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We describe the steps involved in analysis of multi-modal, multi-subject human

neuroimaging data using the SPM12 free and open source software (https://www.fil.

ion.ucl.ac.uk/spm/) and a publically-available dataset organized according to the Brain

Imaging Data Structure (BIDS) format (https://openneuro.org/datasets/ds000117/). The

dataset contains electroencephalographic (EEG), magnetoencephalographic (MEG), and

functional and structural magnetic resonance imaging (MRI) data from 16 subjects

who undertook multiple runs of a simple task performed on a large number of

famous, unfamiliar and scrambled faces. We demonstrate: (1) batching and scripting

of preprocessing of multiple runs/subjects of combined MEG and EEG data, (2)

creation of trial-averaged evoked responses, (3) source-reconstruction of the power

(induced and evoked) across trials within a time-frequency window around the “N/M170”

evoked component, using structural MRI for forward modeling and simultaneous

inversion (fusion) of MEG and EEG data, (4) group-based optimisation of spatial priors

during M/EEG source reconstruction using fMRI data on the same paradigm, and (5)

statistical mapping across subjects of cortical source power increases for faces vs.

scrambled faces.

Keywords: MEG, EEG, fMRI, multimodal, fusion, SPM, inversion, faces

INTRODUCTION

As part of this Special Research Topic on how to perform MEG/EEG group analysis with free
academic software, we describe practical steps using the SPM12 software package (https://www.
fil.ion.ucl.ac.uk/spm/) and a publically-available multimodal dataset. We describe SPM’s graphical
user interface (GUI), its “batch” interface for linear pipeline creation and finally “scripting” in
MATLAB for (parallelised) loops across subjects.

The paper is organized into sections with a brief theoretical background followed by a detailed
step-by-step walkthrough. The background is only brief because we refer to previous published
papers, many of which are available from the SPM website: https://www.fil.ion.ucl.ac.uk/spm/doc/
biblio/. We do not provide a full tour of all the available options in SPM for M/EEG, which is
already present in Litvak et al. (2011). Rather, we focus on a single, typical pipeline for creating
event-related responses, localizing those responses in the brain and performing statistics on the
results. Our experience with teaching SPM is that students appreciate having a concrete example,
which they can then adjust to their own needs1.

1Note that these results are from a subset of the analyses reported in Chapter 42 of the SPM12 manual, which is available

online at https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#Chap:data:multi, but has not previously been published in a

peer-reviewed journal.
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For an overview of the dataset see, Wakeman and Henson
(2015). The data are in BIDS format, both MRI (Gorgolewski
et al., 2016) and MEG (Niso et al., 2017), on the OpenNeuro
platform: https://openneuro.org/datasets/ds000117/versions/
1.0.22.

The MEG data consist of 102 magnetometers and 204
planar gradiometers from an Elekta VectorView system. The
same system was used to simultaneously record EEG data
from 70 electrodes (using a nose reference), which are stored
in the same “FIF” format file (as well as bipolar horizontal
and vertical electro-oculograms, HEOG/VEOG, and bipolar
electro-cardiogram, ECG). The data include a raw FIF file for
each run/subject, but also a second FIF file (see below) in
which the MEG data have been cleaned using Signal-Space
Separation (Taulu et al., 2004) as implemented in MaxFilter
2.1 (Elekta Neuromag; https://accessgudid.nlm.nih.gov/devices/
06430056480046). We use the latter here. A Polhemus digitizer
was used to digitize three fiducial points and a large number of
other points across the scalp, which can be used to coregister
the M/EEG data with the structural MRI image. Six runs of
∼10min were acquired for each subject, while they judged the
left-right symmetry of each stimulus, leading to nearly 300 trials
in total for each of the 3 conditions (famous face, unfamiliar face,
scrambled face).

The MRI data were acquired on a 3T Siemens TIM Trio, and
include a 1 × 1 × 1mm T1-weighted structural MRI (sMRI)
as well as a large number of 3 × 3 × ∼4mm T2∗-weighted
functional MRI (fMRI) EPI volumes acquired during 9 runs of
the same task (performed by same subjects with different set
of stimuli on a separate visit). Note that the T1 images have
had the face removed to protect the identity of the subjects
(non-de-faced images, e.g., for more accurate head-modeling, are
available from a subset of subjects on request to rik.henson@mrc-
cbu.cam.ac.uk). Other data on the same subjects, such as ME-
FLASH and Diffusion-Weighted images, plus empty-roomMEG
data, are available on the OpenNeuro site, which could be used
for improved head modeling and source localization, but are not
used here.

Each analysis step is a separate SPM batch module. The batch
interface is a generic GUI in SPM that allows configuring and
running complex analyses without programming. This interface
can be used to thread together multiple modules to create a linear
pipeline. When we want to repeat that pipeline across multiple
runs or multiple subjects, we can save it as a batch script, and
use some simpleMATLAB commands to loop over runs/subjects,
just by changing the input files to the pipeline. Finally, for the
more advanced user (familiar with the MATLAB syntax), we also
provide a script (see below) that runs the full analysis from start
to finish by direct calls to SPM12 MATLAB functions (without
necessarily using the batch interface).

It should be noted that the pipeline described below is just one
possible sequence of processing steps, designed to illustrate many
of the options available in SPM12. It is not necessarily the optimal
preprocessing sequence, which really depends on the question
being asked of the data.

2Anon-BIDS version of the same dataset can be found here: ftp://ftp.mrc-cbu.cam.

ac.uk/personal/rik.henson/wakemandg_hensonrn.

GETTING STARTED

Download the data in BIDS format from OpenNeuro, e.g., to
/yourpath (we will call this the “rawpth”)3. The entire dataset
is around 170GB so we suggest to have at least 300GB available
for the entire analysis pipeline. If you need to save space, you
can delete all the sub-∗/ses-mri/anat/∗FLASH.nii.gz

and sub-∗/ses-mri/dwi/∗_dwi.nii.gz files, as we do
not use them here.

The analyses described below require SPM12, a free and open
source software developed at the Wellcome Center for Human
Neuroimaging and available for download at:

https://www.fil.ion.ucl.ac.uk/spm/software/download/
It runs under MATLAB and is compatible with all

versions between R2007a and R2019a, on Linux, Windows
and macOS. Installing SPM12 only requires unzipping the
archive and adding the main directory to the MATLAB path4.
For the analyses here, we use SPM12 r7487 released in
November 2018.

Next, you should create a sub-directory called “code” within
/yourpath, into which you should unzip all the scripts and
batch files downloadable from Figshare:

https://figshare.com/collections/Multimodal_integration_of_
M_EEG_and_f_MRI_data_in_SPM12/4367120.

This code directory includes two sub-directories: (1) one
called “manual”, which contains copies of all the SPM batch
job files that will be created below (as well as a master script
to link them together called “batch_master_script.m”),
and (2) another called “scripted”, which contains a
“master_script.m” that illustrates instead direct calls to
spm∗.m functions (bypassing the batch system, except for a few
exceptions), which can be run to reproduce all the results in this
paper, including the figures, which can be reproduced by the
additional script “create_figures.m”.

First, you also need to create a directory for SPM’s output,
which we will call “outpth”, e.g.:

/yourpath/derivatives/SPM12

You can then create sub-directories for all subjects using some
SPM/MATLAB code like:

BIDS = spm_BIDS(rawpth);

subs = spm_BIDS(BIDS,’subjects’, ’task’,

’facerecognition’);

nsub = numel(subs);

subdir = cellfun(s) [(@’sub-’ s], subs, ’Uniform

Output’,false);

spm_mkdir(outpth,{’meg’,’func’});

spm_mkdir(outpth,subdir,{’meg’,’anat’,’func’});

Finally, you will also need to copy and unzip all the raw
MEG and sMRI files to outpth (since this is where SPM will
write all files derived from them), which you can do with

3If the download from a browser fails due to the size of the file, you can use

the AWS Command Line Interface (https://aws.amazon.com/cli) with: aws

s3 synch -no-sign-request s3://openneuro.org/ds000117

/yourpath.
4Detailed instructions for installation are available at https://www.wikibooks.org/

wiki/SPM#Installation.
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the following code (this code is also present at the start of
the master_script.m):

%-Copy and gunzip T1 MPRAGE images

for s = 1:nsub

f = spm_BIDS(BIDS,’data’,’sub’,subs{s},

’modality’,’anat’,’type’,’T1w’,’acq’,’mprage’);

spm_copy(f, fullfile(outpth,subdir{s},’anat’),

’gunzip’,true);

end

%-Copy and gunzip fMRI images (only if you want to

do fMRI analysis in Supplementary Appendix 2)

%for s = 1:nsub

% f = spm_BIDS(BIDS,’data’,’sub’,subss,’modality’,

’func’,’type’,’bold’);

% spm_copy(f, fullfile(outpth,subdirs,’func’),

’gunzip’,true);

%end

Note that if you want to run the fMRI analysis (e.g.,
following Supplementary Appendix 2, or using the
master_script.m), you will need to uncomment the
last section of code above. However, in case you want to save
time and disk space, we also provide the results of that fMRI
analysis (which is needed for the fMRI-informed source-
localization of M/EEG data described in section Group and fMRI
Optimized Source Reconstruction) on the above Figshare link.

Finally, open the SPM12 graphical interface by typing “spm
eeg” at theMATLAB prompt, which should open three windows
(including that in Figure 1A). Then open the batch editor
window by pressing “Batch” from the SPM: Menu window,
which should open the window in Figure 1B. (Later we will
press the “3D Source Reconstruction” button to get the
window in Figure 1C).

PREPROCESSING M/EEG DATA

Motivation and Background
The first aim of pre-processing is to transform the data from the
format originally recorded in the scanner (which varies across
scanner types) to a common format used by SPM (and closely
related to that used by FieldTrip). A second aim is to perform
some basic operations on the data like filtering, epoching and
removal of non-interesting artifacts. The resulting “cleaned” data
can then form the input to advanced analyses in SPM, such
as statistical parametric mapping, source reconstruction and
Dynamic Causal Modeling (though the latter is not discussed in
the present paper). In principle, pre-processing in SPM is not
different from that in other academic and commercial M/EEG
analysis software packages. Therefore, data could also be fully or
partially pre-processed outside of SPM as long as the results are
converted to SPM format. Here we show full pre-processing in
SPMwith the exception of Signal Space Separation, which is done
in manufacturer’s software as previously mentioned.

The order of steps shown here is just one of many possibilities.
Depending on the specifics of your own data, you might
choose to arrange the steps differently. However, the following
are some points to remember when designing a preprocessing
pipeline in SPM:

• In the present example, we will convert the data as a
continuous timeseries, though it is possible to “cut out”
time windows (epochs) around the trial onsets during the
conversion step, e.g., if you wanted to save disk space and
processing time.

• Digital filtering might create artifacts (ringing) where there
are discontinuities in the data, particularly at the edges. It is,
therefore, better to filter continuous data prior to epoching
to avoid filter ringing artifacts in every trial. Alternatively the
epochs of interest can be padded with more data and then
cropped after filtering.

• Since the ringing depends on the amplitude of the
discontinuity, it is better to do high-pass filtering or baseline
correction before other filtering steps.

• It is convenient to put downsampling early in the pipeline to
make the subsequent steps faster.

• SPM only filters channels with physiological data. So the
channel types should be set correctly before filtering.

• Some artifacts (e.g., discontinuous jumps or saturations) are
more difficult to detect after filtering. In SPM, there is an
option to mark artifacts in continuous data and use this
information later in the pipeline e.g., for trial rejection, but we
do not consider that here.

• One common distinction is whether analyses are performed
over time (e.g., evoked response amplitudes), over frequency
(e.g., power and/or phase after Fourier transform), or time-
and-frequency (e.g., using wavelets). Below we illustrate a
typical time-based analysis of evoked responses, i.e., event-
related potentials (ERP) from EEG and event-related fields
(ERF) from MEG. In Supplementary Appendix 1, we also
illustrate an alternative analysis using wavelets to capture both
evoked and induced power.

Tutorial Walkthrough
We will start by creating pipelines (using SPM’s batch interface)
for preprocessing the M/EEG data for a single subject, and then
scripting these pipelines to repeat over multiple subjects. We will
start with Subject 15, in whom the data are particularly clean. The
full preprocessing pipeline is shown in Figure 2.

Convert
The first step is to convert rawM/EEG data from its native format
(which depends on the acquisition system) to the MATLAB
format used by SPM.

In the batch editor, select SPM on the top toolbar, and
from the dropdown menu select M/EEG. At the top of the
new dropdown menu, select “Conversion”. Once selected,
the Module List on the left of the batch editor window will
now list Conversion as the first (and only) step. Within the
main, Current Module window will list several variables. The
first variable listed is File Name. On the right hand side of
this pane, you will see “<-X”; this indicates that you need to
update this field. To do so, click on File Name, which will then
open up your current working directory. Select the file named
“sub-15_ses-meg_task-facerecognition_run-01
_proc-sss_meg.fif” in the “outpth/sub-15/meg”
directory and press “done”.
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FIGURE 1 | Screenshot of SPM figures (A) SPM main menu, (B) SPM batch interface, (C) Source localization (reconstruction) interface.

Many variables in the Current Module window have default
values, but we need to change some of them. For example,
we do not want to epoch during conversion, leave the default
“continuous” option; we can epoch the data later using
another SPMmodule.

Another change to the defaults is that we do not want
to convert all channels in the original file (since many are
extraneous), so will select a subset by their type. We first
need to delete the default option to convert all channels.
To do this, click “channel selection”, and scroll down
until you can select the “Delete All(1)” option. Then

click the “channel selection” again, but this time choose
the option “New: Select channels by type”. This will
add “Select channels by type” to the Current Module,
and you will see “<-X” on the right hand side of this, indicating
the need for user input. Click the “<-X” and then select “EEG”
from the “Current Item” section. Repeat this process to
additionally include the “MEG” and “MEGPLANAR” channels.

Finally, we want to read in the stimulus trigger channel,
which for this dataset is called “STI101”. Note that you do not
need to read in this channel when you use the event definitions
provided by BIDS (we will use these BIDS definitions later).
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FIGURE 2 | Full pipeline. The MATLAB filenames at the top of each box refer

to the batch files (in the “manual” directory) used for each step.

But to illustrate first how you could define those events yourself
based on a trigger channel, we will include this channel. Click
the “channel selection” again, but this time choose the
option “New: Custom channel”. Select the new “<-X” that
appears and specify “STI101” as the value.

The remaining options for conversion can be left with
their default values (which includes the output filename, which
defaults to the input filename, prepended with “spmeeg_”).
Once all variables are specified, the play button on the top toolbar
will turn green and the batch could be run. However, for this
example, we will continue to use the current batch editor window,
so do not press the play button yet.

Prepare (Define Channels)
The next step in the current pipeline is to update some other
properties of the data using the “Prepare” module. This is a

general-purpose “housekeeping” module that includes options
like re-defining channel names, types, locations, etc. as specific to
the particular laboratory set-up. In our case, some of the channels
currently labeled EEG were in fact used to record EOG.

Select “Prepare”, from the preprocessing menu. Highlight
“Prepare” in the Module list; this will open up the variables
in the current module window. Again we need to complete
those variables indicated by “<-X”. If we had already run
the previous conversion stage, we could select the new
“spmeeg_sub-15_ses-meg_task-facerecognition
_run-01_proc-sss_meg.mat” file produced by that stage
as the input for this stage. Here however, we will create a pipeline
in which all stages are run in one go, in which case we need to
tell SPM that the output of the conversion step, even though not
yet created, will be the input of this preparation step. You can
do this by selecting the “Dependency” button located further
down the window. This will open up a new window, listing all
the processing steps up to this point. So far this is just one: the
conversion step. Highlight this step and select “OK”.

The next variable to define is the “Select task(s)”.
Clicking this variable will display a variety of options in
the “current item” box. Within this, select “New: Set

channel types from BIDS”, and then select the file
“task-facerecognition_channels.tsv” in the main
BIDS directory. This file contains meta-information about
channels, including the fact that, for the specific MEG laboratory
from which these data were acquired, channel EEG061 was
actually HEOG, channel EEG062 was VEOG, channel EEG063
was ECG and channel EEG064 was unused (free-floating, so
should be ignored).

Now create a second “Prepare” module, but this time
select the “New: Set bad channels from BIDS” task,
and again select the channel file “task-facerecognition_
channels.tsv”. Then select the previous “Prepare”
module as the dependency for input. This will update the data
with those channels that were marked as “bad.” Actually, there
were no bad channels marked for this dataset, but we include this
step for a more generic pipeline, e.g., you could create a separate
“∗channels.tsv” file for each subject and mark channels that
you think are bad. Note also that there are many other ways
that bad channels can be defined automatically by SPM (or other
MATLAB toolboxes such as those from FieldTrip), but these
options are not explored here.

Define Trials
The onset of trials (events) are normally defined by codes sent
from a stimulus machine to the MEG device, which are recorded
in a trigger channel (which is channel STI101 in the present data).
SPM has some ability to define trials from that channel, which we
will illustrate in a brief digression. But for the main pipeline, we
will read the trial definitions from a BIDS file instead, because
in some subjects and runs, the trigger channel had a complex
mixture of stimulus and key codes, and more generally, a trial-
type may be defined by complex rules involving a combination
of multiple triggers (e.g., when “correct trials” are defined as
a specific stimulus code followed by a specific key code). Such
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complex and bespoke rules are beyond SPM’s capabilities, so
require the experimenter to define the trial onsets themselves.

Defining trials from trigger channel
If you want to try defining trials from the trigger channel, then
you would add a new “Epoching” module. Select the output
from the last “Prepare” module as the input dependency, and
specify “Define trial” under the next “How to define

trials” option. For “Time window”, enter [−100 500], for
the start of prestimulus period and end of epoch (in ms). Then
under “Trial definitions”, select “New: Trial” and
enter “Famous” as the “Condition label”, “STI101_up” as
the “Event type”, [5 6 7] as the “Event value” and “34”
as the “Shift”. These choices tell SPM that the onset of Famous
trials start when the trigger channel first reaches a value of 5,
6, or 7 (usually from a baseline value of 0)—since the trigger is
often a top-hat pulse that lasts several samples. The trigger values
are arbitrary, and defined by the experimenter. The 34ms shift
is because there is a delay of 2 screen refreshes at 60Hz between
the trigger pulse from the stimulus machine and when the visual
projector actually presented the stimulus to the subject (this will
depend on theMEG lab, and can be calibrated with a light diode).

Then select the “Replicate: Trial(1)” twice, and for
the second “Trial”, change the “Condition label” to
“Unfamiliar” and “Event” values to [13 14 15], and for the third
“Trial”, change the “Condition label” to “Scrambled”
and the “Event” values to [17 18 19].

Defining trials from BIDS file
For the main batch below, we will read the trials from a
BIDS file, rather than the trigger channel, which we can do
via yet another “Prepare” module. This will update the trial
information within SPM’s data structure, which will be used when
the “Epoching” module is called later (in section Epoch, after
downsampling and filtering, which are operations best done on
continuous rather than epoched data).

In the new “Prepare” module, select the output from the
last “Prepare” module as the input dependency, select the task
“Load events from BIDS tsv file”, and then select
the file “sub-15_ses-meg_task-facerecognition_
run-01 _events.tsv” (keep the default option of replacing
previous trial definitions in file with these new BIDS ones). Now
we can proceed to downsampling the continuous data.

Downsample
The data were sampled at 1,100Hz, but for the analyses below,
we rarely care about frequencies above 100Hz. So to save
processing time and disk space, we can downsample the data
to 200Hz (which includes a lowpass filtering to avoid aliasing).
Select “Downsample” from the module list, click on “File
Name”, select “Dependency” and in the pop-up window, select
the prepared datafile at the bottom of the list. Next, set the
downsampling rate by clicking the “New sampling rate”
variable within the current module box. Type “200” into the pop-
upwindow that appears and use “OK” to set this value. The output
file of this stage will be prepended with a “d”.

If you want to review the continuous data in SPM,
you can execute the steps so far by pressing the play

button, and when it has finished, press “Display” on
the main SPM menu, select “M/EEG”, then select the file
“dspmeeg_sub-15_ses-meg_task-facerecognition
_run-01_proc-sss_meg.mat”. SPM’s Graphics window
should show the “Info” tab describing the steps done so far,
the channels etc. If you select the “EEG” tab on the left, then
you should see the EEG channels as in Figure 3 (which you can
scroll through using slider at the bottom and change the scale
etc. using icons at the top, and you might need to change the data
scaling, e.g. press the fourth “downscale” button on top right
of window, to exactly match Figure 3 below). Once you have
finished reviewing the data, go back to the batch window so we
can add some further processing steps (modules) that need to be
performed on each run, before we explain how to script a loop
over runs.

Filter
Next, we want to remove low-frequency noise in the data by using
a high-pass filter. Go to SPM->M/EEG->Preprocessing

and add the “Filter” Module. Then from the current Module
window, use “Dependency” to add the output of the previous,
downsample module, leave “Type” as the default “Butterworth,”
and change the “Band” to “Highpass”. For the “Cutoff(s)”,
enter 1 (Hz) and leave the “Direction” variable as “Zero
phase” and the “Order” as 5. Note that “Zero phase” in this
case means that the 5th order filter is applied in a two-pass
manner, resulting in an attenuation that corresponds to what
would have been achieved using a one-pass filter with double the
order (i.e., 10). The output file of this stage will be prepended
with an “f”. We will additionally low-pass filter the data, to
remove high-frequency noise (for event-related analyses)5. To
do this, right click on the “Filter” in the Module List and
select “replicate”. Change “Band” to “Lowpass” and enter
40 (Hz) for the “Cutoff(s)”, leave everything else as the
default, except to update the input dependency to now be the
output of the previous filter module above. This will prepend
a second “f”. The filter type and order used here are the
defaults in SPM. They normally work well for cases when there
is no special concern about preserving the shape or latency of
response peaks. The main advantage of Butterworth filters is
that they have relatively little passband and stopband ripple.
So noise close to the cut-off frequency cannot inadvertently
be amplified by the filter. We refer the interested reader to
Widmann et al. (2015) for a detailed discussion of filter design
for electrophysiological data.

Epoch
In section Define Trials, we inserted the trial onsets and types
from the BIDS events file into the SPM object. We now need
to use these definitions to cut the continuous data into a

5In MATLAB, a bandpass filter is not equivalent to the combination of the

corresponding high- and low-pass filters. A bandpass filter is more suitable for

narrow bands, and bandpass filters with the lower edge very close to zero, such as

[0.1 30], can become unstable. When doing low- and high- pass filtering separately

it is recommended to start with the high-pass because it removes the DC offset

that could create ringing artifacts at the data edges. This is particularly important

for filtering epoched data but depending on the magnitude of the DC offset, could

also be relevant for continuous data.
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FIGURE 3 | Continuous EEG recordings in SPM graphics window.
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number of epochs, one per trial. Select the filtered file from
the previous step as the dependency for the input, and then
press “Define Trial” for “How to define trials”.
For the “Time window”, enter [−100 500], which corresponds
to an epoch that starts 100ms before the stimulus onset
and stops 500ms after. Then on “Trial definitions”,
select “New:Trial” and enter “Famous” as the “Condition
label”, “BIDS” as the “Event type” and “‘Famous”’ as the
“Event value”. Note the single quotes around the event
value (to match the value given by the BIDS events file).
Leave the “Shift” as 0 (because the times in the BIDS
file have already been corrected for the 34ms delay between
trigger and stimulus appearing on screen described in section
Define Trials).

Then select the “Replicate: Trial(1)” twice, and
for the second trial, change the “Condition label” to
“Unfamiliar” and “Event value” to “‘Unfamiliar’,” and for the
third trial, change the “Condition label” to “Scrambled”
and the “Event value” to “‘Scrambled”’ (not forgetting the
single quotes). For the “Baseline correction” option,
select “No.” This is because the high-pass filtering above will
remove most of the signal drifts that baseline correction is
normally used for. Note, however, that there is still a lively debate
about whether baseline correction or high-pass filtering is a better
method. The output from this step will be prepended with “e”.

Delete Intermediate Steps (Optional)
The four steps (modules) described above create a preprocessing
pipeline for the data. If this pipeline is run straight away, there
will be four new files output. If you are short of disk space, you
might want to delete some of the intermediate files. To do this,
select “SPM” from the top toolbar of the batch editor window
and choose “M/EEG -> Other -> Delete” several times.
Then you will need to specify the File Names to delete.
Highlight each “Delete” module and set the File Name as
the output of the “Prepare” step using the “Dependency”
button to delete any output from the conversion/prepare step
onward. However, do not delete the most recent step (epoching),
which we need below, nor should you delete the downsampled
file, because that will be the starting point for the alternative
time-frequency analysis in Supplementary Appendix 1.

Create a script for combining pipelines within a subject
Once you have created a linear pipeline, youmight want to repeat
it on multiple runs (sessions) within a subject, or even across
multiple subjects. In the present case, there were 6 independent
MEG runs (separated only by a short period to give the subjects
a rest), which can all be processed identically. One option would
be to save the batch file, manually alter the “File Name” that
is initially loaded into the batch editor, run it, and repeat this
process separately for each run. A more powerful approach is to
create a script.

To do this, we first need to remove the files specific to
Run 01 above. In the batch window, select the “Conversion”
task, then right-mouse on “File Name” and choose “Clear
Value” (and the “<-X” should return). Repeat this right-
mouse clearing of values on three remaining inputs: the “Set

channel types from BIDS tsv” in the second and third
“Prepare” modules, and the “Load events from BIDS

tsv file” input in the fourth module6.
Now select File from the Batch Editor window, and select

“Save Batch and Script”. This will produce two files: a
batch file (same as that created when you save a batch) and also a
MATLAB script that calls that batch file. So if you call the batch
file “batch_er_convert_epoch”, you will get a batch file
called “batch_er_convert_epoch_job.m” and a script
file called “batch_er_convert_epoch.m” (see prepared
examples in “manual” sub-directory that you downloaded into
the “code” directory earlier).

The script file “batch_er_convert_epoch.m” will
automatically be loaded into the MATLAB editor window, and
should appear something like this:

% List of open inputs% Conversion: File Name -

cfg_files% Prepare: Set channel types from BIDS

tsv-cfg_files% Prepare: Set bad channels from BIDS

tsv -cfg_files% Prepare: BIDS tsv file -cfg_files

nrun = X; % enter the number of runs here

jobfile = {’outpth/batch_er_convert_epoch_job.m’};

jobs = repmat(jobfile, 1, nrun);

inputs = cell(4, nrun);

for crun = 1:nrun

inputs{1, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Conversion: File Name

inputs{2, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Prepare: Set channel types from BIDS tsv

inputs{3, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Prepare: Set bad channels from BIDS tsv

inputs{4, crun} = MATLAB_CODE_TO_FILL_INPUT;

% Prepare: BIDS tsv file

end

spm(’defaults’, ’EEG’);

spm_jobman(’run’, jobs, inputs{:});

At the top of this script is listed the variable “nrun= X;”. Replace
X with 6 for the six runs you wish to convert. You also need to
complete the missing MATLAB code needed for each run: (1) the
raw input ∗.fif file to convert for that run, (2) the BIDS ∗.tsv

channel file (for the channel types), (3) the BIDS ∗.tsv channel
file (for the bad channels), and (4) the BIDS ∗.tsv events file for
that run. In order to automate selection of these files, you need to
know some basic MATLAB. For example, because the BIDS files
are named systematically, we can complete the relevant lines of
the above script with:

s = 15; % Current subject

runs = spm_BIDS(BIDS,’runs’, ’sub’,subs{s},

’modality’,’meg’, ’type’,’meg’);

for crun = 1:nrun

inputs{1, crun} =spm_BIDS(BIDS,’data’,’sub’,subs{s},

’type’,’meg’,...

’run’, runs{crun}, ’proc’, ’sss’);

inputs{2, crun} = spm_BIDS(BIDS,’data’,’ses’,’meg’,

’sub’,subs{s},...

’run’, runs{crun},’type’,’channels’);

inputs{3, crun} = spm_BIDS(BIDS,’data’,’ses’,’meg’,

6The channel definitions and bad channels do not actually depend on run in this

dataset, so could be left as is. However, in general they might (e.g., if channels did

go bad between runs).
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’sub’,subs{s},...

’run’, runs{crun},’type’,’channels’);

inputs{4, crun} = spm_BIDS(BIDS,’data’,’sub’,subs{s},

’modality’,’meg’,...

’run’,runs{crun},’type’,’events’);

end

This completes the first part of the preprocessing
pipeline. You can then run this script by selecting the
green play button on the upper toolbar of the script
MATLAB Editor window. The results will be 6 files labeled
“effdspmeeg_sub-15_ses-meg_task-facere
cognition_run-%02d_proc-sss_meg.mat”, where
%02d refers to the run number 1–6 (with 0 in front). If you
want to view any of these output files, press Display on the main
SPM menu pane, select “M/EEG”, then select one of these files.
You will be able to review the preprocessing steps as a pipeline
from the “History” section of the “Info” tab, and can view
single trials by selecting one of the EEG, MEG (magnetometer)
or MPLANAR (gradiometer) tabs.

Merge (Concatenate Runs)
To analyse the data as one file, the six runs need to be
merged. To do this, select “Merging” from “SPM ->

M/EEG -> Preprocessing -> Merging”, select
“File Names”, “specify”, and select the 6 file names
“effdspmeeg_sub-15_ses-meg_task-facerecogn
ition_run-%02d_proc-sss_meg.mat.” If you
were to run this stage now, the output file would match
the first input file, but be pre-pended with a “c”, i.e.,
“ceffdspmeeg_sub-15_ses-meg_task-facerecogn
ition_run-01_proc-sss_meg.mat”. However, we will
wait to add some more modules before running, as below. At
this stage, you could also add “Delete” modules to delete all
the previous individual run files (since the concatenated file will
contain all trials from all runs, i.e., contain the same data).

Prepare (Montage for EEG Re-referencing)
First, we want to re-reference the EEG data to the average
across channels (as is sometimes conventional for ERP analyses;
note the MEG data have no reference). We can do this with
the “Montage” module below, which is a general purpose
module for creating new channel data from linear combinations
of existing channel data. However, we first need to create a
montage file, which includes a matrix that, when multiplied
by the existing data, creates the new channel data. There
is another sub-function (task) of the Prepare module that
does this, so add another “Prepare” module, select the
dependency on the previous merged file as the FileName,
but for the “task”, select “Create average reference

montage” and enter “avref_montage.mat” as the output
filename. (If you want to look at this montage, you can run
this module, load “avref_montage.mat” into MATLAB and
look at the “montage.tra” matrix, where you can see that each
new EEG channel is equal to the old EEG channel minus the
average of all other EEG channels).

Montage
Now we have the montage file, we can apply it, in order to re-
reference the EEG data to the average. Select “Montage” from
the Preprocessing menu, and specify the “File Name” as being
dependent on the output of the “Merge” module above. For
the “Montage file name”, choose a different dependency,
namely the output of the “Prepare” module above. Next,
highlight “keep other channels” and select “yes” in the
“Current Item” box, in order to keep all the MEG channels
(which are unchanged). All other default values can remain the
same. The output file will be prepended with “M”.

Artifact Detection
There are many ways to define artifacts (including special
toolboxes; see other SPMmanual chapters). Here we focus on just
one simple means of detecting blinks by thresholding the EOG
channels. Select “Artifact detection” from the “SPM
-> M/EEG -> Preprocessing” menu. For the input file,
select a dependency on the output of the previous step. Next,
select “New: Method” from the box titled “Current Item:

How to look for artifacts”. Back in the “Current
Module” window, highlight “Channel selection” to list
more options, choose “Select channels by type” and
select EOG. Then do not forget to also delete the default
“All” option! Then press the <-X to select “threshold
channels”, click the “Specify” button and set this to 200
(in units of microvolts). The result of this thresholding will be
to mark a number of trials as “bad” (these can be reviewed after
the pipeline is run if you like). Bad trials are not deleted from the
data, but marked so they will be excluded from averaging below.
The output file will be prepended with the letter “a”.

Sort Conditions
At this point, we can also do one more bit of house-keeping
within the same “Prepare” module, which is simply to re-
order the condition labels. This only matters for the final
stage of “Contrasting conditions” below, where the
contrast weights assume a certain order of the conditions.
The current order of conditions is based purely on the order
they appear in the raw data (e.g., if the first few trials
of the first run were: “Scrambled, Unfamiliar, Unfamiliar,
Scrambled, Familiar. . . ,” then the condition labels will be
ordered “Scrambled-Unfamiliar-Familiar”), and this may vary
across subjects. To set the condition order to be invariant
across subjects, add a new task by selecting the “Sort
conditions” task, then “Specify conditions lists”
add three “New: Condition labels”, and name them
“Famous,” “Unfamiliar” and “Scrambled” (in that order). Note
that this operation does not physically reorder the trials at this
stage, but just defines the order that will be used where required
at later steps.

Combine Planar Gradiometers
The next step is only necessary for scalp-level analyses on
planar gradiometers, but we include for completeness (see
https://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf#Chap:data:
multi for example of scalp-time statistics). Neuromag’s planar
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gradiometers measure two orthogonal directions of the magnetic
gradient at each location, so these need to be combined into one
value for a scalar (rather than vector) topographic representation.
The simplest way to do this is to take the Root Mean Square
(RMS) of the two gradiometers at each location (i.e., estimate
the 2D vector length). In SPM, this will create a new sensor
type called MCOMB. Note that this step is NOT necessary
for source reconstruction (where the forward model captures
both gradiometers). Note also that the RMS is a non-linear
operation, which means that zero-mean additive noise will
no longer cancel by averaging across trials, in turn meaning
that it is difficult to compare conditions that differ in the
number of trials. To take the RMS, select “Combine Planar”
from the “SPM -> M/EEG -> Preprocessing menu”,
highlight “File Name”, select the “Dependency” button, and
choose the Artifact-corrected file above. Change the “copying
mode” to “Append planar”. The file produced will be
prepended with “P.”

Average Trials
To average the data across trials, select “SPM -> M/EEG ->

Averaging -> Averaging”, and again define the input as
dependent on the output of the “Combine Planar” module
above. Keep the remaining options as the default values. (If you
like, you could change the type of averaging from “Standard”
to “Robust”. Robust averaging is amore sophisticated version of
normal averaging, where each timepoint in each trial is weighted
according to how different it is from themedian across trials. This
can be a nice feature of SPM, which makes averaging more robust
to atypical trials, though in fact it does not make much difference
for the present data, particularly given the large numbers of trials,
and we do not choose it here simply because it takes much longer
than conventional averaging.) Once completed, this file will have
a prefix of “m”.

Contrast Conditions
We can also take contrasts of our trial-averaged data, e.g., to
create a differential evoked response (ER) between faces and
scrambled faces. This is sometimes helpful to see condition
effects, and plot their topography. These contrasts are just linear
combinations of the original conditions, and so correspond
to vectors with 3 elements (for the 3 conditions here).
Select “SPM -> M/EEG -> Averaging -> Contrast

over epochs”, and select the output of averaging above as
in the dependent input. You can then select “New Contrast”
and enter as many contrasts as you like. The resulting output
file is prepended with “w”. For example, to create an ER
that is the difference between faces (averaged across Famous
and Unfamiliar) and scrambled faces, enter the vector [0.5
0.5 −1] (assuming conditions are ordered Famous-Unfamiliar-
Scrambled; see comment earlier in “Prepare” module), and
give it a name via the “New condition” label. Or to create the
differential ER between Famous and Unfamiliar faces, enter the
vector [1 −1 0]. Sometimes it is worth repeating the conditions
from the previous averaging step by entering, in this case, three
contrasts: [1 0 0], [0 1 0], and [0 0 1], for Famous, Unfamiliar
and Scrambled conditions, respectively. These will be exactly the

same as in the averaged file above, but now we can examine them,
as well as the differential responses, within the same file (i.e., same
graphics window when we review that file), and so can also delete
the previous “m” file.

As with the previous pipeline, if you are short of disk space
(particularly if you later run all 16 subjects), the outputs produced
from the intermediate stages can be deleted using the “SPM ->

M/EEG -> Other -> Delete” function (see earlier).

Save batch and review
At this point, you can save the script again.
The resulting batch file should look like the
“batch_er_merge_contrast_job.m” example you
downloaded into in the “code/manual” directory.
We will start by looking at the trial-averaged ERs to
each of the three conditions. Select the “Display”
button on the SPM Menu and select the file
“wmPaMceffdspmeeg_sub-15_ses-meg_task-facere
cognition_run-01_proc-sss_meg.mat”. Then select,
for example, the EEG tab, and you will see each channel as a row
(“strip” or “standard view”) for the mean ER for Famous faces.
If you press “scalp” instead, the channels will be flat-projected
based on their scalp position (nose upwards). You can now
display multiple conditions at once by holding the shift-key and
selecting Trials 2 and 3 (Unfamiliar and Scrambled) as well.
If you press the expand y-axis button (top left) a few times to
up-scale the data, you should see something like in Figure 4. You
can see the biggest evoked potentials (relative to average over
channels) at the back of the head.

If you press the magnifying glass icon, then with the cross-
hairs select Channel 70 (in bottom right quadrant of display), you
will get a new figure like in Figure 5A that shows the ERPs for
that channel in more detail (and which can be adjusted using the
usual MATLAB figure controls). You can see that faces (blue and
red lines) show amore negative deflection around 170ms than do
scrambled faces (yellow line), the so-called “N170” component
believed to index one of the earliest stages of face processing.

To see the topography of this differential N170 component,
select instead the fourth trial (contrast) labeled “Faces—
Scrambled”. Then press the colored topography icon, and you
will get a new figure with the distribution over the scalp of
the face-scrambled difference. If you shift the time-slider on
the bottom of that window to the leftmost position, and then
repeatedly click on the right arrow, you will see the evolution
of the face effect, with no consistent difference during the
prestimulus period, or until about 155ms, at which point a clear
dipolar field pattern should emerge (Figure 5B).

You can of course explore the other sensor-types
(magnetometers, MEG) and combined gradiometers (MCOMB),
which will show an analogous “M170”. You can also examine
the EOG and ECG channels, which appear under the OTHER
tab. (Note that the VEOG channel contains a hint of an evoked
response: this is not due to eye-movements, but due to the fact
that bipolar channels still pick up a bit of brain activity too.
The important thing is that there is no obvious EOG artifact
associated with the difference between conditions, such as
differential blinks).
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FIGURE 4 | Trial-averaged ERPs for each condition over all EEG channel positions on the scalp.
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FIGURE 5 | (A) Single-channel ERP for each condition, (B) Topography for differential ERP for faces minus scrambled faces.

SOURCE RECONSTRUCTION

Motivation and Background
The aim of the source reconstruction step is to estimate the
distribution of cortical sources that give rise to the MEG/EEG
signals observed at the sensor level. This is a non-trivial inverse
problem because, for any pattern of sensor values, there could be
infinitely many source distributions that would all fit it perfectly
(in the same way that infinitely many possible 3D objects produce
the same 2D shadow). To arrive at a unique solution, additional
constraints (regularization terms or priors) must be introduced,
and depending on the nature of these constraints, different
solutions could be obtained for the same data. Here we will
focus on the “imaging” or “distributed” solution to the inverse
problem, specifically two approaches that minimize the L2-norm
of the data fit and regularization term(s), either with a uniform
prior on the variance of source activities (similar to the classical
Minimum-Norm Estimate, MNE), or with multiple, localized
regularization terms that encourage a sparse solution (called
“MSP” in SPM for “Multiple Sparse Priors”). Note that SPM does
offer other inverse solutions, such as a Bayesian implementation
of Equivalent Current Dipoles (Kiebel et al., 2008), and also
Dynamic Causal Modeling (DCM; David et al., 2006), which can
be viewed as a type of inverse solution.

The imaging solution assumes that the sensor-level activity
is a result of summation of a large number of dipolar sources
distributed over the cortical sheet. These sources have fixed
locations and orientations, and the only unknown quantity
is their amplitude. The extent to which each sensor sees
each source is given by the so-called “lead-field”. This is a
vector that can be computed using models rooted in the
known physics of electromagnetic fields (more precisely in
approximations to Maxwell’s equations). These models are
called “forward models” because they solve the opposite of the

inverse problem—computing the sensor-level signals when the
source distribution is known. The forward problem is linear
in the source amplitudes meaning that the combined effect
of all the sources can be computed by summing their lead-
field vectors multiplied by the corresponding source amplitudes.
Mathematically this is represented as a matrix multiplication of
a lead-field (or gain) matrix L, with the dimensions of number
of sensors by number of cortical mesh vertices, and a vector of
source current densities J.

Y = LJ + ε

Y here is the sensor data and ε is random sensor noise. To
compute the matrix L it is necessary to provide information
about the head geometry, sensor locations and head tissue
conductivities. The latter are especially important for EEG. There
can be different ways of doing the forward computation which
make different simplifying assumptions and achieve different
degree of accuracy. In SPM one can use for EEG either a 3-shell
spherical model (Cuffin andCohen, 1979) or a Boundary Element
Model (BEM) (Waberski et al., 1998). For MEG there is a choice
between a single sphere model, local spheres (Huang et al., 1999)
and a single shell model (Nolte, 2003). The latter was shown to
perform well in relation to more elaborate BEMmodels for MEG
(Stenroos et al., 2014) and we will use it here. The anatomical
information for forwardmodels in SPM can be obtained from the
subject’s individual structuralMRI or from a scaled template head
model. Here we will use the former option as we have individual
structural images for all the subjects. SPM uses its sophisticated
computational neuroanatomy toolkit (Ashburner and Friston,
2005) to obtain individual head and cortical meshes by inverse
normalization of template meshes (Mattout et al., 2007). This
works much faster than the commonly used FreeSurfer pipeline
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(Dale et al., 1999) and is robust also for low quality images.
An additional advantage is the ability to easily map between
individual and canonical anatomy via the use of isomorphic
cortical mesh. This ability is important for group inversion and
statistical analysis on meshes described below.

The SPM approach to the inverse modeling in the Parametric
Empirical Bayes (PEB) framework has been described in
several previous publications. Friston et al. (2008) describe
the mathematical details of the approach. A more accessible
tutorial introduction to the same ideas is given by López
et al. (2014). Since the original publication, there have been
several extensions of the method, such as introducing group
constraints across subjects (Litvak and Friston, 2008), combining
different MEG sensor types and EEG in the same inversion
(Henson et al., 2009b), using priors derived from fMRI (Henson
et al., 2010) and adding a beamforming-like approach to the
framework (Belardinelli et al., 2012). A detailed description of the
theoretical underpinnings of the analyses shown here is available
in Henson et al. (2011).

In brief, it can be shown that assuming that the source
activities vector J is sampled from a multivariate normal
distribution with zero mean, knowing the covariance matrix
of this distribution gives a unique solution for any particular
sensor topography. The problem then comes down to estimating
this covariance matrix and this is done by representing
it as a weighted sum of a relatively small (compared to
the number of sources) number of covariance components.
Each of these components represents particular assumptions
about the source distribution. For instance, an identity matrix
component represents the assumption of independent and
identically distributed sources that gives a solution equivalent
to the classical minimum norm estimate, as noted above
(Hämäläinen and Ilmoniemi, 1994). In a similar way it is
possible to represent a smoothness constraint similar to that
of the Low Resolution Electromagnetic Tomography (LORETA)
(Pascual-Marqui et al., 1994). Finally, it is possible to also add
components representing activated “patches” on the cortical
surface which can be unilateral or bilaterally symmetric. This
is the “Multiple Sparse Priors” approach (Friston et al., 2008).
Each combination of weights of the covariance components
gives a unique inverse solution and can be evaluated in the
Bayesian framework by its variational free energy, a cost function
combining in a principled way the accuracy (goodness of fit)
and complexity of the solution. Computing the inverse solution,
therefore, comes down to using a computational optimisation
scheme to find the weights of the covariance components that
maximize the free energy. There can be different variants of
the optimisation scheme and the two currently implemented
are called Greedy Search (GS) and Automatic Relevance
Determination (ARD). To make the scheme computationally
efficient, SPM uses several methods for data reduction and as
a consequence it does not work on single topographies but on
time windows, and reconstructs the changes in activity within
the time window rather than activity per se. This is different
from traditional implementations of inverse solutions used in
most other toolboxes, and means that the inverse operator
is data-dependent.

Tutorial Walkthrough
To estimate the cortical sources that give rise to the EEG and
MEG data, we will continue to use Subject 15, in order to
demonstrate forward and inverse modeling. We need to use the
structural MRI of the subject to create a “head model” (that
defines the cortex, skull and scalp in terms of meshes) and then
a “forward model” (that uses a conductor model to simulate the
signal at each sensor predicted by a dipolar source at each point
in the cortical mesh).

You can view the structural (T1-weighted)
MRI of Subject 15 by displaying the NIfTI file
“sub-15_ses-mri_acq-mprage_T1w.nii” in the BIDS
“outpth/sub-15/anat” sub-directory. The approximate
position of 3 fiducials within this MRI space—the nasion, and
the left and right pre-auricular points—are stored in the file
“sub-15_ses-mri_acq-mprage_T1w.json” in the
same directory (you can type them into SPM’s display window
when reviewing the MRI to see where they are—note they refer
to indices of voxels within the image matrix, not coordinates in
real-space). These were identified manually (based on anatomy,
and before the face was removed from the MRI images) and
are used to define the MRI space relative to the EEG and MEG
spaces, which need to be coregistered (see below).

To estimate total power (evoked and induced) of the
cortical sources, we need to have the original data for
each individual trial. Therefore, our input file will be
“aMceffdspmeeg_sub-15_ses-meg_task-facereco
gnition_run-01_proc-sss_meg.mat” (we could select
the trial-averaged file if we just wanted to localize evoked
effects). Note that one cannot localize RMS data from combined
gradiometers (nor can one localize power or phase data directly).

Create Head Model
Select the source reconstruction option in the batch window,
and select “Head model specification”. Select the file
“aMceffdspmeeg_sub-15_ses-meg_task-facereco
gnition_run-01_proc-sss_meg.mat” as the “M/EEG
datasets”, and the “inversion index” as “1” (this
index can track different types of forward models and inverse
solutions, for example if you want to compare them in terms of
log-evidence, e.g., Henson et al., 2009a). Additional comments
relating to each index can be inserted if “comments” is selected.

The next step is to specify the meshes. Highlight
“meshes” and select “mesh source”. From here select
“Individual structural image” and select the
“sub-15_ses-mri_acq-mprage_T1w.nii” file in the
BIDS “outpth/sub-15/anat” sub-directory. The mesh
resolution can be kept as normal (approximately 4,000 vertices
per hemisphere). Note that the cortical mesh (and scalp and skull
meshes) are created by warping template meshes from a brain
in MNI space, based on normalizing this subject’s MRI image to
that MNI brain (Mattout et al., 2007).

To coregister the MRI and MEEG data, we
need to first specify the three fiducials points. You
could type each point’s 3D coordinates by hand, or
more simply, select the option “Coregistration
based on BIDS json file”, and then select the
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“sub-15_ses-mri_acq-mprage_T1w.json” file in
the “outpth/sub-15/anat” sub-directory mentioned
above. As well as the fiducials, a number of head-points across
the scalp were digitized. These were read from the FIF file and
stored in the SPM MEEG file. These can help coregistration, by
fitting them to the scalp surface mesh (though sometimes they
can distort coregistration, e.g., if the end of the nose is digitized,
since the nose does not always appear on the scalp mesh, often
because it has poor contrast on T1-weighted MRI images, or
because face has been removed, as here). If you keep “yes” for
the “use headshape points” option, these points will
be used, but you will notice that alignment of the fiducials is
not as good (as if you don’t use the headshape points), most
likely because the nose points are pulling it too far forward.
So here we will say “no” to the “use headshape points” option,
so as to rely on the fiducials alone, and trust the anatomical
skills of the experimenter. (Alternatively, you could edit the
headpoints via the command line or a script so as to remove
inappropriate ones).

Finally, for the forward model itself, select EEG head model,
and specify this as “EEG BEM”; select MEG head model and
specify this as “Single Shell”. This can then be run. Note
that the model parameters are saved, but the gain matrix itself is
not estimated until inversion.

Save batch and review
You can now save this inversion batch file (it should look
like the “batch_forward_model_job.m” file in the
“code/manual” directory). Once you have run it, you can
explore the forward model by pressing the “3D Source

Reconstruction” button within the SPM Menu window
(Figure 1A). This will create a newwindow (Figure 1C), in which
you can select “Load” and choose the “aMceffdspmeeg_
ses-meg_task-facerecognition_run-01_proc-

sss_meg.mat” file. On the left hand side of the source
localization window, select the “display” button below the
“MRI” button. This will bring up the scalp (orange), inner and
outer skull (red) and cortical (blue) meshes of Subject 15’s brain,
like in Figure 6A (after rotating slightly with MATLAB’s 3D
tool). Note that the fiducials are shown by cyan disks.

Next, select the “display” button beneath
“Co-register” and then select “EEG” when asked what
to display. The graphics window should then display an image
like in Figure 6B that displays the electrode locations in black
disks, the digitized headpoints in small red dots, the fiducials
in the EEG data as purple diamonds, and the MRI fiducials as
cyan disks again. The overlap between the EEG fiducials and
MRI fiducials indicates how well the data have been coregistered
(assuming no error in marking these anatomical features).
If you select the “display” button beneath “Forward
Model” and choose EEG or MEG, you should see an image
displaying the sensors relative to the surfaces used for the
forward model (Figures 6C,D).

Model Inversion
We will compare two approaches to inverting the above forward
model (both within a Parametric Empirical Bayesian framework).
The first one corresponds to a L2-minimum norm, i.e., fitting the

data at the same time as minimizing the total energy of
the sources. This is called “MNM” (for “Minimum Norm”) or
“IID” (for “Independent and Identically-Distributed”) in SPM
because it corresponds to assuming that the prior probability
of each source being active is independent and identically
distributed (i.e., an identity matrix for the prior covariance),
but conceptually it is very similar to classical MNE, except that
the degree of regularization is estimated as part of the overall
model evidence.

Go back to the batch editor, and select “M/EEG - Source

reconstruction-Source Inversion”. Select the same
input file “aMceffds pmeeg_sub-15_ses-meg_task-

facerecognition_ run-01_proc-sss_meg.mat”,
and set the inversion index to 1. Highlight “what
conditions to include” and select “All”. Next highlight
inversion parameters, choose “custom” and set the inversion
type to “IID”. Then enter the time window of interest as “[−100
500]”. Set the frequency window of interest to “[6 40]”. Select
“yes” for the “PST Hanning window” but do not select
any file for source priors (we will add fMRI priors later). Keep
all the remaining parameters at their defaults, including the
“Modalities” as “All” (which will simultaneously invert, or
“fuse,” the data from the EEG, magnetometers and gradiometers;
Henson et al., 2009b).

The second type of inversion we will examine is unique
to SPM, and is called “Multiple Sparse Priors”, which
corresponds to a sparse prior on the sources, namely that
only a few are active. Go back to the batch editor, add another
“M/EEG - Source reconstruction - Source

Inversion” module, and select the same input files as before
(“aMceffdspmeeg_sub-15_ses-meg_task-facereco
gnition_run-01_proc-sss_meg.mat”), but this time
set the inversion index to 2. Set the inversion parameters to
“custom”, but the inversion type to be “GS”. This is one of
several fitting algorithms for optimizing the MSP approach:
Greedy Search (GS), Automatic Relevance Detection (ARD) and
GS+ARD. We choose GS here because it is quickest and works
well for these data. The remaining parameters should be made to
match the MNM (IID) inversion above.

Time-Frequency Contrasts
Here we are inverting the whole epoch from −100 to +500ms
(and all frequencies), which will produce a timecourse for
every single source. If we want to localize an effect within
the cortical mesh, we need to summarize these 4D data by
averaging power across a particular time-frequency window.
To do this, select “M/EEG - Source reconstruction

- Inversion Results”. Specify the input as dependent
on the output of the source inversion, and set the inversion
index to 1. Here we will define the time window of interest to
“[100 250]” and the frequency window of interest to “[10 20]”,
based on the results of the group sensor-level time-frequency
analyses in Supplementary Appendix 1. For the contrast type,
select “evoked” from the current item window, and the output
space as “MNI”. Then replicate this module to produce a second
“inversion results” module, simply changing the index
from 1 to 2 (i.e., to write out the time-frequency contrast for the
MNM (IID) as well as MSP (GS) solution).
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FIGURE 6 | Coregistration of meshes with MRI (A) and meshes with EEG and MEG (B,C) and surfaces used for forward model (D).

Now the source power can be written in one of two
ways: 1) either as a volumetric NIfTI “Image,” or as 2)
a surface-based GIfTI “Mesh”. We will chose “Mesh” here
to write out GifTI surfaces, keeping the default cortical
smoothing of 8.

Save batch and review
You can now save this inversion batch file (it should look
like the “batch_localise_meeg_job.m” file in
“code/scripted”). It will take a while to run (because
it has to create the gain matrix for the first time), after which

you can review the inverse results from within the same “3D
Source Reconstruction” interface that you used to
examine the forward model above. You have to re-“Load” the
“aMceffdspmeeg_sub-15_ses-meg_task-facereco
gnition_run-01_proc-sss_meg.mat” file. The latest
inversion index will be shown (2 in this case), but if you enter
1 for the inversion index, you can see the results of the MNM
(IID) inversion. Press the “mip” button below the “Invert”
button, and you should see something like Figure 7. The top
plot shows the evoked responses for the three conditions from
the peak vertex (at +53 −57 −11, i.e., right fusiform) at 165ms,
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FIGURE 7 | Source solution example MIPs for EEG Modality in subject 15.

with the red line being the currently selected condition, here
“1” for Famous faces (press the “condition” button to toggle
through the other conditions). If you press “display” under
the “Window” button, you can see a MIP for the time-frequency
contrast limited to the 100–250ms, 10–20Hz specified above, or
if you press the “display” under the “Image” button, you will
see a rendered version.

If you press the “next” button to select index 2, you can

select the MSP inversion. Press the “mip” button again, and

you should see results that are sparser and deeper inside the

brain, in medial and anterior temporal cortex. One important

innovation of SPM’s source reconstruction code is the ability
to compare different model assumptions (e.g. MNM vs. MSP)

in terms of their Bayesian model evidence. In this case,

this MSP solution has a higher model evidence, so is more
likely to have generated the data. We will compare these

two inverse solutions in a different way when we do group

statistics below.
If you like, you can also explore other inversion options, either

with batch or with this reconstruction window (e.g., creating

new inversion indices, though keep in mind that the associated

“aMceffdspmeeg_sub-15_ses-meg_task-facereco
gnition_run-01_proc-sss_meg.mat” file can get
very large).

Create a script for analysis across subjects

Now that we have created a pipeline for forward

and inverse modeling, we can script it to run on

the remaining 15 subjects. An example is given
in the “batch_master_script.m” in the

“code/manual” directory:

job_forward_model = {fullfile(scrpth,’batch_forward

_model_job.m’)};

job_inverse_model = {fullfile(scrpth,’batch_localise

_meeg_job.m’)};

parfor (s = [1:nsub], numworkers)

% Create forward models for each modality

inputs = cell(3, 1);

inputs{1} = cellstr(spm_select(’FPList’,fullfile

(outpth,subdir{s},’meg’),...

’∧aMceffdspmeeg.∗\.mat’));

inputs{2} = cellstr(spm_select(’FPList’,fullfile

(outpth,subdir{s},’anat’),...

’∧sub-.∗_T1w\.nii$’));

inputs{3} = cellstr(spm_select(’FPList’,fullfile

(rawpth,subdir{s},’anat’),...

’∧sub-.∗_T1w\.json’));

spm_jobman(’serial’, job_forward_model, ”,

inputs{:});

% Invert combined models using MNM and MSP,

followed by time-freq contrast

inputs = cell(8,1);

inputs{1} = cellstr(spm_select(’FPList’,

fullfile(outpth,subdir{s},’meg’),...

’∧aMceffdspmeeg.∗\.mat’));

inputs{2} = 1;

inputs{3} = {”}; % No fMRI priors

inputs{4} = cellstr(spm_select(’FPList’,

fullfile(outpth,subdir{s},’meg’),...

’∧aMceffdspmeeg.∗\.mat’));

inputs{5} = 2;

inputs{6} = {”}; % No fMRI priors

inputs{7 } = 1;

inputs{8} = 2;

spm_jobman(’serial’, job_inverse_model, ”,

inputs{:});

end
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Once you have run this script, we can do statistics on the source
power GIfTI images created for each subject.

GROUP AND FMRI OPTIMIZED
SOURCE RECONSTRUCTION

Motivation and Background
Because of the indeterminacy of the inverse problem, it is helpful
to provide as many constraints as possible. One constraint is
to assume that every subject has the same underlying source
generators, that are simply seen differently at the sensors owing
to different anatomy (head models) and different positions with
respect to the sensors (forward models). In the Parametric
Empirical Bayes (PEB) framework, this corresponds to assuming
the same set of source priors across subjects (allowing for
different sensor-level noise; see Litvak and Friston, 2008). This
group-based inversion can be implemented in SPM simply by
selecting multiple input files to the inversion routine.

A second constraint is to use prior spatial information, i.e.,
significant clusters from the group fMRI analysis of the same
subjects (see Supplementary Appendix 2). This corresponds
to an asymmetric integration of multiple modalities, because
the significant fMRI clusters are used as priors for the group-
optimized source reconstruction of the fused MEG and EEG
data (rather than the fMRI data being simultaneously fit in
a symmetric integration; see Henson et al., 2011, for further
discussion of symmetric vs. asymmetric integration of fMRI
and M/EEG). Below, each fMRI cluster will become a separate
prior, allowing for the fact that activity in those clusters may
occur at different times relative to the time window being
localized (which cannot be distinguished by the poor temporal
resolution of fMRI). Because SPM’s inversion algorithm estimates
the weighting (hyperparameter) for each cluster separately, and
because there are hyperpriors on those weightings that tend to
shrink them to zero, priors that are not helpful in maximizing
the variational free energy become discounted, i.e., the fMRI
clusters are “soft” priors, allowing a form of “automatic relevance
detection”. Henson et al. (2010) confirmed this behavior in
practice: when added to a minimum-norm inversion, invalid
fMRI priors were generally discounted, but valid priors were kept,
and increased the variational free energy (model log-evidence).

Tutorial Walkthrough
We will use an image of suprathreshold clusters for the contrast
of “faces > scrambled” faces from the group fMRI analysis
described in Supplementary Appendix 2. This image contains
three clusters (left and right occipital face areas and right fusiform
face area), each of which will become a separate source prior. This
image is stored in the “spmT_0002_05cor.nii” file available
from the Figshare link provided earlier.

We can combine group-based optimisation of fMRI priors
using code like below:

jobfile = {fullfile(scrpth,’batch_localize_meeg

_job.m’)};

tmp = cell(nsub,1);

for s = 1:nsub

tmp{s} = spm_select(’FPList’,fullfile(outpth,

subdir{s},’meg’),...

sprintf(’∧%s.∗\\.mat$’,prefix));

end

inputs = cell(8,1);

inputs{1} = tmp;

inputs{2} = 3;

inputs{3} = {fullfile(outpth,’func’,’spmT_0002

_05cor.nii’)}; % fMRI priors

inputs{4} = tmp;

inputs{5} = 4;

inputs{6} = {fullfile(outpth,’func’,’spmT_0002

_05cor.nii’)}; % fMRI priors

inputs{7} = 3;

inputs{8} = 4;

spm_jobman(’run’, jobfile, inputs{:});

In each subject’s “aMceffdspmeeg_sub-15_ses-meg_
task-facerecognition_run-01_proc-sss_meg.

mat” file, these group-optimized reconstructions using fMRI-
priors will be indexed as 3 and 4, so you can compare with
the previous MNM and MSP reconstructions indexed as 1 and
2 (by pressing the index button after loading this file via the
“3D Source Reconstruction” window described above).
You can compare the model log-evidences to see which set of
constraints is most likely to have generated the sensor data (for
a given subject). Below, we will compare group statistics for the
four different reconstructions.

GROUP STATISTICS ON
SOURCE RECONSTRUCTIONS

Motivation and Background
Neuroimaging data analyses in most cases produce results in
the form of signals (e.g., single channel evoked response), 2D
images (e.g., time-frequency image of an induced response), 3D
volumes (e.g., source reconstruction result) or multidimensional
arrays (e.g., a series of source images for adjacent windows in
peri-stimulus time). We will refer to all of these as “images”
here. When applying statistical analyses to images, it is important
to note that in most cases they are inherently smooth e.g.,
the values for adjacent time points in an evoked response or
for adjacent voxels in a functional brain image are correlated
across different realizations of the image (e.g., across subjects
or trials). A classical statistical test applied to an image will
produce an image of the test statistics (e.g., T or F) and a
corresponding image of p-values. When using a threshold α for
the control of false positive rate (e.g., p < 0.05), it is expected
that under the null hypothesis (when there is no true effect in
the data), for a fraction of tests corresponding to α, we will
reject the null hypothesis falsely by chance. Therefore, when
each test looks at an image of values with often thousands or
more pixels or voxels, it is guaranteed that many of them will be
deemed significant unless a correction for multiple comparisons
is applied. One way to perform this kind of correction is to
control the family-wise error rate (FWER): the probability of
rejecting the null hypothesis for any voxel over the whole image.
For independent observations, the FWER scales with the number
of observations, such that a simple method for controlling FWER
is the Bonferroni correction. However, this procedure is rarely
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adopted in neuroimaging because neighboring observations are
often correlated, i.e., for smooth data, Bonferroni correction is
too conservative.

SPM uses a different kind of correction based on Random
Field Theory (RFT) (Worsley et al., 1992). It is based on
mathematical insights into the properties of noise images of
certain smoothness. These insights make it possible to quantify
the likelihood of an excursion of a certain amplitude in these
images. The threshold for an excursion can then be analytically
computed to set the probability of crossing it anywhere in the
image to α. Excursions exceeding the threshold are treated as
significant effects. This approach is often referred to as “peak-
level” correction and has been shown to be robust under a wide
range of circumstances. RFT can also be applied to predict the
probability of excursions based on their spatial extent rather
than amplitude (Friston et al., 1994b). This approach is called
“cluster-level” correction. It requires defining a “cluster forming
threshold” which is an extra parameter in the analysis that
alters the sensitivity of the test to large excursions of small
amplitude vs. small excursions of large amplitude. Concerns
have recently been raised about the cluster-level correction not
controlling the FWER at the stated level (Eklund et al., 2016).
The underlying issue has to do with the fact that the cluster-
level procedure relies on additional assumptions compared to
peak-level, and these assumptions only hold for sufficiently high
cluster-forming thresholds (Flandin and Friston, 2017). The
default uncorrected threshold in SPM of p < 0.001 is suitable for
cluster-level inference, but popular less conservative thresholds
such as p < 0.01 and p < 0.05 are not.

The statistical parametric mapping approach that gave its
name to the SPM toolbox combines RFT with the use of the
General Linear Model (GLM). GLM is a generic statistical
framework that includes, as particular cases, many commonly
used univariate statistical designs, such as dependent and
independent samples t-tests, Analysis of Variance (ANOVA)
and multiple regression. An essential element of the GLM
is the design matrix, which is often shown as an image in
reports generated by SPM. The rows in this matrix correspond
to the images in the test (e.g., for each subject or trial),
while the columns represent the independent variables specified
by the experimenter to explain the data. These variables can be
binary indicators (e.g., whether an image belongs to group A or
group B) or real numbers (e.g., age or reaction time). The model
is fit to each voxel in the data (this is called a “mass-univariate”
approach) and the result is a set of coefficients for each column
of the design matrix that minimize the residual not explained by
the model in the least squares sense. These coefficients can also
be represented as an image of the same type and dimensions as
the inputs.

The outputs of GLM fitting can be interrogated by specifying
contrasts. T-contrasts test whether any linear combination of
column coefficients is either positive or negative. This is useful,
for example, to ask whether the signal in group A is higher than
in group B. F-contrasts test whether some part of the design
(which can be specified as a combination of T-like contrasts
or a set of columns in the design matrix) explain significant
amount of variance in the data. Each T- or F-contrast generates a

corresponding statistical image of T- or F- statistic, respectively,
and these are the images to which RFT can be applied to identify
significant effects. The GLM can also be applied in a hierarchical
fashion using the summary statistic approach. For example, the
images of coefficients for linear regression across trials in each
subject can be subjected to an independent-samples t-test at the
between-subject level to compare patients and controls.

A detailed description of the GLM is outside the scope of the
present paper and the interested reader is referred to the original
paper that introduced GLM to neuroimaging (Friston et al.,
1994a) as well as the more recent discussion of the application
of this approach to MEG/EEG (Kilner and Friston, 2010).

Tutorial Walkthrough
Model Specification
Open a new batch, select “Factorial design

specification” under “Stats” on the “SPM” toolbar
at the top of the batch editor window. We will show here how to
set up a statistical analysis on meshes for the individual MNM
inversions. The other analyses are analogous and will be set-up
automatically with a script.

The first thing is to specify the output directory where
the SPM stats files will be saved. So first create such
a directory “outpth/meg/IndMNMStats”. Highlight
“Design” and from the current item window, select “One-way
ANOVA-within subject” (somewhat confusingly, this is
not an analysis within one subject, but an analysis in which
multiple measures come from “within” each subject, also called
a “repeated-measures ANOVA”). Highlight “Subjects”
and create a “New:subject”. In the “scans” field, you
can now select 3 source power GIfTI images for the first
subject that have been created in the “sub-01/meg/”
folder and enter the “Conditions” as “[1 2 3]”. It is
important for the contrasts below that you select the files
in the order Famous-Unfamiliar-Scrambled. You can then
select “Replicate: Subject” under the “Subjects”
item, keeping the “Conditions” unchanged, but changing
the “Scans” to those in “sub-02/meg/”. You can then
repeat these steps for the remaining subjects. Or if you
prefer (as it is cumbersome with the GUI), you can create
16 blank “Subject” items, save the batch script, and then
populate the “Scans” field (and “Conditions” field) via a
MATLAB script. Finally, set the “Variance” to “Unequal”
and the “Independence” to “No” (to model the error
correlation, i.e., non-sphericity, Friston et al., 2002). Keep all the
remaining defaults.

This now completes the GLM specification, but before
running it, we will add two more modules.

Model Estimation
The next step within this pipeline is to estimate the above
model. Add a module for “Model estimation” from the
“Stats” option on the SPM toolbar and define the file
name as being dependent on the results of the factorial
design specification output. Leave the other options with their
default value.
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FIGURE 8 | Group SPM for Faces vs. Scrambled power on cortical mesh between 10 and 20Hz and 100 and 250ms across all 16 subjects at p < 0.05 FWE

corrected for MNM (A) and MSP (B).

Setting Up Contrasts
The final step is to add a module for creating contrasts
from “SPM->Stats->Contrast Manager”. Define the
file name as dependent on the model estimation. The first
contrast will be a generic one that tests whether significant
variance is captured by the first 3 regressors. This corresponds
to an F-contrast based on a 3 × 3 identity matrix. Highlight
“Contrast sessions” and select a “new F-contrast”,
using the current item module. Name this contrast “All
Effects”. Then define the weights matrix by typing in “eye(3)
ones(3,16)/16” (which is MATLAB for a 3 × 3 identity matrix,
followed by 1/16 for each of the 16 subject effects; the latter
being necessary if one wants to see absolute changes in power
vs. baseline). You can use this contrast to plot the parameter
estimates for the 3 conditions for a given voxel, if you want.

More interestingly perhaps, we can also define a contrast
that compares faces against scrambled faces. So this time
make a T-contrast, name this one “Faces (Fam+ Unf)

> Scrambled”, and type in the weights “[0.5 0.5

-1]”. (If you want to look at power decreases, you can
create another T-contrast and reverse the sign of these
contrast weights).

Save batch and review
Once you have added all the contrasts you want,
you can save this batch file (it should look like
the “batch_stats_rmANOVA_job.m” file in the
code/manual directory, though that example also includes
some additional contrasts that might be of interest, but which we
have not created here).

Now we want to repeat this ANOVA on the remaining three
inversions, i.e. four in total, crossing MSP vs. MNM inversion,
with group inversion with vs. without fMRI priors. We can script
this, like below:

prefix = ’aMceffdspmeeg’;

invtypes = {’IndMNM’,’IndMSP’, ’fMRIGrpMNM’,

’fMRIGrpMSP’};

jobfile = {fullfile(scrpth,’batch_stats_rmANOVA

_job.m’)};

for val = 1:length(invtypes)

spm_mkdir(fullfile(outpth,’meg’,sprintf(’%sStats’,

invtypes{val})));

inputs = cell(nsub+1, 1);

inputs{1} = cellstr(fullfile(outpth,’meg’,

sprintf(’%sStats’,invtypes{val})));

for s = 1:nsub
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FIGURE 9 | Group SPM for Faces vs. Scrambled power on cortical mesh between 10 and 20Hz and 100 and 250ms across all 16 subjects using group-optimisation

of MNM (A) and MSP (B) together with fMRI priors. (A) is thresholded at p < 0.05 FWE corrected, (B) at p < 0.001 uncorrected.

% Contrasts 1-3 assumed to be Famous, Unfamiliar,

Scrambled

inputs{s+1,1} = cellstr(spm_select(’FPList’,

fullfile(outpth,subdir{s},’meg’),...

sprintf(’∧%s.∗%s_.∗_meg_%d.∗\\.gii$’, prefix,

subdir\{s\},~val)));

end

spm_jobman(’run’, jobfile, inputs{:});

end

(where the “Ind” prefix in the output directories refers to
“individual” source reconstructions and “fMRIGrp” to group-
optimized inversions with fMRI priors).

Viewing results
The results of the above ANOVAs (GLMs) can be
viewed by selecting “Results” from the SPM Menu
window. Start by selecting the “SPM.mat” file in the
“STStats/meg/IndMNMStats” directory, and from
the new Contrast Manager window, select the pre-specified
contrast “Faces (Fam+Unf)>Scrambled”. Within the
“Stats: Results” bar window, which will appear on the left
hand side, select the following: “Apply Maskings” “None”,
“P value adjustment to control” “FWE”, keep

the threshold at 0.05, “extent threshold {voxels}”
0; “Data Type” “Volumetric 2D/3D”. The top of the
Graphics window should then show the maximal intensity
projection (MIP) of the suprathreshold voxels, as in Figure 8A

(after having right-clicked on the rendered mesh, selecting
“View” and then “x-y view (bottom)”, in order to
reveal the underside of the cortex). Note the broad right
fusiform cluster, with additional clusters on left and more
anteriorly on right. You can compare this to the fMRI group
results in Supplementary Figure A2.1, which are similar, but
much more focal.

You can also look at the results of the MSP inversion by
selecting the “SPM.mat” file in the “MEEG/IndMSPStats”
directory (Figure 8B). This reveals much more focal
clusters in right fusiform face area (FFA) and left
and right occipital face area (OFA), more like the
fMRI (see Supplementary Figure A2.1).

To examine the results of inversions with group
optimisation and fMRI priors, select the “SPM.mat” files
from “fMRIGrpMNMStats” and “fMRIGrpMSPStats”,
and choose the same corrected threshold. You should
see results like in Figure 9A, where the group-optimized
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fMRI priors have focused the suprathreshold clusters to
the right FFA and OFA (cf. Figure 8A). For the MSP
inversion however, the addition of fMRI priors does not
help much, with nothing surviving a corrected threshold.
Lowering the threshold to p < 0.001 uncorrected reveals a
right OFA and left anterior temporal region (Figure 9B).
For further, more formal comparisons of fMRI priors
(see Henson et al., 2010).

This concludes this demonstration of SPM12 multimodal
integration of MEG, EEG and fMRI, but feel free to
explore yet further options in the software (in conjunction
with Litvak et al., 2011).
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