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In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3)
in the trophicity of the peripheral nervous system. Calcitriol has long been known to
be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its
involvement in the immune system, anti-cancer defenses, and central nervous system
development suggest a more pleiotropic role than previously thought. Several studies
have highlighted the impact of calcitriol deficiency as a promoting factor of various
central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis,
Parkinson’s disease, and Alzheimer’s disease. Based on these findings and recent
publications, a greater role for calcitriol may be envisioned in the peripheral nervous
system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral
nerves, and neuronal-cell differentiation. This may have useful clinical consequences,
as calcitriol supplementation may be a simple means to avoid the onset and/or
development of peripheral nervous-system disorders.

Keywords: calcitriol, peripheral nervous system, neuronal-cell differentiation, synergistic effects, myelin process

EPIDEMIOLOGICAL DATA AND THE GENERAL FUNCTION OF
VITAMIN D3

For decades, the role of calcitriol was thought to be limited to phosphocalcium metabolism.
Recent results have highlighted the role of this hormone in other functions (Garabédian, 2000;
Christakos et al., 2016), which include the regulation of tissue proliferation, cell differentiation,
and apoptosis, as well as regulation of the cardiovascular and immune systems. Indeed, the active
form of vitamin D3 has been shown to regulate inflammation by regulating the synthesis of several
cytokines and lymphocyte migration, with anti-cancer activities (Baeke et al., 2010). Based on
cellular and animal models, Kalueff and Tuohimaa (2007) suggest that calcitriol has a major role
in the genesis, development, and maintenance of central nervous system in adulthood. As shown in
animal experiments, calcitriol may regulate rat brain development. Rats born to a mother that was
vitamin D3-depleted during pregnancy were shown to have brain malformations, such as cortical
atrophy associated with ventricular dilation (Eyles et al., 2005). Another study has reported the
synthesis of calcitriol within the central nervous system, thus regulating its functioning and exerting
neuroprotective effects (Eyles et al., 2003). Marini et al. (2010) observed that in vitro calcitriol delays
cell proliferation and induces cell differentiation in HN9.10 embryonic hippocampal cells, with the
formation of axons and dendrites. Overall, these findings suggest that vitamin D3 has activities
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similar to other neuroactive steroids in the central nervous
system (Emmanuel et al., 2002; Melcangi and Panzica, 2009).
However, the exact role of calcitriol in the peripheral nervous
system is still unclear. The aim of this review was to gather
available data concerning the role of calcitriol in the peripheral
nervous system during its development and maintenance.

Although all the calcitriol functions may not yet be known,
the chemical characteristics have been extensively investigated.
The precursor of calcitriol is vitamin D or calciferol, which
is synthesized in the skin or ingested with food. This
precursor is biologically inactive and subjected to double
hydroxylation, first in the liver and then in the kidney, to
produce the biologically active compound, 1,25-(OH)2-vitamin
D3 or calcitriol (Figure 1). It is well known to regulate
the expression of numerous target genes through the nuclear
vitamin D receptor (VDR), which belongs to a common family
of steroid receptors that also includes steroid, glucocorticoid,
and retinoic acid receptors (Kalueff and Tuohimaa, 2007).
Vitamin D deficiency is widely found worldwide (Holick, 2006).
For example, the prevalence of vitamin D insufficiency was
77% in the United States population in 2004 (Ginde et al.,
2009). However, reference values vary widely between countries.
According to Rosen (2011) only 25-OH-vitamin D3 prohormone
blood levels can accurately estimate vitamin D3 input from
cutaneous synthesis and dietary intake, in contrast to 1,25-
(OH)2-vitamin D3. The measurement of 1,25-(OH)2-vitamin
D3 is mainly reserved for patients with kidney insufficiency.
Several countries consider that serum levels of 25-OH-vitamin
D3 below 10 ng/ml indicate vitamin D deficiency. Vitamin D
“insufficiency” is characterized by serum levels between 10 and
30 ng/ml, an “appropriate” level between 30 and 100 ng/ml, and a
“toxic” level by values above 100 ng/ml (Rosen, 2011). However,
in the United States, the Endocrine Society has established
different threshold levels. Vitamin D deficiency is diagnosed in
patients with serum levels of 25-OH-vitamin D3 below 20 ng/ml,
“sufficiency” between 30 and 40 ng/ml, and toxicity above
50 ng/ml (Ross et al., 2011). In addition, these different thresholds
are those used to measure phosphocalcium homeostasis. These
thresholds could be different for other functions of the nervous
system and, if so, they are yet to be determined.

MECHANISTIC AND MOLECULAR
INTERACTIONS OF VITAMIN D3

Systemic action of Vitamin D3 requires a metabolization and an
activation. Vitamin D3 metabolism is a multiple-step multiple-
organ process which will be recalled thereafter. Once activated
vitamin D3 will act upon several genes at a transcriptional
level, in cooperation with other factors such as fat-soluble
vitamin derivatives.

Vitamin D3 Metabolism
Calcitriol levels are precisely regulated by the mitochondrial
hydroxylases, cytochrome P450C1α (CYP27B1) and
P450C24 (CYP24), which catalyze the bioactivation and
degradation of vitamin D3 metabolites in most target cells

(Hii and Ferrante, 2016). The blood level of calcitriol is auto-
regulated through the stimulation of the CYP24 enzyme
(VanAmerongen et al., 2004). In addition, calcitriol also
inhibits CYP1 (renal 1 α hydroxylase involved in the second
hydroxylation of vitamin D3) activity, thus forming a negative
feedback loop to maintain normal levels (Issa et al., 1998). Finally,
most calcitriol is excreted as calcitroic acid. The serum half-life
of 1,25-(OH)2-vitamin D3 is approximately 4–6 h, whereas
the serum half-life of 25-OH-vitamin D3 is approximately
10–21 days (Kumar, 1986). These different serum half-lives
explain why 25-OH-vitamin D3 is the classical form used in
serum-level measurements in humans to evaluate the body level
of vitamin D3. In addition, standard protocols in the clinical lab
appear to be poorly adapted to measure calcitriol levels. Indeed,
liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) appears to be the most appropriate, but it is
expensive and not used by most laboratories (Spanaus and von
Eckardstein, 2017). This sensitive technique is used for calcitriol
measurement because absolute levels of 25-OH-vitamin D3 and
1,25-(OH)2-vitamin D3 differ by a factor of 1000. The renal
1-alpha hydroxylation of 25-OH-vitamin D3 to 1,25-(OH)2-
vitamin D3 is highly regulated by the serum concentration of
parathyroid hormone, calcium, and phosphate. It is well known
that a wide variety of extra-renal cells can produce calcitriol
from 25-OH-vitamin D3 by the enzyme 1 α hydroxylase in vitro,
including activated macrophages, keratinocytes, and cells of the
central nervous system, such as neurons and microglial cells.
However, the regulation of hydroxylation in these cells has not
been fully explored and such production of calcitriol appears
to not be finely regulated by renal production (VanAmerongen
et al., 2004). Most circulating vitamin D metabolites in blood
under normal physiological conditions are bound to vitamin
D-binding protein or albumin and transported to a large number
of target organs (VanAmerongen et al., 2004).

Vitamin D3 and the Vitamin D
Receptor (VDR)
Vitamin D is converted into its hydroxylated derivative, 1,25-
(OH)2-vitamin D3, by two successive hydroxylations, one in the
liver and one in the kidneys. Its liposolubility allows calcitriol
to pass through cell membranes without a transporter. Within
the cell, the vitamin D receptor (VDR), a member of the
nuclear-receptor superfamily, mediates the biological activity of
1,25-(OH)2-vitamin D3 by regulating gene expression, similarly
to other steroid hormone receptors (Figure 2). Following a
conformational change, the VDR regulates gene transcription
by binding to hexameric core-binding motifs in the promoter
regions of target genes (Issa et al., 1998). The vitamin D-VDR
endocrine system has been identified in nearly all nucleated cells.
Microscopic autoradiography of the VDR has identified the target
organs for vitamin D, especially the brain and spinal cord, for
which there is a high binding rate (Stumpf, 2012). Although not
fully understood, VDR could be involved in the development of a
variety of neurological illnesses.

When entering a target cell, calcitriol dissociates from vitamin
D-binding protein (the transporter of vitamin D in blood),
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FIGURE 1 | Schematic representation of calcitriol synthesis in humans. Cholecalciferol, from food intake or derived from 7-dehydrocholesterol after sun exposition, is
converted to calcitriol, the active form, by two hydroxylations (Emmanuel et al., 2002; Eyles et al., 2005; El-Atifi et al., 2015).

FIGURE 2 | Schematic representation of the synergetic effects of calcitriol and the retinoid X receptor on the expression of genes with neuronal roles. RXR, retinoid X
receptor; VDR, vitamin D3 receptor; VDRE, VDR responsive element.
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diffuses across the plasma membrane, binds to the VDR, and
the formed complex migrates to the nucleus. The activated
VDR dimerizes with another nuclear receptor, the retinoic acid
receptor (RXR). This RXR/VDR/calcitriol heterodimer binds to
the vitamin D responsive element (VDRE), a specific sequence in
the promoter region of target genes. Upon binding to the VDRE,
the heterodimer activates or suppresses gene transcription. VDRs
can also form homodimers but their functional significance is
not known (VanAmerongen et al., 2004). In addition, efficient
transcription requires co-activator or co-repressor proteins, such
as Smad3, an effector of the TGF beta pathway (VanAmerongen
et al., 2004). In the calcitriol pathway, Smad 3 acts as a coactivator
and Smad 7 abrogates the Smad3-mediated VDR response.
Cells of the central nervous system (microglia, neurons, and
astrocytes) express VDR and can respond directly to calcitriol
(Emmanuel et al., 2002).

Calcitriol has also been reported to modulate rapid non-
genomic actions mediated through various mechanisms, such as
the activation of G-protein coupled receptors and downstream
protein kinase C (PKC), mitogen-activated protein kinase
(MAPK) pathways, phospholipases A2 and C, and the opening of
Ca2+ and Cl− channels (Buitrago et al., 2013; Hii and Ferrante,
2016). However, these various effects have yet to be reported in
cells of the nervous system.

Vitamin D3 and Synergistic Effects With
Other Vitamins
The synergistic interactions between fat-soluble vitamins have
been suggested since several decades and particularly between
vitamin A and vitamin E in the field of lipid peroxidation
(Tesoriere et al., 1996). However, the interaction of vitamin D3
with other fat-soluble vitamins is also suggested through different
mechanisms and based on different responses induced by vitamin
D3 in vitro or in vivo. Indeed, vitamin D3 has been shown to
regulate the growth and differentiation of a number of various
cell types in vitro, including bone, immune and hematopoietic
cells, and keratinocytes, as well as cancer cells. However, in vivo,
these responses are achieved at toxic doses that cause severe
hypercalcemia (Issa et al., 1998). These observations suggest that
the effects of calcitriol underline synergistic effects between other
hormones or molecules at lower concentrations.

Firstly, vitamin D3 appears to have synergistic effects with
other fat-soluble vitamins, such as vitamin K, particularly for
bone and cardiovascular health (van Ballegooijen et al., 2017b).
Regarding bone homeostasis, in an experimental study, Kerner
et al. (1989) described that osteoblast-specific expression of
osteocalcin, a vitamin K-dependent protein, is controlled at
the transcriptional level by the calcitriol within the promoter
of the osteocalcin gene. These results were supported by
Sergeev et al. (1987), in a rat model, showing that VDR can
undergo gamma-carboxylation in the presence of vitamin K,
which putatively interferes with its nuclear functions through
VDREs. In an experimental study investigating osteoporosis in
ovariectomized rats, Matsunaga et al. (1999) reported that the
combined treatment with vitamin D3 and K is more effective
to prevent osteoporosis. In observational studies in humans,

these interactions were also pointed out. In 387 hemodialyzed
patients, vitamin D3 analog users present higher concentrations
of bone Gla protein (BGD) indicating the role of vitamin D3 to
stimulate this vitamin K-depend proteins (Fusaro et al., 2016). In
the NOREPOS study among 1318 older adults, results underlined
that a combination of vitamin D3 and K supplementations
at low concentrations was linked with a greater hip fracture
risk compared to supplementations at high concentrations or
to the group supplemented with just one vitamin at low
concentrations (Finnes et al., 2016). Several clinical trials support
this synergetic interaction and particularly in postmenopausal
osteoporosis (van Ballegooijen et al., 2017b). For instance, in
an interventional, randomized and placebo-controlled study led
in 172 Japanese post-menopausal women with osteopenia and
osteoporosis, results showed that only vitamin K plus vitamin D3
increased bone mineral density (Ushiroyama et al., 2002). In 78
Korean post-menopausal women over 60 years of age, vitamin
K treatment associated to vitamin D and calcium increased
bone mineral density (Je et al., 2011). Regarding cardiovascular
health, the synergy between vitamin D3 and K was also reported.
Similarly, this synergy could be linked to vitamin D3-induced
stimulation of vitamin K-dependent proteins, such as matrix Gla
protein (MGP), which needs gamma-glutamate carboxylation to
inhibit the vascular calcification (Mayer et al., 2017). Indeed,
in a rodent model, vitamin K deficiency caused by warfarin
treatment, promotes arterial calcifications and this occurs earlier
when high doses of vitamin D are associated (Price et al., 2000).
A prospective study indicates that the combined treatment of low
dose of vitamin D and a low status of vitamin K promoted systolic
and diastolic blood pressures increase and hypertension after
6 years of follow up (van Ballegooijen et al., 2017a). These results
were supported by another study showing that this association
induces a significantly higher aortic pulse wave than in subjects
with isolated vitamin D3 or vitamin K deficiency, reflecting
a higher aortic resistance (Mayer et al., 2017). In addition, a
randomized and double-blind trial on 42 non-dialyzed patients
with chronic kidney disease showed that vitamin D3 associated
with vitamin K has an additive or a synergistic effect on the
decrease of intima-media thickness (Kurnatowska et al., 2015).
However, synergistic effect between vitamin D3 and K may only
exist at optimal concentrations. Indeed, an observational single-
center cohort study showed that vitamin D3 supplementation on
renal-transplanted patients with vitamin K deficiency induced
increased mortality and graft failures (van Ballegooijen et al.,
2019). Many more trials are currently being led as one can see
on web sites for registered trials1,2.

Similarly, interactions between calcitriol and vitamin E were
observed and particularly to mediate cellular antiproliferative
effects. The association of low doses of calcitriol and vitamin
E succinate has been reported to have additive effects on the
inhibition of human prostatic cancer cells LNCaP proliferation
through the stimulation of VDR expression, without adverse
effect on calcemia (Yin et al., 2009). An another study led on a rat
model showed that vitamin D and E deficiencies have synergistic

1www.clinicaltrials.gov
2www.clinicaltrialsregister.eu

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 348

http://www.clinicaltrials.gov
http://www.clinicaltrialsregister.eu
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00348 April 11, 2019 Time: 17:17 # 5

Faye et al. Calcitriol and Peripheral Nervous System

effects on rickets development (Sergeev et al., 1987). However,
the additive or synergistic mechanism of this association is still
unclear and requires further study.

In addition, a synergistic effect of vitamin D3 and A, which
is a retinoic acid precursor, has been reported in various
cellular models (breast, prostate, colon, and leukemia) but
also in mycobacteria (Guilland, 2011; Greenstein et al., 2012).
These effects could be linked to the dimerization between the
VDR and RXR, which creates an interconnection between the
calcitriol and retinoic acid cellular pathways. Indeed, retinoic
acid could modulate the vitamin D3 effects. Several studies
pointed out an antagonism or additive/synergetic effects between
both vitamins. For instance, Kane et al. (1996) showed an
inhibition by retinoic acid of the antiproliferative effect of
calcitriol on colon cancer cells. However, several studies reported
a synergistic effect. In vitro, on human prostatic cancer cells
LNCaP, Blutt et al. (1997) suggested that calcitriol and retinoic
acid act synergistically to inhibit the growth of cancer cells
and cause accumulation of cells in G1. Carlberg et al. (1993)
showed that in drosophila SL-3 cells transfected with mouse
VDR or RXR genes, the VDRE was synergistically activated
by RXR and VDR, but only in the presence of both factors.
Regarding the nervous system, the RXR has been shown to be
involved in the differentiation of oligodendrocyte progenitors
into mature oligodendrocytes (de la Fuente et al., 2015), and
also in neuronal differentiation (Mounier et al., 2015). It
is well known that retinoic acid plays a major role during
the embryological development of the central nervous system,
leading the neuroectoderm to caudalize itself. On the other hand,
calcitriol also plays a role in neuro-embryogenesis (Shirazi et al.,
2015). Thus, it is conceivable that a synergistic interconnection
between retinoic acid and calcitriol exists during nervous
system development. All of the interactions between vitamin
D and other fat-soluble vitamins presented above show that
this field is quite large and matter for further explorations in
the nervous system.

Cardiovascular Effects and Systemic
Interactions of Vitamin D3
Vitamin D3 has been suspected to play a role in cardioprotection.
Indeed, VDR-deficient mice showed adverse cardiac remodeling
and hypertension (Meems et al., 2011). However, in an
observational, prospective and population-based cohort study,
calcitriol or calcidiol plasmatic levels have failed in predicting
higher risk of heart failure (Meems et al., 2016). Thus,
further studies are required to investigate strong evidence-based
relationship between Vitamin D3 and heart failure. On the other
hand, 1,25-(OH)2-vitamin D3 may also induce adverse effects
in humans. Another observational, prospective and population-
based cohort study demonstrated that plasma calcitriol levels are
associated with an elevated risk of hypertension (van Ballegooijen
et al., 2015). Intriguingly and unexpectedly, cholecalciferol
plasma levels are inversely associated with hypertension.
However, calcitriol supplementation was shown to cause renal
calcification in an experimental laboratory study led on a suckling
rat model (Dostal et al., 1984), which is confirmed by the fact

that, in humans, cholecalciferol supplementation is associated
with kidney-stone formation, linked to increased hypercalciuria
(Letavernier and Daudon, 2018).

ROLES OF VITAMIN D3 IN THE
NERVOUS SYSTEM

As reported above and in Table 1, data suggest that calcitriol
has a role in the nervous system and that vitamin D3 acts as
a neurosteroid (Emmanuel et al., 2002; Melcangi and Panzica,
2009). However, the role, if any, of the calcitriol in the peripheral
nervous system needs to be more precisely defined.

Vitamin D3 and Cell Differentiation
We further investigate the role of calcitriol in nervous
system development, particularly neuronal cell differentiation, by
focusing on the various actors known to be regulated by calcitriol,
such as the Wnt signaling pathway, Sonic hedgehog (Shh), and
Klotho, as well as on the putative role of progesterone to stimulate
the effect of calcitriol in differentiation.

Wnt Proteins
Wnt proteins are cysteine-rich glycosylated proteins that
control multiple processes involving neuronal development,
angiogenesis, immunity, tumorigenesis, fibrosis, and stem-cell
proliferation (Maiese, 2015). Wnt is also involved in nervous
system development, particularly as a positive regulator of the
myelination process, by promoting myelin gene expression.
Tawk et al. (2011) demonstrated that the inactivation of Wnt
components in vitro in mouse Schwann cells leads to severe
dysmyelination and the inhibition of myelin gene expression.
Calcitriol has been shown to disrupt Wnt/β-catenin signaling
through multiple mechanisms. Hlaing et al. (2014) reported
that vitamin D promotes cardiac differentiation through the
negative modulation of the canonical Wnt signaling pathway
and upregulation of the expression of Wnt11, in vitro culture
of H9c2 rat embryonic myocardium cells. Lim et al. (2014)
found that decreased expression of the VDR is associated with
decreased expression of Wnt/β-catenin signals in follicle dermal
papilla cells, inhibiting the proliferation, and differentiation of
hair follicles and epidermal cells.

The Shh Pathway
Sonic hedgehog signaling is involved in the induction of neuronal
populations in the central and peripheral nervous systems and
neural stem-cell proliferation (Choudhry et al., 2014). In a recent
study in an embryonic carcinoma mice cell line (P19EC), Vuong
et al. (2017) clearly showed that Shh signaling regulates neuronal
differentiation and neurite growth. In an experimental study
using VDR-deficient mice, Teichert et al. (2011) reported that
VDR-null animals overexpress Shh in keratinocytes and that
such overexpression is downregulated by 1,25-(OH)2-vitamin
D3. These results were supported by Dormoy et al. (2012)
who showed that vitamin D decreases cell proliferation and
increases cell death by inhibiting the Shh pathway in human renal
carcinoma cells. Although the Wnt/β-catenin pathway and Shh
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signaling are well known to regulate the progression of spinal-
cord progenitors and promote neurogenesis, particularly spinal
motor-neuron development, the role of vitamin D in motor-
neuron cell differentiation needs to be investigated. Further
studies are necessary to clearly elucidate the role of vitamin D
in neuronal cell differentiation through this pathway (Appel and
Eisen, 2003; Andersson et al., 2013).

The Klotho Pathway
Several studies have reported a complex interaction between
calcitriol activity and the Klotho gene. The Klotho gene was
discovered in 1997 when mice in which this gene was silenced
developed pre-mature aging syndrome (Kuro-o et al., 1997).
It is highly expressed in the brain and, to a lesser extent, in
other organs (Kuro-o et al., 1997). The choroid plexus is a site
of abundant Klotho expression. It is well known that several
factors, including phosphate and vitamin D, can regulate the
production of Klotho, as well as fibroblast growth factor 23
(FGF23). Kalueff and Tuohimaa (2007) suggested that Klotho
expression is upregulated by calcitriol in a murine model.
FGF23 was identified as a phosphaturic hormone which is
produced in the bone and controls mineral homeostasis by the
regulation of calcitriol (White et al., 2000). FGF23 is known
to suppress vitamin D hormone production in the kidney
by downregulating renal 1α hydroxylase expression, thereby
suppressing the production of calcitriol (Erben, 2016). However,
little is known about the functional role of Klotho and FGF23
in the central nervous system. Although Anour et al. (2012)
reported that Klotho/VDR complex mutant mice do not show
obvious behavioral abnormalities, mice with a non-functioning
vitamin D receptor fully restored the premature aging phenotype
in Klotho deficient mice. These mice produce excessive amounts
of calcitriol due to the lack of the suppressive effect of
FGF23 on 1α hydroxylase expression. Thus, the premature
aging phenotype in Klotho deficient mice could be caused by
intoxication with the vitamin D hormone, leading to severe
hypercalcemia and hyperphosphatemia and subsequent organ
damage (Erben, 2016). Anamizu et al. (2005) reported that
Klotho insufficiency causes atrophy and dysfunction of spinal
large anterior horn cells in a mouse model deficient for Klotho,
suggesting its putative role in neuronal-cell differentiation,
potentially promoted by vitamin D.

Progesterone
Marini et al. (2010) reported that vitamin D delays cell
proliferation and induces cell differentiation, with modification
of soma lengthening and the formation of axons and dendrites in
a study using embryonic hippocampal cells. Various observations
have also shown that progesterone treatment may be beneficial in
several brain-injury models (Sayeed and Stein, 2009). Although
progesterone treatment of animals submitted to traumatic brain
injury was shown ineffective, treatment with this steroid was
effective if calcitriol was simultaneously given (Cekic et al.,
2009). In addition, results show that progesterone combined with
vitamin D promotes better neuroprotection against excitotoxicity
than progesterone alone in an E18 rat primary cortical neurons
pretreated with various concentrations of progesterone and

vitamin D separately or in combination for 24 h (Atif et al., 2009).
Moreover, given the role of progesterone in myelin formation in
the peripheral nervous system, it could be informative to further
study whether calcitriol can synergize with progesterone activity
in the myelination process in the peripheral nervous system
(Zárate et al., 2017). Finally, calcitriol has been shown to increase
local estrogen production in glial cells through the upregulation
of the aromatase enzyme (Caccamo et al., 2018). Given the role of
estrogens on neuroprotection and neuronal DNA repair enzymes
in rodents (Zárate et al., 2017), we suggest that calcitriol can exert
a neuroprotective effect through the estrogen pathway.

Neuronal Cell Differentiation
Calcitriol could be used to potentiate neuronal-cell
differentiation in progenitor cell lines. Indeed, Agholme
et al. (2010) reported that in vitro pre-treatment of SH-SY5Y
cells, human neuroblastoma cells, with retinoic acid, followed
by culturing on an extracellular matrix in combination
with a cocktail of neurotrophic factors associated with
vitamin D3 treatment, generated sustainable cells with an
unambiguous resemblance to adult neurons. Preliminary
experiments conducted in our lab on neuronal cells with
various concentrations of calcitriol suggest that calcitriol can
induce motor-neuron differentiation but without any effect on
proliferation. Confirmatory studies are under way.

Axonal Homogeneity
As mentioned, vitamin D3 and its metabolites also play a role
in neurites integrity. The VDR KO mouse model described by
Sakai et al. (2015) underlined the involvement of calcitriol and
the VDR in axonal homogeneity, integrity, and maintenance
of neuromuscular junctions. Indeed, the analysis of transversal
sections of sciatic nerves from VDR-deficient mice showed
heterogeneity of the axonal diameters and axonal repartitioning
among the nerves (Sakai et al., 2015). In addition, they showed in
a rat primary Schwann cells model, that calcitriol upregulates the
expression of IGF-1, a myelin basic protein which is a myotrophic
and neurotrophic factor. Gao et al. (1999) showed that
IGF-I deficient mice exhibit reduced peripheral nerve conduction
velocities and smaller axonal diameters. They also demonstrated
that IGF-1 plays a key role in the growth and development of
the peripheral nervous system and that systemic IGF-1 treatment
can enhance nerve function in these adults deficient mice
(Gao et al., 1999).

Anti-oxidative Activity
Anti-oxidative stress activity has been reported for calcitriol in
the central nervous system (Garcion et al., 1998). Injections of
lipopolysaccharide were performed in vivo in rat hippocampus
to induce the synthesis of induced nitric oxide synthase (iNOS),
which is partially involved in oxidative stress in the brain
and vasodilation through nitrogen monoxide (NO) generation.
This study showed significant inhibition of iNOS synthesis
in the group with calcitriol treatment, suggesting a putative
role of calcitriol against oxidative stress and vasodilation in
the brain. Furthermore, the authors also showed that vitamin
D increased the intracellular levels of glutathione, the major
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intracellular redox buffer, in primary cultures of newborn-rat
astrocytes (Garcion et al., 1999). Although oxidative stress and
inflammatory processes appear to promote calcium dysregulation
with age, several endogenous steroid hormones, including
vitamin D, estrogen, and insulin may counteract, at least partially,
these effects (Frazier et al., 2017).

Renin-Angiotensin System and Vitamin D
Several studies have shown an interaction between the renin-
angiotensin system (RAS) and calcitriol regulation. Rammos
et al. (2008) showed that vitamin D downregulates renin and
vitamin D deficiency upregulates the RAS in a murine model.
These results have been supported by several studies showing
that renin expression and plasma angiotensin II production
are elevated in VDR-null mice, leading to hypertension and
cardiac hypertrophy, whereas 1,25-(OH)2-vitamin D3 treatment
suppresses renin expression (Li et al., 2002; Yang et al., 2018).
In addition, 1,25-(OH)2-vitamin D3 administration corrects
hypertension induced by activation of the RAS in a model of
1-alpha-hydroxylase-deficient mice (Zhang et al., 2015). These
renal abnormalities were also observed in a rat model of diabetes
in which calcitriol blocks RAS activation (Deng et al., 2016).
These interactions have also been observed in humans. In a
large cohort, Tomaschitz et al. (2010) reported that serum 1,25-
(OH)2-vitamin D3 concentrations were inversely correlated with
plasma renin activity and angiotensin II levels. Calcitriol can
also regulate the RAS in organs other than the kidney and
perhaps in peripheral nerves, where angiotensin receptors have
already been described. Indeed, Bessaguet et al. (2017) in a
recent study showed that candesartan, a blocker of AT1 and
AT2 receptors, prevents this type of neuropathy by acting on
the RAS, in mice exhibiting sensory small fiber injury induced
by resiniferatoxin treatment. They concluded that the AT2R
may have neuroprotective effects (Bessaguet et al., 2017). Given
the previous observation in kidney, the role of vitamin D in
this pathway needs to be investigated to clarify its role in the
regulation of the RAS, particularly its interaction with oxidative
stress, well known to interact with the RAS (Luo et al., 2015). RAS
hyperactivity associated with progression to renal damage and the
modulation of calcitriol production is found in chronic kidney
diseases (Santos et al., 2012).

Relationships between Vitamin D3, both cholecalciferol and
calcitriol, and renal function have been extensively studied.
First, renal injuries induce a decline in the glomerular filtration
rate (eGFR), often associated with a reduction of 1-alpha-
hydroxylase enzyme activity in kidney, inducing a decrease of
plasma 1,25-(OH)2-vitamin D3 levels. Such low levels in the
blood result in several downstream effects, such as secondary
hyperparathyroidism and the modification of bone homeostasis,
requiring treatment with 1,25-(OH)2-vitamin D3 or one of its
analogs in human patients with chronic kidney diseases (Bhan,
2014). As shown by a cross-sectional study integrating results of
5 cohort studies and clinical trials, it seems that low eGFR is also
associated with important decrease in Vitamin D3 catabolism (de
Boer et al., 2014). Second, Vitamin D deficiency impacts in a
different manner the general population and renal transplanted
patients. Indeed, as shown by a prospective population-based

cohort study, it seems that low calcitriol and low cholecalciferol
plasma levels are not associated with decreased eGFR in the
general population (Keyzer et al., 2015a). On the contrary, a
prospective observational single-center cohort study in stable
renal transplanted patients, showed that low 25-OH-vitamin D3
(<12 ng/mL) is associated with a rapid decline in eGFR (Keyzer
et al., 2015b). Interestingly, it seems that vitamin D3 might be not
“useful” to normal persons but might have an important positive
effect in kidney transplanted persons. This might also be the case
for people with peripheral neuropathies.

VITAMIN D3 IN NEUROLOGICAL
DISORDERS

It is commonly accepted that a large proportion of the population
in developed countries exhibit insufficient 25-OH-vitamin D3
concentrations in the blood (Singh and Bonham, 2014). Low
levels of 25-OH-vitamin D3 are associated with an increased risk
of all-cause mortality (Gröber et al., 2015). Although the major
sites of action of calcitriol in calcium homeostasis are the bones,
kidneys, intestine, and parathyroid gland (Issa et al., 1998), the
nervous system may also be involved, particularly in myelinating
areas. Various associations have been reported between vitamin
D status and brain diseases, such as epilepsy. 25-OH-vitamin D3
supplementation results in improved seizure control in patients
with pharmaco-resistant epilepsy (Holló et al., 2012; Miratashi
et al., 2017). In 2013, Zhao et al. reported a correlation between
25-OH-vitamin D3 deficiency and the prevalence of Alzheimer’s
and Parkinson’s diseases (Oudshoorn et al., 2008; Zhao et al.,
2013). In addition, a study in the United States reported a higher
prevalence of dementia among participants with 25-OH-vitamin
D3 deficiency (Buell et al., 2010). Kalueff and Tuohimaa (2007)
reported the importance of vitamin D/VDR bioactivation in
brain neurons, glial cells, brain macrophages, the spinal cord,
and the peripheral nervous system, with putative autocrine or
paracrine activity.

Brain and Central Nervous-System
Disorders
In the nervous system, vitamin D is involved in calcium
trafficking, the redox status, and induction of the synthesis of
synaptic structural proteins, neurotrophic factors, and deficient
neurotransmitters (Mpandzou et al., 2016). Several results
underline the impact of 25-OH-vitamin D3 deficiency as a
promoting factor in various neurodegenerative diseases, such as
amyotrophic lateral sclerosis and Parkinson’s and Alzheimer’s
diseases (Evatt, 2010; Knekt et al., 2010; Mpandzou et al., 2016).
The role of calcium in neurodegenerative disorders has been
further studied over the last several years (Frazier et al., 2017).
In humans, vitamin D deficiency has long been known to
be accompanied by irritability, anxiety, depression, psychoses,
and defects in mental development (Kalueff and Tuohimaa,
2007). Calcitriol deficiency is also associated with poor cognitive
function in human adults, as well as in children, and could also
affect brain development (Wilkins et al., 2006; Lee et al., 2009;
Llewellyn et al., 2011). Eyles et al. (2003) demonstrated that rats
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born to vitamin D3-deficient mothers had profound alterations of
the brain at birth. Changes in brain structure and a reduction in
brain content of nerve-growth factor (NGF) and glial cell-derived
neurotrophic factor (GDNF) suggest that low maternal vitamin
D3 levels affect the developing brain (Eyles et al., 2003). These
results were supported by an experimental study in a rat model
with a combined prenatal and postnatal vitamin D3-deficiency
(Al-harbi et al., 2017). Al-harbi et al. (2017) reported that this
deficiency promoted a decrease in the number of synapses in the
molecular layer of the hippocampus, associated with a reduction
of cortical thickness.

Astrocytes, which are VDR expressing cells, are
important immune cells and contribute to inflammation
during neurological disorders. Jiao et al. (2017) reported
that lipopolysaccharide-stimulated neuroinflammation in
astrocytes could enhance the expression of the VDR and
Cyp27B1. In contrast, vitamin D suppressed the expression of
proinflammatory cytokines, such as tumor necrosis factor-α,
interleukin-1β, and TLR4 in vivo. These results support a
function of reactive astrocytes in stimulating the inflammatory
response in neurodegeneration and brain injury and a putative
role of vitamin D (Jiao et al., 2017).

Mascarenhas et al. reported an association between severe
hypovitaminosis D and persistent, non-specific musculoskeletal
pain in humans (Plotnikoff and Quigley, 2003; Mascarenhas
and Mobarhan, 2004). Serum vitamin D levels have been
inversely correlated with painful manifestations and associated
with neuromuscular disorders, which can lead to increased pain
sensitivity. Thus, vitamin D3 may also be involved in nociceptive
sensitivity (de Oliveira et al., 2017). 1,25-(OH)2-vitamin D3 may
also upregulate the expression of neurotrophic factors, such as
GDNF in C6 glioma cells (Naveilhan et al., 1996), NT-3, or NT-
4 in rat astrocytes (Neveu et al., 1994), TGFβ in neuroblastoma
cells (Veenstra et al., 1997), and NGF in the central (Brown et al.,
2003; Gezen-Ak et al., 2011) and peripheral nervous systems
(Cornet et al., 1998).

Interventional studies of vitamin D3 supplementation
for various central nervous system (CNS) diseases have
shown promising results. In a randomized double-blind
placebo-controlled trial in patients with Parkinson FokI CT
and TT genotypes, 12 months of 1,200 UI/day vitamin D3
supplementation resulted in stabilization of the severity (Suzuki
et al., 2013). Another randomized double-blind controlled
study that assessed 4 months of vitamin D3 supplementation
(10.000 UI/day) also showed improvements in balance only
in 52- to 66-year-old patients with Parkinson’s disease
(Hiller et al., 2018). In a single-center trial in patients with
Alzheimer’s disease, co-administration of memantine with
vitamin D3 (400–1000 UI/day or 100,000–200,000 UI/month)
for 6 months resulted in a significant and synergistic
effect on global cognitive performance (Annweiler et al.,
2012). A similar protocol with memantine and vitamin
D3 (100,000 UI/month) for 6 months is currently being
tested in a single-center double-blind randomized placebo-
controlled superiority trial to study its impact on the
cognitive performance of patients with Alzheimer’s disease
and similar disorders (Annweiler et al., 2011). Finally, in an

observational retrospective study, 2,000 UI/day vitamin D3
supplementation for 9 months showed no significant adverse
events and appeared to have beneficial effects for patients
with amyotrophic lateral sclerosis. However, given the low
number of patients included (37), further studies are necessary
(Karam et al., 2013).

Demyelinating Diseases
In multiple sclerosis, a demyelinating disease of the central
nervous system, environmental factors may contribute to the
onset of the disease, in addition to a genetic component.
Poor exposure to sun light, resulting in reduced production
of vitamin D3 in the skin, is thought to be a risk factor
for multiple sclerosis. An association of vitamin D levels
with multiple sclerosis was determined in a case control
study, which showed an inverse relationship between serum
25-OH-vitamin D3 levels and the prevalence of multiple
sclerosis (Pandit et al., 2013). Moreover, low 25-OH-vitamin D3
levels at birth could increase the risk of developing multiple
sclerosis, as shown in a recent case-control study (Munger
et al., 2016). In addition, vitamin D3 supplementation is
increasingly recommended to patients with multiple sclerosis
(Nystad et al., 2014). Interventional studies have also been
conducted on patients with multiple sclerosis to study the
impact of vitamin D3 supplementation. In an interventional
single group trial, high doses of vitamin D3 (20,000 UI/day)
given to patients with relapsing remitting multiple sclerosis for
12 weeks showed a shift from a pro-inflammatory to an anti-
inflammatory profile (higher proportion of IL-10+ CD4+ and
fewer TH1/TH2 cells) without hypercalcemia or hypercalciuria
(Smolders et al., 2010). A phase I/II dose-escalation trial
studying the safety of high-dose vitamin D3 supplementation
(40,000 UI/day for 28 weeks, then 10,000 UI/day for 12 weeks
and no supplementation for 12 weeks), associated with calcium
supplementation (1,200 mg/day for 42 weeks), confirmed
no significant adverse events (Burton et al., 2010). Other
interventional studies for vitamin D3 supplementation in
patients with multiple sclerosis are currently ongoing (Smolders
et al., 2011; Dörr et al., 2012; Bhargava et al., 2014).

In a rodent model of experimental autoimmune
encephalomyelitis (EAE), animals immunized against central
nervous system proteins, such as myelin-basic protein, develop
a paralytic disease that mimics multiple sclerosis. High doses
of calcitriol have been shown to prolong survival and improve
demyelination scores in the central nervous system relative
to those of untreated rodents (Issa et al., 1998; Shirazi et al.,
2017). Sakai et al. (2015) showed that calcitriol is essential
for the synthesis of myelin basic protein, which is a main
component of myelin. Indeed, rat primary Schwann cells
treated with calcitriol showed increased production of myelin
basic protein, suggesting calcitriol involvement in protein
remyelination. Moreover, the effect of high doses of calcitriol
on remyelination was investigated in C57B1/6 mice, previously
treated with cuprizone, which induces oligodendrocyte apoptosis
and subsequent myelin disruption. Calcitriol was able to
promote the regenerative process by stimulating oligodendrocyte
maturation and astrocyte activation, with a significant increase in
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myelination (Nystad et al., 2014). Both studies suggest an active
role of calcitriol in myelination in the central and peripheral
nervous systems.

Peripheral Neuropathies
Calcitriol coordinates the biosynthesis of neurotransmitters
in the central nervous system, which regulate cardiovascular
autonomic function and may explain its putative role in the
development of cardiovascular autonomic neuropathy (Dimova
et al., 2017). In addition, Chabas et al. (2008) showed that vitamin
D2 (ergocalciferol: a compound produced by yeast with effects
similar to those of vitamin D3) has positive effects in vivo at a
dose of 100 IU/kg/day in a rat model of peripheral nerve trauma.
At the end of treatment, they observed a significant increase
in axonogenesis and axon diameter, improving the response of
sensory neurons (Chabas et al., 2008). In 2013, the same authors
showed that vitamin D3 is beneficial at a dose of 500 IU/kg/day
in a rat model of peripheral nerve trauma, inducing significant
locomotor and electrophysiological recovery. The authors also
demonstrated that 25-OH-vitamin D3 increases the number of
preserved or newly formed axons in the proximal end, the
mean axon diameter in the distal end, and neurite myelination
in both the distal and proximal ends (Chabas et al., 2013).
In an observational prospective open case-control study with
70 patients undergoing paclitaxel chemotherapy, Grim et al.
(2017) reported that estimated vitamin D levels in the group
without chemotherapy-induced peripheral neuropathy (CIPN)
were 38.2 (24.95, 47.63) nmol/L, whereas it was 25.6 (19.7, 32.55)
nmol/L in the group with CIPN. Numerous reports have linked
vitamin D deficiency to an increased risk of diabetes mellitus and
complications, such as neuropathy (Putz et al., 2013). Indeed,
in a prospective clinical cohort study of 69 diabetic patients,

Celikbilek et al. (2015) reported, that serum vitamin D levels
were significantly lower in patients with diabetic peripheral
neuropathy than in those without. These results were supported
by an observational study showing that 25-OH-vitamin D3
levels were significantly lower in the neuropathy patient group
of a 96-patient cohort with type 1 diabetes (Ozuguz et al.,
2016). In addition, in a case-control study, Alamdari et al.
(2015) reported that lower levels of circulating 25-OH-vitamin
D3 may contribute to the risk of large-fiber neuropathy in
type 2 diabetic subjects, even after adjustment for demographic
variables, comorbidities, and diabetes treatment. They suggested
that each 1 ng/mL increase in the concentration of seric 25-
OH-vitamin D3 correlates with a 2.2 and 3.4% decrease in
the presence and severity of nerve conduction velocity (NCV)
impairment, respectively (Alamdari et al., 2015). Putz et al. (2014)
suggested that vitamin D supplementation could have beneficial
effects on neuropathic pain and may block the progression of
neuronal degeneration. These authors also suggested that vitamin
D deficiency could promote diabetic plantar ulcers (Putz et al.,
2014). In a prospective placebo-controlled trial that included
112 type 2 diabetic patients with diabetic peripheral neuropathy
and vitamin D deficiency, Shehab et al. (2015) showed that
short-term oral vitamin D supplementation (50,000 UI/week for
8 weeks) improved hyperesthesia and the burning sensation,
assessed by the neuropathy symptom score (NSS). However, this
supplementation had no effect on the neuropathy disability score
(NDS) nor nerve conduction study (NCS) (Shehab et al., 2015).

Diabetic neuropathy is associated with decreased NGF
expression in human diabetic nerves (Anand et al., 1996) and
vitamin D3 is also known to induce NGF synthesis in human
cell lines (Fukuoka et al., 2001; Shehab et al., 2015). Thus, the
observed improvement in diabetic neuropathy may be mediated

FIGURE 3 | Schematic representation of the putative roles of calcitriol in the peripheral nervous system. IGF-1, insulin-like growth factor-1; MAPK, mitogen-activated
protein kinase; PKC, protein kinase C; PROG, progesterone; RA, retinoic acid; Shh, Sonic hedgehog.
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through the upregulation of NGF. Recently, in an experimental
randomized clinical trial on 81 women suffering from diabetic
neuropathy, Nadi et al. (2017) showed that exercise combined
with vitamin D supplementation decreases the complications of
diabetic neuropathy. In addition, a case-report study with one
Type-1 patient suffering from diabetic neuropathy, mentioned
an improvement after correction of his vitamin D3 deficiency
following supplementation of 50,000 UI/week for 4 weeks (Bell,
2012). On the other hand, an interventional randomized double-
blind placebo-controlled trial in non-vitamin D-deficient patients
with Type 2 diabetes, showed that vitamin D3 supplementation
of 50,000 UI/week for 6 months provided no improvement of
diabetic neuropathy (Westra et al., 2016). Placebo-controlled
multi-centric studies are required to assess the role of vitamin
D3 supplementation on diabetic neuropathies (Valensi et al.,
2005). As previously reported, the number of studies that
have investigated the role of vitamin D in the treatment of
neuropathies is still limited, mostly to diabetic neuropathy.

Charcot-Marie-Tooth Disease
Charcot-Marie-Tooth (CMT) disease is the most common form
of hereditary motor and sensory neuropathy. Caused by either
axonal or demyelinating alterations. More than 90 mutated genes
are involved in the development of this neuropathic disease. The
observed phenotype is variable but often consists of a progressive
distal motor deficiency, foot deformities, or muscular atrophy
(Vallat et al., 2007).

Mutations of the ganglioside-induced differentiation-
associated protein 1 (GDAP1) gene cause autosomal dominant
and autosomal recessive CMT diseases, with more than 40
different pathogenic mutations. Pepaj et al. (2015) used a
proteomic approach to show that 1,25-dihydroxyvitamin D3
treatment induces overexpression of GDAP1 in a rat pancreatic
beta-1 cell line. Thus, 1,25-vitamin D3 could potentially play
a role in CMT, through the up-regulation of the GDAP1 gene.
Further studies are required to assess the impact of 1,25-
dihydroxyvitamin D3 supplementation on the expression of the
GDAP1 gene in CMT patients and its clinical impact.

Moreover, another form of CMT disease, type 2A, is caused
by mutations in the mitofusin-2 (MFN2) gene, which is
physiologically involved in the fusion/fission of mitochondria.
Preclinical studies conducted on neurons from a CMT2A
mouse model showed that an MFN2 agonist could normalize
mitochondrial trafficking and mobility along axons (Gezen-
Ak et al., 2011). Furthermore, Gong et al. (2015) showed
that treatment of human melanocytes with 0.05% H2O2 and
calcipotriol (which is a structural analog of calcitriol) at doses
varying from 20 to 80 nM upregulated the expression of MFN2.
Thus, calcitriol could be an promising candidate in further
studies on CMT2A disease.

Calcitriol has been reported to exhibit gene-dependent
synergistic or antagonistic effects when co-administered with
inhibitors of histone deacetylase (HDAC) (Malinen et al., 2008;
Seuter et al., 2013). Interestingly, HDAC6 inhibition has been
reported to restore nerve conduction and motor capacity in
glycyl-tRNA synthetase (GARS)-mutated murine neuroblastoma
cells, a model for CMT Type 2D (Benoy et al., 2018). Thus,

if HDAC inhibitors succeed in showing a therapeutic effect in
CMT2D, it would be interesting to further study if calcitriol could
potentialize therapeutic effects of HDAC inhibitors in CMT2D
diseases. To our knowledge, no study has been conducted
yet on the impact of vitamin D3 on the progression of
CMT disease. This could represent a new field of therapeutic
research in CMT disease.

A New Field of Research
Several questions should be raised to clearly assess the role of
calcitriol in the peripheral nervous system. Does calcitriol have
an impact on neuronal differentiation (and on axonal trophicity),
or does calcitriol act more on Schwann cells myelination, or does
calcitriol improve cellular communications between axons and
Schwann cells thus improving myelination and nerve conduction
velocities? This would imply a cellular, an animal and a human
level of experiments.

For instance, at cellular level, neuronal differentiation
comparing standard to calcitriol-supplemented cell cultures,
may help assess if calcitriol induces or speeds-up neuronal
differentiation. This could be performed on cell lines such
as SH-SY5Y or on induced pluripotent stem cells (iPSc).
Several techniques such as qRT-PCR, Western-blot and
immunostaining on PGP9.5, islet, tuj1, HB9 expression,
which are markers of neuronal differentiation, could assess
an additive or a synergistic effect of vitamin D3 and other
fat-soluble vitamins. Moreover, as micro-glial cells can synthetize
calcitriol, 3D-cell culture including neuronal and glial cells
could be relevant to study micro-environmental regulation of
calcitriol synthesis.

At animal level, experiments could also be led on mice
or rats with sciatic nerves injuries, physically or chemically
induced, to determine if calcitriol has a positive impact on
recovery. Numerous animal models exist for both acquired
(toxic, diabetic, crush) and hereditary neuropathies (Sereda et al.,
1996). Calcitriol would be administered orally or by a local
long term delivery mean as done for curcumin for instance
(Caillaud et al., 2018). Effects of calcitriol supplementation could
be assessed by functional (skillful walking, grip strength, rotarod),
histological (g-ratio) and electrophysiological (NCVs) tests. In
these conditions, it would be important to check if calcitriol plays
a role in the remyelination process and has synergistic effects with
another factor as previously reported.

At a human level, as vitamin D3 is frequently given to
elders, a prospective interventional study should be planned to
monitor the incidence of peripheral neuropathies. Alternatively,
as patients receiving a chemotherapy frequently develop
neuropathies, a prospective interventional study could be
envisioned to prevent those to occur, provided positive results to
investigate in animal models.

CONCLUSION

Basic science data suggest that current knowledge of calcitriol
may still be incomplete and that it may play a more important role
in peripheral nerve trophicity than previously thought (Figure 3).
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Several preliminary clinical studies tend to show that calcitriol,
indeed, plays such a role. Future molecular and cellular studies
may show calcitriol supplementation to be a beneficial means
to positively influence peripheral nervous system homeostasis
by regulating several processes, such as myelin genesis and
axonal maintenance.
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