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Aim: Brain tumors are among the most fatal cancers worldwide. Diagnosing and

manually segmenting tumors are time-consuming clinical tasks, and success strongly

depends on the doctor’s experience. Automatic quantitative analysis and accurate

segmentation of brain tumors are greatly needed for cancer diagnosis.

Methods: This paper presents an advanced three-dimensional multimodal segmentation

algorithm called nested dilation networks (NDNs). It is inspired by the U-Net architecture,

a convolutional neural network (CNN) developed for biomedical image segmentation

and is modified to achieve better performance for brain tumor segmentation. Thus,

we propose residual blocks nested with dilations (RnD) in the encoding part to enrich

the low-level features and use squeeze-and-excitation (SE) blocks in both the encoding

and decoding parts to boost significant features. To prove the reliability of the network

structure, we compare our results with those of the standard U-Net and its transmutation

networks. Different loss functions are considered to cope with class imbalance

problems to maximize the brain tumor segmentation results. A cascade training

strategy is employed to run NDNs for coarse-to-fine tumor segmentation. This strategy

decomposes the multiclass segmentation problem into three binary segmentation

problems and trains each task sequentially. Various augmentation techniques are utilized

to increase the diversity of the data to avoid overfitting.

Results: This approach achieves Dice similarity scores of 0.6652, 0.5880, and 0.6682

for edema, non-enhancing tumors, and enhancing tumors, respectively, in which the Dice

loss is used for single-pass training. After cascade training, the Dice similarity scores rise

to 0.7043, 0.5889, and 0.7206, respectively.

Conclusion: Experiments show that the proposed deep learning algorithm outperforms

other U-Net transmutation networks for brain tumor segmentation. Moreover, applying

cascade training to NDNs facilitates better performance than other methods. The findings

of this study provide considerable insight into the automatic and accurate segmentation

of brain tumors.

Keywords: brain tumor segmentation, nested dilation networks, residual blocks nested with dilations,

squeeze-and-excitation blocks, coarse-to-fine
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1. INTRODUCTION

Brain tumors are one of the deadliest cancers worldwide.
Gliomas are the most common primary craniocerebral tumor
and are caused by the carcinogenesis of glial cells in the
brain and spinal cord (Bauer et al., 2013). In pathology,
gliomas can be classified as low-grade or high-grade according
to the malignant degree of the tumor cells (Cho and Park,
2017; Wang et al., 2018b). Low-grade gliomas are mainly
represented by low-speed cell division and proliferation, whereas
high-level gliomas are characterized by rapid cell division
and proliferation accompanied by angiogenesis, hypoxia, and
necrosis (Gerlee and Nelander, 2012; Bogdańska et al., 2017).
Although significant advances have been made in healthcare
so far, the vast majority of gliomas are incurable, except
for a small number of low-grade gliomas, which can be
completely resected surgically. Gliomas can be further divided
into different tumor sub-regions according to the severity
of the tumor cells, such as edemas, non-enhancing tumors,
and enhancing tumors. Magnetic resonance imaging (MRI)
is the most frequently used and most effective noninvasive
auxiliary diagnostic tool (Wen et al., 2010; Yang et al., 2018),
providing a reference for the formulation of treatment programs
(Mazzara et al., 2004). Brain tumors are usually imaged with
different MRI modalities, and these images are interpreted
by image analysis methods (Bauer et al., 2013). The MRI
sequence usually includes four different modalities: T1-weighted,
T2-weighted, post-contrast T1-weighted, and fluid-attenuated
inversion-recovery (FLAIR). Different MRI modalities are
employed for different diagnosis tasks in clinical diagnosis and
treatment. However, it is still a daunting task for clinicians to
diagnose diseases with MRI, because there is a wide variation
in the size, shape, regularity, location, and heterogeneous
appearance of brain tumors (Dong et al., 2017). Therefore,
automatic quantitative analysis and accurate segmentation of
brain tumors are greatly needed clinically to help doctors make
accurate diagnoses.

CNNs have become a prominent deep learning method and
have been used to make a series of breakthroughs in different
tasks, including computer vision (Krizhevsky et al., 2012; Long
et al., 2015; Ren et al., 2015). The success of CNNs is credited
to their ability to independently learn deep features instead
of relying on manual features. With historical opportunities
provided by a strong calculation capability and large numbers
of annotations, the development of CNNs has been explosive.
The original LeNet5 (LeCun et al., 1998) was proposed in
1998 with five layers, establishing the modern structure of
CNNs. Krizhevsky et al. (2012) presented a classical CNN
structure called “AlexNet, and made a historic breakthrough.
The great success of AlexNet stimulated new research on
CNNs. ZFNet (Zeiler and Fergus, 2014), VGGNet (Simonyan
and Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), and
ResNet (He et al., 2016) were successively presented with more
layers and better performances. Huang et al. (2017) used a
more radical dense connection mechanism to maximize the
flow of information. Hu et al. (2017) proposed an SE network
that modeled the interdependencies between feature channels,
adaptively learning important information. All of these CNN

studies made it possible to apply neural networks to medical
image processing.

Recent reports have shown that CNNs outperform state-
of-the-art medical image analyses (Li et al., 2017; Lin et al.,
2018). MRI-based brain tumor segmentation is a task that still
requires extensive attention. Extant methods for automatic brain
tumor segmentation are diverse. DeepMedic (Kamnitsas et al.,
2016b) was designed as a dual-pathway three-dimensional (3D)
network with 11 layers, to simultaneously process images at
different scales and combine the results with fully connected
layers. Kamnitsas et al. (2016a) and Castillo et al. (2017) further
improved the architecture of DeepMedic by adding residual
connections and parallel pathways. U-Net (Ronneberger et al.,
2015) was proposed to train an end-to-end network with few
images for the accurate segmentation of biomedical images.
Many architectures similar to U-Net have been widely adopted
for brain tumor segmentation. Kayalibay et al. (2017) and
Isensee et al. (2017) employed deep supervision by combining
segmentation layers from different levels in the localization
pathway. Iqbal et al. (2018) increased the number of U-Net layers
and trained the network with the Dice loss. Le and Pham (2018)
used the U-Net architecture to extract features and put them
into an ExtraTrees classifier. Zhao et al. (2018) integrated fully
convolutional neural network (FCNN) and conditional random
field (CRF) and trained threemodels using two-dimensional (2D)
image patches obtained from axial, coronal, and sagittal views.
A voting-based fusion strategy was used to obtain segmentation
results. To deal with the class imbalance problem, Wang et al.
(2017) proposed a triple-cascaded framework for brain tumor
segmentation. Three similar networks were used to segment
the entire tumor (all lesions, including edema, non-enhancing
tumors, and enhancing tumors), and the tumor core (all lesions
except edema). They then sequentially enhanced tumor core.
Zhou et al. (2018) drew upon lesions with coarse-to-fine medical
image segmentation methods and proposed a single multitask
CNN that could learn correlations between different categories.
Partial model parameters can be shared when different tasks are
being trained according to different sets of training data to utilize
the underlying correlation among classes.

We propose a CNN-based 3D segmentation algorithm, the
NDN, which can handle multimodal images. Instead of simple
convolution layers, residual blocks are stacked in the U-Net
architecture to simplify optimization. The SE blocks used in
NDNs fuse the global information and adaptively learn important
information from each channel. A new block i.e., residual blocks
nested with dilations (RnD) enlarges the receptive fields and
avoids the gridding effect. RnD blocks can enrich information
in shallow layers by using dilation convolutions while retaining
detailed information during the rapid expansion of receptive
fields by using residual connections. The cascade training strategy
is adopted to train three tasks individually to deal with the class
imbalance problem.

2. MATERIALS AND METHODS

This section describes the proposed NDNs algorithm for detailed
brain tumor segmentation, including the data preprocessing,
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network architecture, training strategy, and post-processing
methods. We also concisely describe the experimental design.

2.1. Data Acquisition and Preprocessing
2.1.1. Data Acquisition

Most of the data used in this work are downloaded from
the Medical Segmentation Decathlon (MSD) organized by
the 21st Annual Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI) 2018. A small
number of low-grade glioma data are abstained from MICCAIs
Multimodal Brain Tumor Segmentation (BraTS) Challenge of
the same year. These are used to test the stability of the
proposed algorithm. The images for each patient comprise four
scanning sequences: T1-weighted, T2-weighted, post-contrast
T1-weighted, and FLAIR. Every scan is aligned to the same
anatomical template space and interpolated into 1 × 1 × 1mm3

with an image size of 240 × 240 × 155 voxels. The purpose of
the study is to segment brain tumors (i.e., gliomas) into three
different classes: edemas, non-enhancing tumors, and enhancing
tumors. All data are labeled and verified by an expert human
rater. Efforts were made to mimic the accuracy required for
clinical use.

2.1.2. Data Preprocessing and Augmentation

Training an effective neural network requires thousands or even
tens of thousands of data. However, the quantity of available
medical images is usually well short of that. To avoid overfitting,
more training data need to be generated from the limited
images and annotations. Our method applies the following data
augmentation techniques to make reasonable changes to the
image shapes: flip the x-, y-, or z-axis with a probability of
50%; rotate the images with a rotation angle of −15◦ to 15◦;
apply gamma correction with the gamma value varied randomly
from 0.4 to 1.6; and apply elastic distortion. Figure 1 shows the
data augmentation.

Images from multiple modalities may have varying intensity
ranges. When the intensity values are not standardized, it is
detrimental to the training of the neural network. Normalization
is critical to allow images from different modalities to be trained
with one algorithm. In our study, each modality is normalized
individually by subtracting the mean from the value for each
patient and dividing it by the standard deviation. The useless
black borders in the images along the x- and y-axes are also
removed. On the z-axis, we note that the head and tail of the
image slices are uninformative. Therefore, 70% of the slices used
for the network input are captured from the middle.

2.2. Residual Blocks
He et al. (2016) reformulated the layers as residual blocks
and yielded unusually brilliant results in the 2015 ImageNet
competition. Instead of simply stacking convolution layers to fit a
desired underlyingmapping, they added identitymapping, which
was easier to optimize. The residual blocks depicted in Figure 2A

are achieved by a shortcut connection and element-wise addition
operation, performed on the input and output feature maps of
the blocks, channel-by-channel. The operating principle of the

residual blocks can be defined as

y = F(x,Wi)+ x, (1)

where x and y are the input and output vectors of the relevant
layers; and F(x,Wi) is the mapping function for the residual
path. The results of F(x,Wi) should have the same dimensions
as x. Otherwise, we can perform linear mapping on the shortcut
connection (Figure 2B). This simple algorithm does not add
additional parameters or computations to the network, but it
greatly increases the training speed of the model and improves
the training effect.

The standard convolutional layers of a U-Net are replaced
by the residual structure shown in Figure 2A. The residual path
comprises two convolution layers with a kernel size of 3, followed
by a batch normalization (BN) operation (Ioffe and Szegedy,
2015) and a rectified linear unit (ReLU). The input and output of
the residual path are added element by element. The results of the
residual blocks are fed directly into subsequent network layers.

2.3. SE Blocks
A lot of research has recently been accomplished to strengthen
the learning power of CNNs and to improve their performance.
Hu et al. (2017) introduced the SE blocks to enhance the
representations of features produced by a convolutional network.
SE blocks embed the global spatial information into the
channel vector by encoding each channel dependency with
a fully connected operation. It allows the network to pay
different amounts of attention to each channel according to
the importance of the feature maps. Figure 3A illustrates the
structure of SE blocks. The features are first passed through a
squeeze operation achieved by a global average pooling layer to
aggregate global information per channel for the whole image.
Then, the outputs are fed into an excitation operation to get
the final weights for each channel. The excitation operation is
achieved by using two fully connected layers: one with ReLU
activation and another with a sigmoid. Finally, the weight vectors
are reshaped to (1, 1, 1,C), where C is the number of the feature
maps and are applied to each feature map by the multiply
operation. The SE blocks emphasize useful features and suppress
useless features through weights like an attention mechanism.

SE blocks have a simple structure and can be used directly
in existing state-of-the-art architectures. We draw on experience
with the attention mechanism and nested SE blocks in the
architecture to help the network focus on important feature
maps. As shown in Figure 3B, feature maps with size (X,Y ,Z,C)
are put into SE blocks. Then, the blocks generate a significant
coefficient for each channel, finally gaining outputs with different
weights and the same size as the inputs.

2.4. RnD Blocks
The traditional up-sampling and down-sampling structures lead
to a loss of internal structure, and the information of small
objects cannot be reconstructed. To solve this problem, Yu
and Koltun (2015) presented a model with dilated convolutions
that can increase the receptive fields without reducing the
resolution or increasing the parameters. Chen et al. (2014,
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FIGURE 1 | Data augmentation results. Rows list three samples for different patients. Columns represent different data augmentation operations. (A-C) list three

samples for different patients.

FIGURE 2 | Residual blocks: (A) shortcut connection and (B) shortcut

connection with the convolution layer.

2017, 2018) used dilated convolutions in their networks and
achieved good performance for dense prediction tasks. However,
standard dilated convolution causes a gridding issue that will
harm small objects. Wang et al. (2018a) proposed a hybrid
dilated convolution (HDC) framework, which can not only
expand receptive fields but also mitigate the gridding issue.

Implementing the HDC framework requires two conditions to
be met. First, the dilation rates of a groups dilated convolutions
should not have a common divisor > 1. The maximum distance
between two nonzero values is defined as follows:

Mi = max[Mi+1 − 2ri,Mi+1 − 2(Mi+1 − ri), ri], (2)

where ri is the dilation rate in layer i, and Mi is the maximum
dilation rate from layer 0 to layer i. The second condition requires
satisfyingMi < K, where K is the kernel size.

The standard U-Net architecture does not get enough
semantic information in the shallow layers because of the limited
receptive fields. This is harmful to feature fusion in the first
few cross-layer connections. To resolve this issue and avoid the
gridding effect, we draw on an idea from the HDC framework.
RnD blocks (Figure 4) are built to enlarge receptive fields in the
first two layers of the network. This new type of block can obtain
more extensive local information via 3 convolution layers with
different dilation rates (e.g., 1, 2, 5). The kernel size is 3 for all
dilated convolutions, which are followed by a ReLU activation.
The residual connection in RnD blocks helps retain information
and fill details during the rapid expansion of receptive fields.
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FIGURE 3 | SE blocks: (A) architecture and (B) concept map.

FIGURE 4 | Architecture of RnD blocks with different dilation rates.

2.5. NDNs
The structure of our proposed NDNs is shown in Figure 5. The
architecture is inspired by U-Net, which is a stable encoder–
decoder network designed for limited data training, especially
for medical images. Here, we carefully modify the standard U-
Net to make it perform better for the brain tumor segmentation
task. First, we use 3D convolution layers rather than 2D to adapt
images from multiple modalities. The classic encoder–decoder
structure that fuses the lower features in the shallow layers and
higher features in the deep layers is retained to ensure the stability

of the proposed network. The architecture comprises three max-
pooling layers to capture context and three up-sampling layers
to enable precise localization. To obtain enough receptive fields,
the first two encoder modules adopt RnD blocks to enrich
the low-level features. This is followed by an SE block and a
max-pooling layer. In the decoder part, each module comprises
a stack of residual blocks, an SE block, and an up-sampling
layer. The BN is employed immediately after each convolution
and before activation. As shown in Figure 5, the network can
obtain rich information to boost essential features and achieve
a stable effect.

2.6. Cascade Training
The cascade strategy trains different models for each category
sequentially, showing ideal results. Coarse-to-fine medical image
segmentation is becoming increasingly popular because of
the class imbalance problem. Cascaded models decompose
complex problems into simple ones and capitalize on the
hierarchical structure of tumor sub-regions. A single model is
trained repeatedly to segment substructures of brain tumors
hierarchically and sequentially. Each sequence is handled as a
binary segmentation problem. The first task is to segment the
entire tumor including edemas, enhancing tumors, and non-
enhancing tumors. These three classes are regarded as a binary
segmentation problem. Then, NDNs are trained to crop the
target. After the first stage of training, the entire tumor region
is segmented in the 3D volumes of a patient. A cuboid sub-
region, based on the entire tumor, is used as inputs to the network
to segment the enhancing and non-enhancing tumors together.
Similarly, the third training differentiates enhancing tumors from
non-enhancing ones by using the cuboid sub-region produced by
the second stage as input.

In the training, the input of the network is generated based
on the ground truth, as shown in Figure 6A. In the testing, the
results of the previous stage are extended by 32 pixels on the
x- and y-axes, and 8 slices on the z-axis as the input for the
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FIGURE 5 | Architecture of the proposed NDNs with SE blocks and RnD blocks.

next stage. The process is described in Figure 6B. Finally, we
integrate the three binary segmentation tasks to obtain the final
segmentation results of multiple classes. Cascade training offers a
way to adaptively alleviate the class imbalance problem of brain
tumor segmentation.

2.7. Post-processing
Post-processing is further used to improve the segmentation
results of NDNs. During data processing, we noticed that the
brain tumors for all patients in the 3D volumes were of a
single connected domain. Thus, isolated small clusters should be
removed from the results. More specifically, connected domain
analysis should be performed to retain the maximal region
and remove other smaller clusters to better fit the ground
truth. Moreover, some patients are observed to have benign
tumors, which means that the gliomas only comprise edemas
and non-enhancing tumors. Some small clusters are erroneously
classified as enhancing tumors in our task instead of benign
tumors, which harms the segmentation results. To deal with this
issue, we impose volumetric constraints by removing enhancing
tumor clusters in the segmentation that are smaller than a
predefined threshold.

2.8. Dice Similarity Score
In our work, the Dice similarity score is calculated for
quantitative evaluation. This performance metric measures the
similarity between the ground truth and predicted results. The
Dice similarity score is defined as follows:

DSC =
2TP

(FP + 2TP + FN)
, (3)

where TP, FP, and FN are the numbers of true positives, false
positives, and false negatives, respectively.

MSD and BraTS 2018 provide three different tumor regions
that can be described as edemas, enhancing tumors, and non-
enhancing tumors. The Dice similarity scores are calculated for
each tumor region to evaluate the segmentation results, and the
scores are compared with those of other methods.

2.9. Experimental Design
We conduct three groups of experiments according to different
requirements, which we describe in this section.

Experiment 1: We explored the effects of different network
structures on brain tumor segmentation. Ronneberger et al.
(2015) developed a U-Net architecture based on the fully
convolutional network (FCN) (Long et al., 2015), which can
work with very few training images and yield more precise
segmentation. Some new architectures derived from U-Net have
appeared and have been applied to the field of medical image
processing. In Experiment 1, the standard Conv + BN + ReLU
module in U-Net was replaced by frequently used blocks, such as
residual blocks and dense blocks separately for comparison with
the proposed NDNs.

Experiment 2: Different loss functions were attempted with
NDNs to improve segmentation results. The loss function
quantifies the amount by which the predicted value deviates from
the actual value. Choosing a suitable loss function benefits both
the training process and the results of brain tumor segmentation.
In Experiment 2, different loss functions were applied to the brain
tumor segmentation task: the categorical cross-entropy loss, Dice
loss, and focal loss. The Dice similarity scores are calculated for
each task.
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Experiment 3: The proposed method was compared with
other state-of-the-art methods. We implemented several
previously published algorithms and trained the networks
with the same datasets. The brain tumors comprise of edemas,
enhancing tumors, and non-enhancing tumors with very
different volumes, resulting in an imbalanced number of samples
in each class. This category imbalance problem impairs the
performance of a deep network. In Experiment 3, a cascade
strategy was used to train NDNs, which decomposed a multiple
classification problem into multiple binary classification
problems. The segmentation results of the cascaded NDNs were
compared with several state-of-the-art methods according to the
Dice similarity score.

2.10. Implementation Details
All networks were implemented in Keras (Chollet et al., 2015)
2.1.2 using the Tensorflow (Abadi et al., 2016) 1.4.0 backend.
Adaptive moment estimation (Kingma and Ba, 2014) was used as
an optimizer with an initial learning rate of 0.0001, a momentum
of 0.9, and a weight decay of 0.00001. Training was implemented
on an NVIDIA 1080 Ti GPU with a version of CUDA 8.0 for
300 epochs. We did not use a dropout (Hinton et al., 2012) but
rather L2 regularization and BN for the whole network structure.
We cropped 96 × 96 × 48 patches as inputs close to the ground
truth from images and annotations. All networks were trained
from scratch with a batch size of 4.

3. EXPERIMENTS AND RESULTS

In this section, we explain the advantages of the proposed
algorithm with regard to brain tumor segmentation. The Dice

similarity score is adopted as the evaluation criterion for each
model. Edemas, non-enhancing tumors, and enhancing tumors
were trained together with single NDNs in Experiments 1 and 2
for the sake of fairness. In Experiment 3, however, the cascade
training strategy was used to train NDNs for each class, which
was then compared with the state-of-the-art methods.

3.1. Experiment 1
To prove the effectiveness of the NDNs structure, different
U-Net-like networks were trained with the same brain tumor
dataset for comparison. A traditional 3D U-Net with three
down-sampling layers and three symmetric up-sampling layers
was trained first. It consisted of two convolution layers used
repeatedly with a kernel size of 3, similar to the standard 2D
U-Net structure presented by Ronneberger et al. (2015). The

TABLE 1 | Comparison of different U-Net-like architectures: (A) standard 3D

U-Net; (B) U-Net with residual blocks; (C) U-Net with dense blocks; (D) NDNs

without SE blocks; (E) NDNs without RnD blocks; and (F) NDNs network.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6686 0.4734 0.6169

B

ResNet18 0.6645 0.5022 0.6455

ResNet50 0.6792 0.5314 0.6289

ResNet101 0.6752 0.5617 0.6342

C 0.6734 0.5527 0.6287

D 0.6590 0.5612 0.6305

E 0.6725 0.536 0.638

F 0.6652 0.5880 0.6682

The bold values mean the best result (the highest dice value) for each class.

FIGURE 6 | Cascade strategy applied to NDNs: (A) training and (B) testing.
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FIGURE 7 | Boxplots for each method in Table 1. Dice similarity scores for (A) edema, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×” marks

the mean.

FIGURE 8 | Brain tumor segmentation results predicted by different U-Net-like networks. The rows represent three samples from different patients, and the columns

represent results predicted by each U-Net-like network. The organizers provided the ground truth images. (A-C) list three samples for different patients.

filter number was doubled at the end of each down-sampling
layer and halved after each up-sampling layer. Then, the repeated
convolution layers were replaced by residual blocks and dense
blocks to be trained. ResNet18, ResNet50, and ResNet101 were
each employed as an encoder path, and the decoder path was
consistent with the expanding path in 3D U-Net. For the
dense U-Net, dense blocks were used as substitutes for the two
repeated convolution layers, and each dense block had four
dense connected convolution layers. Finally, we studied the effect
of the NDNs architecture with SE blocks or RnD blocks only.
Table 1 lists the Dice similarity scores calculated for brain tumor
segmentation with these networks, and Figure 7 presents the
boxplots for each class. Note that all networks were trained with
the Dice loss in Experiment 1.

We achieved better results for non-enhancing tumor
segmentation and enhancing tumor segmentation with NDNs
than with the other U-Net-like architectures. According to

TABLE 2 | Comparison with different losses: (A) categorical cross-entropy; (B)

weighted categorical cross-entropy loss; (C) focal loss; and (D) Dice loss.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6708 0.5321 0.6579

B 0.6634 0.5774 0.6604

C 0.5905 0.5721 0.6445

D 0.6652 0.5880 0.6682

The bold values mean the best result (the highest dice value) for each class.

Table 1, the non-enhancing tumor results segmented by NDNs
are about 2.6% better than U-Net with ResNet101, and the
enhancing tumor segmentation results are at least 2.0% better
than the other methods. However, the proposed algorithm lacked
the ability to segment the edema part with a result of 0.6652,
which is worse than the other U-Net-like algorithms. Figure 8

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 285

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. NDNs

presents the ground truth and prediction results for different
U-Net-like architectures from different perspectives.

3.2. Experiment 2
Class imbalance is a severe issue in medical image segmentation
and needs to be carefully tackled. The data provided by MSD and
BraTS 2018 are heavily imbalanced, especially the classes of the
non-enhancing tumors and enhancing tumors. To alleviate the
class imbalance, we use a Dice loss function. We also explore
the effects of other loss functions on NDNs for comparison. The
categorical cross-entropy is used as a base loss function:

Crossentropy(p, q) = −
1

N

∑

x,y,z

∑

k

pkx,y,z log q
k
x,y,z , (4)

where pkx,y,z and qkx,y,z correspond to the ground truth and
predicted results for class k, and N is the total number of
samples. Based on previous experience, the class imbalance can
be addressed by associating different weights with individual
classes. Therefore, the weighted categorical cross-entropy is
also used:

W_Crossentropy(p, q) = −
1

N

∑

x,y,z

∑

k

wkpkx,y,z log q
k
x,y,z , (5)

where wk is the weight for class k. Here the weights for
the background, edema, non-enhancing tumors, and enhancing
tumors are defined as (1, 1, 2, 1) respectively. The focal loss
function described by Lin et al. (2017) for dense object detection
is a modified version of binary cross-entropy and is aimed toward
low-confidence labels. We adopt a multiclass focal loss for the
segmentation task:

Focal(p, q) = −

∑
x,y,z

∑
k p

k
x,y,z(1− qkx,y,z)

γ log qkx,y,z∑
x,y,z

∑
k p

k
x,y,z

, (6)

where (1 − qkx,y,z)
γ is a modulating factor and the value of γ is

set to 2.0 in our algorithm. Finally, our proposed model is trained
with the followingDice loss to segment different parts of the brain
tumors:

Dice(p, q) = 1−
1

N

2
∑

x,y,z

∑
k p

k
x,y,z ∗ q

k
x,y,z∑

x,y,z

∑
k p

k
x,y,z +

∑
x,y,z

∑
k q

k
x,y,z

. (7)

The Dice similarity scores for the different loss functions
used in NDNs are presented in Table 2 and Figure 9. We obtain
final scores of 0.6652, 0.5880, and 0.6682 for edemas, non-
enhancing tumors, and enhancing tumors, respectively, using
the Dice loss. Normal loss functions like the categorical cross-
entropy may achieve good results for balanced datasets, but
datasets with a massive imbalance among classes require special
attention. We avoid weighted categorical cross-entropy as much
as possible, because it needs additional hyperparameters that may
introduce another difficult problem for network optimization.
The results show that the focal loss may be good for binary

TABLE 3 | Comparison of methods for the same dataset: (A) Isensee et al. (2017);

(B) Iqbal et al. (2018); (C) Wang et al. (2017); (D) Zhou et al. (2018); and (E) our

proposed method training with the cascade strategy.

Methods

Dice
Edema Non-enhancing tumor Enhancing tumor

A 0.6574 0.5418 0.6943

B 0.6808 0.5727 0.6661

C 0.6919 0.5504 0.6793

D 0.6894 0.5376 0.6861

E 0.7043 0.5889 0.7206

The bold values mean the best result (the highest dice value) for each class.

classification problems to solve intra-class imbalance. However, it
is less helpful for inter-class imbalance. The Dice loss is calculated
based on the Dice coefficient and can deal with situations with
large amounts of class imbalance. Figure 10 shows the ground
truth and prediction results for the different loss functions used
in NDNs.

3.3. Experiment 3
We reproduced several state-of-the-art methods for brain tumor
segmentation for comparison with our algorithm. Isensee et al.
(2017) achieved a high Dice score in the BraTS 2017 Challenge by
using a U-Net-like architecture. They employed deep supervision
in the localization pathway to integrate segmentation layers at
different levels of the network and combined them via element-
wise summation to form the final network output. Iqbal et al.
(2018) adopted SE blocks at the end of the decoder part and fused
its output with the output of encoder blocks. These two methods
were chosen for comparison, because they have similarities
with our network structure. Wang et al. (2017) proposed a
triple-cascaded framework to segment the entire tumor, tumor
core, and enhancing tumor core sequentially. They used dilated
convolutions after the down-sampling layers and set the dilation
parameter from 1 to 3. Zhou et al. (2018) presented a one-single
multitask CNN that can learn the correlations between different
categories. These two methods used a cascade or cascade-like
training strategy like our training process, and they both obtained
high Dice scores in the brain tumor segmentation task. In this
experiment, a multiclass segmentation problem was decomposed
into three binary segmentation problems by repeated training
of NDNs with the coarse-to-fine method just like (Wang et al.,
2017). Table 3 and Figure 11 present the quantitative evaluation
according to the Dice similarity scores for the same datasets.

Table 3 indicates that the Dice similarity scores of
our proposed method are 0.7043, 0.5889, and 0.7206 for
edemas, non-enhancing tumors, and enhancing tumors,
respectively, which are higher than those of all comparison
methods for every class. Moreover, the results are 3.9 and
5.2% higher for edemas and enhancing tumors than when
the three classes are trained together, and the results for
the non-enhancing tumors do not worsen. These results
prove that the cascade training strategy can improve
the accuracy for brain tumor segmentation. Figure 12

shows the ground truth and prediction results for different
state-of-the-art methods.
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4. DISCUSSION

4.1. Competitive Segmentation Results
U-Net increases the number of up-sampling and skip

connections compared with FCN, which can supplement

more location information for semantic information.

The U-Net architecture has received increasing attention

recently and has been shown that it is a stable

algorithm for many segmentation tasks. Despite its great

success, however, U-Net still has limitations for some
specialized tasks.

We found that stacking residual blocks instead of simple
convolution layers can improve the brain tumor segmentation
performance. This is because residual blocks can fuse receptive
fields of different sizes and ease the training of the networks.
Attention mechanisms have shown their utility for many
computer vision tasks. SE blocks work as an attentionmechanism
that can explore the relationship between channels to suppress
useless information and enhance useful information by fusing
global information. They can help a network notice essential
features and make correct decisions. Nesting the SE blocks
into our base structure causes the corresponding Dice similarity

FIGURE 9 | Boxplots for each method in Table 2. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×”

marks the mean.

FIGURE 10 | Brain tumor segmentation results predicted by NDNs with different loss functions. The rows represent three samples from different patients, and the

columns represent results predicted by NDNs with different losses. Organizers provided ground truth images. (A-C) list three samples for different patients.
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FIGURE 11 | Boxplots for each method in Table 3. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors. The symbol “×”

marks the mean.

FIGURE 12 | Brain tumor segmentation results predicted by the different algorithms. The rows represent three samples from different patients, and the columns

represent algorithms from published papers. Organizers provided the ground truth images. (A-C) list three samples for different patients.

scores of the edemas, non-enhancing tumors, and enhancing
tumors to reach 0.6725, 0.536, and 0.638, respectively. To solve
the problem of insufficient receptive fields and to simultaneously
avoid the gridding issue, we add RnD blocks to the network.

By learning from the HDC framework, RnD blocks can enlarge
receptive fields by using dilated convolutions with different

dilation rates. Based on this, ourmethod obtains results of 0.6652,

0.5880, and 0.6682, respectively.
An extreme imbalance between categories affects the

segmentation results, especially for edemas, and needs to be
addressed. Non-enhancing tumors usually have smaller regions

than the other two classes, as shown in Figure 14, which will have
a negative effect on the segmentation results. In order to alleviate

the class imbalance, twomeasures are taken. First, different losses

are employed by NDNs to determine the best performance, and a
Dice loss function is eventually selected. Moreover, we borrowed
the cascade training strategy adopted by many state-of-the-art
methods for brain tumor segmentation. Cascade training can
balance the quantitative differences among different classes to
some extent. The final results obtained by our proposed method
were 0.7043 for edema, 0.5889 for non-enhancing tumors, and
0.7206 for enhancing tumors. The experimental results are
shown in Figure 13. These reasonable results are attributed to
both the network structure and training strategies.

4.2. Limitations
This study is limited by the class imbalance problem, even
though somemeasures have been taken to alleviate it. Some small
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FIGURE 13 | Histogram for each method. Dice similarity scores for (A) edemas, (B) non-enhancing tumors, and (C) enhancing tumors.

FIGURE 14 | Limitations caused by the class imbalance problem. (A,B)

present two different samples.

regions in brain tumors like non-enhancing tumors could not be
predicted very well. For example, in the two samples in Figure 14,
only 8.5% of the entire tumor is non-enhancing in sample A
and 2.25% in sample B. This huge category imbalance lead to
inaccurate segmentation results of 0.279 and 0.402 for non-
enhancing tumors in samples A and B, respectively. The class
imbalance problem remains a challenge that should be addressed
in the future.

5. CONCLUSION

Clinical applications of computer-aided systems have gained
a great deal of research attention. Supremely accurate brain
tumor segmentation is a tedious but vital task for clinicians
because of various sizes and shapes of tumors. Quantitative
analysis of brain tumors is critical to relieve pressure on doctors

and obtain more accurate segmentation results. We developed
a new deep learning framework based on U-Net, NDNs, for
segmenting brain tumors. Our results showed that NDNs
can extract discriminative features of edemas, non-enhancing
tumors, and enhancing tumors by obtaining large receptive
fields and integrating channel information. Compared with other
state-of-the-art methods, NDNs obtained higher Dice similarity
scores. The proposed method makes it possible to generate
accurate segmentation result for brain tumors without manual
interference and provides considerable insight on the application
of computer-aided systems to clinical tasks.
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