rennaker, R., Kilgard,
M., et al. (2018). Restoring Central Networks Improves Motor and Sensory
Function After Nerve Damage. in Society for Neuroscience. Available at: https:
//abstractsonline.com/pp8/#!/4649/presentation/29258 [accessed October 29,
2018].

Meyers, E. C., Solorzano, B. R., James, J., Ganzer, P. D., Lai, E. S., Rennaker,
R. L., et al. (2018). Vagus nerve stimulation enhances stable plasticity
and generalization of stroke recovery. Stroke 49, 710–717. doi: 10.1161/
STROKEAHA.117.019202

Milot, M.-H., and Cramer, S. C. (2008). Biomarkers of recovery after stroke. Curr.
Opin. Neurol. 21, 654–659. doi: 10.1097/WCO.0b013e3283186f96

Moeller, M., Schroeder, C. F., and May, A. (2018). Vagus nerve stimulation
modulates the cranial trigeminal autonomic reflex. Ann. Neurol. 84, 886–892.
doi: 10.1002/ana.25366

Mollet, L., Raedt, R., Delbeke, J., El Tahry, R., Grimonprez, A., Dauwe, I., et al.
(2013). Electrophysiological responses from vagus nerve stimulation in rats. Int.
J. Neural Syst. 23:1350027. doi: 10.1142/S0129065713500275

Morris, J. H., Van Wijck, F., Joice, S., and Donaghy, M. (2013). Predicting health
related quality of life 6 months after stroke: the role of anxiety and upper limb
dysfunction. Disabil. Rehabil. 35, 291–299. doi: 10.3109/09638288.2012.691942

Murphy, T. H., and Corbett, D. (2009). Plasticity during stroke recovery: from
synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872. doi: 10.1038/nrn2735

Murray, C. J. L., Atkinson, C., Bhalla, K., Birbeck, G., Burstein, R., Chou, D.,
et al. (2013). The state of US health, 1990-2010. JAMA 310, 591–608. doi:
10.1001/jama.2013.13805

Narayan Arya, K., Verma, R., and Garg, R. K. (2011). Estimating the minimal
clinically important difference of an upper extremity recovery measure in
subacute stroke patients. Top. Stroke Rehabil. 18, 599–610. doi: 10.1310/
tsr18s01-599

Nichols, J. A., Nichols, A. R., Smirnakis, S. M., Engineer, N. D., Kilgard, M. P., and
Atzori, M. (2011). Vagus nerve stimulation modulates cortical synchrony and
excitability through the activation of muscarinic receptors. Neuroscience 189,
207–214. doi: 10.1016/j.neuroscience.2011.05.024

Nudo, R. J. (2006). Mechanisms for recovery of motor function following cortical
damage. Curr. Opin. Neurobiol. 16, 638–644. doi: 10.1016/j.conb.2006.10.004

Nudo, R. J., Friel, K. M., and Delia, S. W. (2000). Role of sensory deficits in
motor impairments after injury to primary motor cortex. Neuropharmacology
39, 733–742. doi: 10.1016/S0028-3908(99)00254-3

Page, S. J., Fulk, G. D., and Boyne, P. (2012). Clinically important differences
for the upper-extremity fugl-meyer scale in people with minimal to moderate
impairment due to chronic stroke. Phys. Ther. 92, 791–798. doi: 10.2522/ptj.
20110009

Parikh, V., Kozak, R., Martinez, V., and Sarter, M. (2007). Prefrontal acetylcholine
release controls cue detection on multiple timescales. Neuron 56, 141–154.
doi: 10.1016/j.neuron.2007.08.025

Pascual-Leone, A., and Torres, F. (1993). Plasticity of the sensorimotor cortex
representation of the reading finger in Braille readers. Brain 116(Pt 1), 39–52.
doi: 10.1093/brain/116.1.39

Peuker, E. T., and Filler, T. J. (2002). The nerve supply of the human auricle. Clin.
Anat. 15, 35–37. doi: 10.1002/ca.1089

Ploughman, M., Windle, V., McAllen, C. L., White, N., Dore, J. J., and Corbett, D.
(2009). Brain-derived neurotrophic factor contributes to recovery of skilled
reaching after focal ischemia in rats. Stroke 40, 1490–1495. doi: 10.1161/
STROKEAHA.108.531806

Porter, B. A., Khodaparast, N., Fayyaz, T., Cheung, R. J., Ahmed, S. S., Vrana, W. A.,
et al. (2012). Repeatedly pairing vagus nerve stimulation with a movement

reorganizes primary motor cortex. Cereb. Cortex 22, 2365–2374. doi: 10.1093/
cercor/bhr316

Prechtl, J. C., and Powley, T. L. (1990). The fiber composition of the abdominal
vagus of the rat. Anat. Embryol. 181, 101–115. doi: 10.1007/BF00198950

Pruitt, D. T., Schmid, A. N., Kim, L. J., Abe, C. M., Trieu, J. L., Choua, C.,
et al. (2016). Vagus nerve stimulation delivered with motor training enhances
recovery of function after traumatic brain injury. J. Neurotrauma 33, 871–879.
doi: 10.1089/neu.2015.3972

Ramanathan, D., Tuszynski, M. H., and Conner, J. M. (2009). The basal forebrain
cholinergic system is required specifically for behaviorally mediated cortical
map plasticity. J. Neurosci. 29, 5992–6000. doi: 10.1523/JNEUROSCI.0230-09.
2009

Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A., and
Dinse, H. R. (1992). Topographic reorganization of the hand representation
in cortical area 3b owl monkeys trained in a frequency-discrimination task.
J. Neurophysiol. 67, 1031–1056. doi: 10.1152/jn.1992.67.5.1031

Recanzone, G. H., Schreiner, C. E., and Merzenich, M. M. (1993). Plasticity in the
frequency representation of primary auditory cortex following discrimination
training in adult owl monkeys. J. Neurosci. 13, 87–103. doi: 10.1523/
JNEUROSCI.13-01-00087.1993

Redgrave, J. N., Moore, L., Oyekunle, T., Ebrahim, M., Falidas, K., Snowdon, N.,
et al. (2018). Transcutaneous auricular vagus nerve stimulation with concurrent
upper limb repetitive task practice for poststroke motor recovery: a pilot study.
J. Stroke Cerebrovasc. Dis. 27, 1998–2005. doi: 10.1016/j.jstrokecerebrovasdis.
2018.02.056

Rioult-Pedotti, M. S., Friedman, D., and Donoghue, J. P. (2000). Learning-induced
LTP in neocortex. Science 290, 533–536. doi: 10.1126/science.290.5491.533

Roosevelt, R. W., Smith, D. C., Clough, R. W., Jensen, R. A., and Browning, R. A.
(2006). Increased extracellular concentrations of norepinephrine in cortex and
hippocampus following vagus nerve stimulation in the rat. Brain Res. 1119,
124–132. doi: 10.1016/j.brainres.2006.08.048

Rouzade-Dominguez, M. L., Curtis, A. L., and Valentino, R. J. (2001). Role of
Barrington’s nucleus in the activation of rat locus coeruleus neurons by colonic
distension. Brain Res. 917, 206–218. doi: 10.1016/S0006-8993(01)02917-1

Safi, S., Ellrich, J., and Neuhuber, W. (2016). Myelinated axons in the auricular
branch of the human vagus nerve. Anat. Rec. 299, 1184–1191. doi: 10.1002/ar.
23391

Salgado, H., Köhr, G., and Treviño, M. (2012). Noradrenergic ‘Tone’ determines
dichotomous control of cortical spike-timing-dependent plasticity. Sci. Rep.
2:417. doi: 10.1038/srep00417

Sampaio-Baptista, C., Sanders, Z.-B., and Johansen-Berg, H. (2018). Structural
plasticity in adulthood with motor learning and stroke rehabilitation. Annu.
Rev. Neurosci. 41, 25–40. doi: 10.1146/annurev-neuro-080317-062015

Santos, M. V., Pagnussat, A. S., Mestriner, R. G., and Netto, C. A. (2013). Motor skill
training promotes sensorimotor recovery and increases microtubule-associated
protein-2 (MAP-2) immunoreactivity in the motor cortex after intracerebral
hemorrhage in the rat. ISRN Neurol. 2013:159184. doi: 10.1155/2013/
159184

Saper, J. R., Dodick, D. W., Silberstein, S. D., McCarville, S., Sun, M., and Goadsby,
P. J. (2011). Occipital nerve stimulation for the treatment of intractable chronic
migraine headache: ONSTIM feasibility study. Cephalalgia 31, 271–285. doi:
10.1177/0333102410381142

Saposnik, G., Cote, R., Phillips, S., Gubitz, G., Bayer, N., Minuk, J., et al.
(2008). Stroke outcome in those over 80. Stroke 39, 2310–2317. doi: 10.1161/
STROKEAHA.107.511402

Sarter, M., Gehring, W. J., and Kozak, R. (2006). More attention must be paid: the
neurobiology of attentional effort. Brain Res. Rev. 51, 145–160. doi: 10.1016/j.
brainresrev.2005.11.002

Sarter, M., Hasselmo, M. E., Bruno, J. P., and Givens, B. (2005). Unraveling the
attentional functions of cortical cholinergic inputs: interactions between signal-
driven and cognitive modulation of signal detection. Brain Res. Rev. 48, 98–111.
doi: 10.1016/j.brainresrev.2004.08.006

Sarter, M., Parikh, V., and Howe, W. M. (2009). Phasic acetylcholine release and
the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10,
383–390. doi: 10.1038/nrn2635

Sato, H., Hata, Y., Masui, H., and Tsumoto, T. (1987). A functional role of
cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 58,
765–780. doi: 10.1152/jn.1987.58.4.765

Frontiers in Neuroscience | www.frontiersin.org 17 March 2019 | Volume 13 | Article 280

https://doi.org/10.1016/j.apmr.2006.10.032
https://doi.org/10.1016/j.neuroscience.2017.08.012
https://doi.org/10.1016/j.neuroscience.2017.08.012
https://doi.org/10.1152/jn.00493.2013
https://abstractsonline.com/pp8/#!/4649/presentation/29258
https://abstractsonline.com/pp8/#!/4649/presentation/29258
https://doi.org/10.1161/STROKEAHA.117.019202
https://doi.org/10.1161/STROKEAHA.117.019202
https://doi.org/10.1097/WCO.0b013e3283186f96
https://doi.org/10.1002/ana.25366
https://doi.org/10.1142/S0129065713500275
https://doi.org/10.3109/09638288.2012.691942
https://doi.org/10.1038/nrn2735
https://doi.org/10.1001/jama.2013.13805
https://doi.org/10.1001/jama.2013.13805
https://doi.org/10.1310/tsr18s01-599
https://doi.org/10.1310/tsr18s01-599
https://doi.org/10.1016/j.neuroscience.2011.05.024
https://doi.org/10.1016/j.conb.2006.10.004
https://doi.org/10.1016/S0028-3908(99)00254-3
https://doi.org/10.2522/ptj.20110009
https://doi.org/10.2522/ptj.20110009
https://doi.org/10.1016/j.neuron.2007.08.025
https://doi.org/10.1093/brain/116.1.39
https://doi.org/10.1002/ca.1089
https://doi.org/10.1161/STROKEAHA.108.531806
https://doi.org/10.1161/STROKEAHA.108.531806
https://doi.org/10.1093/cercor/bhr316
https://doi.org/10.1093/cercor/bhr316
https://doi.org/10.1007/BF00198950
https://doi.org/10.1089/neu.2015.3972
https://doi.org/10.1523/JNEUROSCI.0230-09.2009
https://doi.org/10.1523/JNEUROSCI.0230-09.2009
https://doi.org/10.1152/jn.1992.67.5.1031
https://doi.org/10.1523/JNEUROSCI.13-01-00087.1993
https://doi.org/10.1523/JNEUROSCI.13-01-00087.1993
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056
https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.02.056
https://doi.org/10.1126/science.290.5491.533
https://doi.org/10.1016/j.brainres.2006.08.048
https://doi.org/10.1016/S0006-8993(01)02917-1
https://doi.org/10.1002/ar.23391
https://doi.org/10.1002/ar.23391
https://doi.org/10.1038/srep00417
https://doi.org/10.1146/annurev-neuro-080317-062015
https://doi.org/10.1155/2013/159184
https://doi.org/10.1155/2013/159184
https://doi.org/10.1177/0333102410381142
https://doi.org/10.1177/0333102410381142
https://doi.org/10.1161/STROKEAHA.107.511402
https://doi.org/10.1161/STROKEAHA.107.511402
https://doi.org/10.1016/j.brainresrev.2005.11.002
https://doi.org/10.1016/j.brainresrev.2005.11.002
https://doi.org/10.1016/j.brainresrev.2004.08.006
https://doi.org/10.1038/nrn2635
https://doi.org/10.1152/jn.1987.58.4.765
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00280 March 28, 2019 Time: 18:56 # 18

Engineer et al. Vagus Nerve Stimulation for Stroke

Schabitz, W.-R., Berger, C., Kollman, R., Seitz, M., Tanay, E., Kiessling, M., et al..
(2004). Effect of brain-derived neurotrophic factor treatment and forced arm
use on functional motor recovery after small cortical ischemia. Stroke 35,
992–997. doi: 10.1161/01.STR.0000119754.85848.0D

Scherder, E. J. A., Luijpen, M. W., and van Dijk, K. R. A. (2003). Activation of
the dorsal raphe nucleus and locus coeruleus by transcutaneous electrical nerve
stimulation in Alzheimer’s disease: a reconsideration of stimulation-parameters
derived from animal studies. Chin. J. Physiol. 46, 143–150.

Seol, G. H., Ziburkus, J., Huang, S., Song, L., Kim, I. T., Takamiya, K., et al. (2007).
Neuromodulators control the polarity of spike-timing-dependent synaptic
plasticity. Neuron 55, 919–929. doi: 10.1016/j.neuron.2007.08.013

Shelton, F. D., Volpe, B. T., and Reding, M. (2001). Motor impairment as
a predictor of functional recovery and guide to rehabilitation treatment
after stroke. Neurorehabil. Neural Repair 15, 229–237. doi: 10.1177/
154596830101500311

Silberstein, S. D., Mechtler, L. L., Kudrow, D. B., Calhoun, A. H., McClure, C.,
Saper, J. R., et al. (2016). Non-invasive vagus nerve stimulation for the ACute
treatment of cluster headache: findings from the randomized, double-blind,
sham-controlled ACT1 study. Headache 56, 1317–1332. doi: 10.1111/head.
12896

Sterr, A., Müller, M. M., Elbert, T., Rockstroh, B., Pantev, C., and Taub, E.
(1998). Perceptual correlates of changes in cortical representation of fingers
in blind multifinger Braille readers. J. Neurosci. 18, 4417–4423. doi: 10.1523/
JNEUROSCI.18-11-04417.1998

Sun, L., Peräkylä, J., Holm, K., Haapasalo, J., Lehtimäki, K., Ogawa, K. H., et al.
(2017). Vagus nerve stimulation improves working memory performance.
J. Clin. Exp. Neuropsychol. 39, 954–964. doi: 10.1080/13803395.2017.1285869

Tassorelli, C., Grazzi, L., de Tommaso, M., Pierangeli, G., Martelletti, P., Rainero, I.,
et al. (2018). Noninvasive vagus nerve stimulation as acute therapy for migraine:
the randomized PRESTO study. Neurology 91, e364–e373. doi: 10.1212/WNL.
0000000000005857

Tatemichi, T. K., Desmond, D. W., Stern, Y., Paik, M., Sano, M., and Bagiella, E.
(1994). Cognitive impairment after stroke: frequency, patterns, and relationship
to functional abilities. J. Neurol. Neurosurg. Psychiatry 57, 202–207. doi: 10.
1136/jnnp.57.2.202

Teasell, R., Foley, N., Salter, K., Richardson, M., Mbbs, N. H., Bhogal, S., et al.
(2014). Evidence-Based Review of Stroke Rehabilitation, 16th Edn. Ontario:
Heart and Stroke Foundation, 1–35. doi: 10.1111/j.2044-8341.1998.tb00988.x

Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., and Aston-Jones, G.
(1999). The role of locus coeruleus in the regulation of cognitive performance.
Science 283, 549–554. doi: 10.1126/science.283.5401.549

van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Devillé,
W. L., and Bouter, L. M. (1999). Forced use of the upper extremity in chronic
stroke patients: results from a single-blind randomized clinical trial. Stroke 30,
2369–2375. doi: 10.1161/01.STR.30.11.2369

Vitrac, C., and Benoit-Marand, M. (2017). Monoaminergic modulation of motor
cortex function. Front. Neural Circuits 11:72. doi: 10.3389/fncir.2017.00072

Wade, D. T., Langton-Hewer, R., Wood, V. A., Skilbeck, C. E., and Ismail, H. M.
(1983). The hemiplegic arm after stroke: measurement and recovery. J. Neurol.
Neurosurg. Psychiatry 46, 521–524. doi: 10.1136/jnnp.46.6.521

Ward, N. S. (2004). Functional reorganization of the cerebral motor system after
stroke. Curr. Opin. Neurol. 17, 725–730. doi: 10.1097/00019052-200412000-
00013

Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., and DeLong, M. R.
(1981). Alzheimer disease: evidence for selective loss of cholinergic neurons
in the nucleus basalis. Ann. Neurol. 10, 122–126. doi: 10.1002/ana.4101
00203

Wu, J., Quinlan, E. B., Dodakian, L., McKenzie, A., Kathuria, N., Zhou, R. J., et al.
(2015). Connectivity measures are robust biomarkers of cortical function and
plasticity after stroke. Brain 138, 2359–2369. doi: 10.1093/brain/awv156

Xerri, C., Merzenich, M. M., Peterson, B. E., and Jenkins, W. (1998). Plasticity
of primary somatosensory cortex paralleling sensorimotor skill recovery from
stroke in adult monkeys. J. Neurophysiol. 79, 2119–2148. doi: 10.1152/jn.1998.
79.4.2119

Yakunina, N., Kim, S. S., and Nam, E. C. (2017). Optimization of transcutaneous
vagus nerve stimulation using functional MRI. Neuromodulation 20, 290–300.
doi: 10.1111/ner.12541

Zarow, C., Lyness, S. A., Mortimer, J. A., and Chui, H. C. (2003). Neuronal loss
is greater in the locus coeruleus than nucleus basalis and Substantia nigra in
alzheimer and Parkinson diseases. Arch. Neurol. 60, 337–341. doi: 10.1001/
archneur.60.3.337

Zerari-Mailly, F., Buisseret, P., Buisseret-Delmas, C., and Nosjean, A. (2005).
Trigemino-solitarii-facial pathway in rats. J. Comp. Neurol. 487, 176–189. doi:
10.1002/cne.20554

Zhu, X. O., and Waite, P. M. (1998). Cholinergic depletion reduces plasticity
of barrel field cortex. Cereb. Cortex 8, 63–72. doi: 10.1093/cercor/
8.1.63

Ziemann, U., Meintzschel, F., Korchounov, A., and Ilić, T. V. (2006).
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