
fnins-13-00350 April 12, 2019 Time: 16:53 # 1

ORIGINAL RESEARCH
published: 16 April 2019

doi: 10.3389/fnins.2019.00350

Edited by:
Mikhail Lebedev,

Duke University, United States

Reviewed by:
Kazutaka Takahashi,

The University of Chicago,
United States

Hamid Reza Marateb,
Universitat Politecnica de Catalunya,

Spain
Robert D. Flint,

Northwestern University,
United States

*Correspondence:
Mohammad Reza Daliri

daliri@iust.ac.ir;
mdaliri@gwdg.de

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 18 August 2018
Accepted: 27 March 2019

Published: 16 April 2019

Citation:
Khorasani A, Shalchyan V and

Daliri MR (2019) Adaptive Artifact
Removal From Intracortical Channels

for Accurate Decoding of a Force
Signal in Freely Moving Rats.

Front. Neurosci. 13:350.
doi: 10.3389/fnins.2019.00350

Adaptive Artifact Removal From
Intracortical Channels for Accurate
Decoding of a Force Signal in Freely
Moving Rats
Abed Khorasani1,2, Vahid Shalchyan1 and Mohammad Reza Daliri1*

1 Neuroscience and Neuroengineering Research Lab, Department of Biomedical Engineering, School of Electrical
Engineering, Iran University of Science and Technology (IUST), Tehran, Iran, 2 Kerman Neuroscience Research Center,
Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran

Intracortical data recorded with multi-electrode arrays provide rich information about
kinematic and kinetic states of movement in the brain–machine interface (BMI) systems.
Direct estimation of kinetic information such as the force from cortical data has the same
importance as kinematic information to make a functional BMI system. Various types of
the information including single unit activity (SUA), multiunit activity (MUA) and local field
potential (LFP) can be used as an input information to extract motor commands for
control of the external devices in BMI. Here we combine LFP and MUA information
to improve decoding accuracy of the force signal from the multi-channel intracortical
data of freely moving rats. We suggest a weighted common average referencing (CAR)
algorithm in order to valid interpretation of the force decoding from different data types.
The proposed spatial filter adaptively identifies contribution of the common noise on the
channels employing Kalman filter method. We evaluated the efficacy of the proposed
artifact algorithm on both simulation and real data. In the simulation study, the average
R2 between the original and reconstructed signal of all channels after applying the
proposed artifact removal method was computed for input SNRs in the range of −45 to
0 dB. Weighted CAR method can effectively reconstruct the original signal with average
R2 higher than 0.5 for input SNRs higher than−10 dB in case of adding simulated outlier
and motion artifacts. We also show that the proposed artifact removal algorithm 33%
improves the accuracy of force decoding in terms of R2 value compared to standard
CAR filters.

Keywords: brain–machine interface, artifact removal, adaptive common average reference filter, adaptive
filtering, Kalman filter, neural decoding

INTRODUCTION

Brain–machine interface (BMI) provides an alternative artificial route for transmitting the brain
commands to the patient’s limbs with the goal of movement restoration in different neurological
disorders such as stroke and spinal cord injury (Hochberg et al., 2012; Collinger et al., 2013; Bouton
et al., 2016). Selecting the optimal brain inputs to decode motor commands with high longevity
and accuracy is an unsolved question among neuroscientists. The multiunit activity (MUA) defined
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as un-sorted single unit activities provides a high-resolution
movement related information with greater stability than single
unit activities (SUA) (Chestek et al., 2011). Furthermore,
local field potential (LFP) signals recorded from the motor
cortex is represented as more robust and stable signal in
neural interface devices (Flint et al., 2012). Recent studies
show that different kinematic parameters such as position
and velocity can be decoded from the MUA and LFP as
precisely as spiking activities (Mehring et al., 2003; Flint
et al., 2012, 2013). Furthermore, some studies suggest that
combining LFPs and spike information improves the decoding
accuracy of these kinematic information (Mehring et al., 2003;
Bansal et al., 2012). Mehring et al. (2003) compared decoding
performance of arm kinematics from multi-channel LFPs,
MUA and SUA. They presented that mixing LFP with MUA
lead to more accurate movement decoding accuracy compared
with combination of other signal types. Ideal control of an
external device based on the BMI techniques depends on
accurate decoding of both kinematic such as hand trajectories
and kinetic information such as force and torque values. In
Khorasani et al. (2016) we showed that force information
can be decoded from the low number of LFP channels of
motor cortex area. In the current study, we decode continuous
force signal from the combination of LFP and MUA signals
and compared this decoder with MUA-only and LFP- only
decoders. However, recording intracortical signals in the freely
moving conditions may affect force decoding accuracy. Various
types of artifacts may contaminate intracortical signals in
the less constrained conditions. Electrical muscle activities
have high frequency characteristics and are produced due
to fast muscle activation such as chewing (Shimoda et al.,
2012). Furthermore, motion artifacts are often produced due
to various factors such as respiration, sudden mechanical
pressure on the electrodes or connecting wires and head
movements and have the low frequency characteristics (Sweeney
et al., 2012). These types of artifacts normally have frequency
overlapping with broad-band LFP signals, occur on specific
channels and often have higher amplitude than signal of
interest. Therefore, using frequency-domain filter or non-
automatic spatial filtering cannot effectively remove these
complex artifacts (Sweeney et al., 2012).

In this study, we propose an automatic, real-time artifact
removal algorithm based on the combination of common
average referencing (CAR) filter with Kalman filtering
algorithm. We formulate intracortical recordings based
on the state-space representation and model the common
noise of the brain channels with an autoregressive (AR)
structure. In this framework, the weights of mean CAR filter
for each channel are updated sample by sample using a
Kalman filter algorithm. We first evaluate the functionality
of the proposed algorithm in a simulation study with
different types of artifacts and different types of signal and
noise mixing. Then, we demonstrate the efficiency of this
method on removing artifacts from the real multi-channel
data recorded from freely moving rats. We show that the
proposed method significantly improves the decoding accuracy
of a force signal using LFP data or combination of LFP

and MUA compared to conventional CAR-based spatial
filtering methods.

MATERIALS AND METHODS

Spatial Filtering
In this section, we demonstrate different spatial filters which
are used in this study to improve signal quality of intracortical
channels. First, we introduce the theory behind two commonly
used algorithms in BMIs, mean CAR and median CAR,
and explain the main drawback of them to be used for
real BMI applications. Then, the proposed weighted CAR
filter is explained.

Common Average Reference (CAR) Filter
In the CAR filtering, we assume that the observed intracortical
signal zi(t) at channel i and time t, is the mix of a clean brain
signal si(t) and an artifact term n(t) distributed through the
recording channels:

zi(t) = si(t)+ n(t) (1)

where i = 1, 2, ...,K with K total number of channels and
t = 1, 2, ..., L with L total number of sample points. In CAR
algorithm, noise term can be estimated by computing average of
all channels assuming that the common noise was contributed
similarly on all channels:

n̂(t) =
1
K

K∑
i=1

zi(t) (2)

where n̂(t) shows the average of all channels as estimate of the
noise. Therefore, the clean intracortical signal ŝi(t) corresponding
to channel i and time t can be simply computed by removing
average of all channels from each individual channel:

ŝi(t) = zi(t)− n̂(t) (3)

The main drawback of the CAR filter is that in some situations
such as existence of channel-specific noise, the CAR propagates
the noise to the clean channels. Furthermore, difference in the
amplitude and polarity of the noise in different channels can lead
to inaccurate estimation of noise.

Median CAR Filter
In median CAR, the median of all channels is used to estimate the
noise at each time point:

n̂(t) = z(t)((K+1)/2) if K is odd

n̂(t) = (z(t)(K/2) + z(t)(K/2+1))/2 if K is even
(4)

where K denotes the total number of channels. The median is
more robust against the outliers in the data compared with mean
parameter. However, in normal condition, median CAR may
remove the task-related information from the brain data due to
its non-linear structure (Rousseeuw and Hubert, 2011).
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Weighted CAR
The main limitation of the standard CAR is that it assumes the
common noise has been similarly propagated on the channels.
In this study, we model the recoded intracortical signal zi(t) as
a combination of a clean signal si(t) and a noise term n(t) with
autoregressive (AR) structure:

zi(t) = si(t)+ wi(t)T n(t) (5)

where n(t) = [n(t) n(t − 1) ... n(t −M + 1)]T is the noise
vector containing the temporal values of n(t) in a time window
with M values. Also, w(t) shows weights of the noise term defined
as w(t) = [w1 w2 ... wM]

T . In this framework we consider that
common noise is distributed on the brain channels with different
amplitude and polarity. Also, we considered an AR dynamic for
the common noise to account the temporal changes of the noise
in the channels. We employed Kalman filtering algorithm to
adaptively find the true weight vector wi(t) for each channel i. The
schematic representation of the proposed spatial filter is shown in
Figure 1. To estimate weight vectors, we express the observation
zi(t) and desired states wi (t + 1) with a discrete time Markovian
state-space model:

zi(t) = wi(t) Tn(t)+ si(t)
wi (t + 1) = α wi (t) + λi (t)

(6)

where α is a scalar number that corresponds the weight vector
at time t + 1 to the weight vector at time t with a one-order
Markovian chain. We assume that the process noise term λi (t)
of each channel has a normal distribution with zero average and
covariance matrix Vi = E(λiλ

T
i ). In the observation model, we

assume that the underlying clean intracortical signal si(t) is a
normal signal with zero mean and variance of q = E(s2i ). Based
on the Kalman filter framework we can adaptively estimate our
desired states wi (t) in two steps:

(I) State update based on the previous state:

ŵ−i (t) = α ŵi (t − 1)

P−i (t) = α Pi (t − 1)+ Vi(t)
(7)

where P−i (t) is the covariance matrix of estimation error
considering the previous estimate of state ŵi (t − 1) . The
parameter α defining state-transition value can be identified
in the simulation study in different conditions. Since, we have
access to the true mixing weights in the simulation step, it
is simply possible to identify alpha parameter by solving a
least square problem. Assuming X1 = [wi(1) ....wi(L− 1) ] and
X2 = [wi(2) ....wi(L) ] , where L is the total number of sample
points and i is the channel number. The parameter alpha
corresponding to each channel can be identified as follows: αi =

X2XT
1 (X1X1

T )−1 .
(II) State modification based on the new measurement:

ŵi (t) = ŵ−i (t) + Ki (t) [zi(t)− nT(t) ŵ−i (t) ]
Pi(t) = [I− Ki(t) nT(t) ] P−i (t)
Ki (t) = P−i (t) n(t) [nT(t) P−i (t) nT(t) + q]−1

(8)

where ŵi (t) and Pi (t) are the updated state and updated
covariance matrix of error after considering new measurement

in computation, respectively. Kalman gain term, Ki (t) adjusts
the contribution of new observation on the update of the state
parameter. Kalman gain can be recursively updated according to
the above equation.

Data Collection
In this section, the simulation analysis is explained. First,
we introduce the procedures for producing ground truth
multichannel intracortical data. Then, we illustrate two
types of simulated artifacts that can be commonly seen
in BMIs during the freely moving condition. We also
present different strategies for mixing true intracortical
channels and synthetic artifacts. Afterward, the material
and methods for recording physiological and behavioral
data are introduced. We then explained the procedures
for decoding force information form the real multichannel
intracortical data.

Simulated Data
To evaluate the efficiency of the proposed spatial filtering
algorithm in different conditions, we simulated clean multi-
channel intracortical signals to obtain the ground truth signals.
These ground truth brain signals can be combined with
different types of artifacts in different simulated scenarios
to investigate the efficiency of the proposed method. We
produced simulated LFP channels using VERTEX toolbox in
MATLAB to make sure that the ground truth intracortical
channels are known (Tomsett et al., 2015). This toolbox
simulates LFP signals recorded from large-scale neocortical
tissues of macaque brain. In this toolbox, we specified one
layer (same depth for all electrodes) in a cubic model of
16 electrodes. An inter-electrode spacing of 500 µm were
specified for simulation similar to distance between wires of
microwire array used for real data recording in this study.
First, these settings produce 16 LFP channels with different
temporal-spatial-spectral information. Second, lower frequencies
contain higher power and represent 1/f falloff of the power
like physiological data. Third, there is no artifact or noise
in these simulated data and so we ensure that the original
data is artifact-free. Hence, the VERTEX toolbox could provide
us intracortical signals without any artifacts and as a result
we could analyze the artifact removal algorithm in different
conditions and scenarios. The clean simulated LFPs were
generated at 1 KHz in 20 trials each with 20 s duration.
We combined true multichannel signals S with simulated
artifacts N (described in sections “Fast Outlier Artifacts”
and “Motion Artifacts”) with a random mixing vector γ,
sampled from −1 to 1 uniformly distributed random numbers:

Z = S+ β . γN (9)

where Z shows multichannel mixed signals and β were defined
to control the average input signal to noise ratio (SNR) of all
channels in the analysis:

SNRInput = 10 log10
(Ei[var(S)])

(Ei[var(β . γN)])
(10)
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we employed coefficient of determination (R2) as the
performance metric of removing artifacts from the noisy signals:

R2
i = 1−

L∑
t=1

(st − ŝt)i

L∑
t=1

(st − s̄)i

(11)

where st , ŝt , and s̄ are original signal, reconstructed signal
and average of the original signal at sample point of t,
respectively. Here t = 1, 2, ..., L with L total number of sample
points. The average R2 of channels i = 1, 2, ...,K with K total
number of channels, defines the performance of the artifact
removal methods.

To evaluate the efficiency of the artifact removal method
in non-stationary conditions, the random mixing vector γ

are updated in various time steps (each 4, 2, and 0.5 s) by
adding uniformly distributed random numbers (with standard
deviations of 0.2) to the previous γ (Kelly et al., 2013). Hence, we
change the spatial distribution of common artifact by introducing
the random mixing vector γ and updates it temporally in specific
time steps. We simulated two types commonly seen artifacts in
the cortical recording of behaving subjects:

Fast outlier artifacts
To simulate these type of artifacts, it is assumed that S is true
multichannel signals with K channels and L time samples. We
computed the average vector µ and covariance of multichannel
signal CS and generate random patterns of outliers with
50 samples based on the K-dimensional normal distribution
NK(µ, 5 CS). We selected L

50 of these random outlier artifacts
without overlapping and combine them with true multichannel
data based on the random mixing vector γ. Figure 2B shows an
example of these artifacts.

Motion artifacts
These types of artifacts often have slow variations with high
amplitudes. We simulated motion artifacts by mixing 1.6 and
3.2 Hz sine functions (slow-varying oscillations) with true
multichannel signals based on a random mixing vector γ.
Figure 3B shows an example of these type of artifacts.

Real Data
All animal procedures were monitored and approved by the local
ethics committee of animal care at Iran University of Science
and Technology and were conducted in accordance with NIH
protocols for animal research. Intracortical data were recorded
from three Wistar rats (300–400 g) while the animals were
pressing a force sensor located in front of them. Animals were
trained to press a force sensor by their forepaw to receive a liquid
reward. Force values were linearly converted to the deflection of a
mechanical arm. Applying force to a predefined threshold would
stop the mechanical arm in a position that animal could get a
liquid reward. The animals were free to move in the experimental
setup and there was no go cue or end cue to select beginning or
end of each trial. In the Electrophysiology step, 16 channel micro
wire arrays (4× 4, 500 µm apart) were implanted in the forelimb
region of primary motor cortex with stereotaxic coordinates+1.6

AP, −2.6 ML and −1.5 DV. Brain data were recorded at a rate of
10 KHz with multi-channel data acquisition system (Microprobes
Inc., Gaithersburg, MD, United States). The force and brain
signals were simultaneously recorded while animals performed
the behavioral task. In the beginning of each session, a TTL
pulse were sent to the recording systems to synchronize LFP and
force signals. All the components of experimental setup including
force sensor, mechanical arm and water pump were monitored or
controlled using the Arduino micro controller based on a C++
script. The details of surgery and recording procedures have been
previously published in (Khorasani et al., 2016).

Preprocessing
In the first step, different introduced artifact removal algorithms
(CAR, median CAR, weighted CAR) were used to remove
artifacts from the intracortical data recorded during force
sensor pressing task. Before each method, intracortical channels
were bandpass filtered (4th order Butterworth, band-pass filter,
forward and backward) through 0.5–4,900 Hz to remove the
DC offset and avoid the aliasing effect. Although the backward
filtering cannot be used for the real-time applications, the causal
and minimum phase version of this filter (forward filtering)
produces phase lag equal to the order of the filter. Hence,
considering 4th order Butterworth in real time, we will have 4
sample delay (4 ms considering 1 Khz sampling rate) that is
completely acceptable for the real-time applications.

Feature extraction
Three type of features were extracted from the preprocessed data
including LFP features, MUA features and LFP +MUA features.
To obtain LFP features, the preprocessed multichannel brain
signals were filtered through three spectral sub-bands (LF: 1–
30 Hz), (MF: 30–120 Hz), and (HF: 120–300 Hz). Then, these
bandpass filtered channels were rectified and lowpass filtered
(4th order Butterworth, low-pass filter, forward and backward)
to produce the envelope of different frequency bands. To extract
MUA features, the high-frequency contents of data were obtained
by applying a 300 Hz high-pass filter (4th order Butterworth,
high-pass filter, forward and backward) on the preprocessed
data. Then, the spike events were extracted by thresholding the
band-pass filtered signal at 4 times the standard deviation of the
amplitude of recording channel. The firing rates of these spike
events were computed to create the MUA-based feature vector
(Figure 1). In the LFP + MUA decoder, both LFP and MUA
features were combined to create a combinational feature vector.

Force decoding model
In this step, the extracted features were normalized by subtracting
the mean values and dividing by standard deviation of each
feature (Khorasani et al., 2018). PLS regression model was used
to model the relationship between the input feature vector and
the output force signal (Figure 1). PLS method is a multivariate
regression algorithm that iteratively decompose both input and
output variables to a set of small number of components. Each
component is identified in order to maximize the covariance
between the input and output variables. The details of this
method is described in Khorasani et al. (2016).
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FIGURE 1 | Schematic of the decoding method for predicting force information from the multi-channel intracortical data. In the first stage, the raw brain signals were
spatially filtered based on the proposed weighted CAR filter. The weights of common noise were adaptively estimated employing Kalman filter. Different types of
information including LFP features, MUA features and the combination of LFP and MUA features were extracted from the pre-processed data in the previous stage.
Obtained features were fed into a partial least square (PLS) regression model to create a force decoding model based on the different types of input information.

Decoding accuracy of force signal were computed by
measuring the coefficient of determination (R2) between the
actual and predicted force:

R2
= 1−

L∑
t=1

(ft − f̂t)

L∑
t=1

(ft − f̄ )
(12)

where ft , f̂ shows the real and predicted force value at sample
point t. f̄ defines the average of force signal on the test fold with L
samples. R2 has a range between (−∞, 1) (Fagg et al., 2009). The
R2 values were computed with fivefold cross validation method
after shuffling the order of trials.

RESULTS

Simulation Study Results
Figure 2A shows 600 ms of a 20 s simulated multichannel
LFPs as the true underlying signal. Figure 2B shows the same
section of the data when the true signal was polluted with outlier
artifacts with average input SNR of −5 dB in condition that the
random mixing vector was updated each 2 s. First, the simulated
artifact has affected specific channels and with different power.
Second, the simulated artifact presents very fast oscillation with
standard deviation more than true signal. The goal of spatial
filtering is removing artifacts from the noisy data to reconstruct
the original data. Figure 2C visually depicts that by employing
the proposed spatial filtering algorithm, the artifacts are well
removed from the noisy data.

In Figure 3 motion artifacts with very low frequency
oscillations were added to the true multichannel recording. As
can be seen in Figure 3B some channels contain low frequency
amplitudes that distributed differently on the true underlying
channels. As it is shown in Figure 3C the weighted CAR
algorithm removed these types of artifact.

To search for optimum parameters of weighted CAR filter
that produce the highest and most stable R2, the average of all
channels over 20 trials were computed for SNR input of −20 dB.
The high R2 requires prefect match between the reconstructed
and the original signal. Figure 4 presents the surface map of the
average R2 between the original and reconstructed signal of all
channels obtained from 20 trials for different scenarios. As it
is shown, in case of slow changes of mixing matrix, the higher
q and lower V lead to better higher R2 values. That means in
this scenario, we can select wide range of values for the Kalman
parameters. But, for the fast changes of mixing matrix we need to
select more specific values to ensure the accuracy and stability of
the artifact removal.

Figure 5A shows the adaptation of weights corresponding to
weighted CAR filter wi (t) in situation that mixing vector has
been updated each 2 s with input SNR of −2 dB. It is obvious
that the proposed method has changed the weights of CAR filter
to extract the true common artifact from the multichannel data.
Figures 5B,C depict the average R2 of all intracortical channels
for different input SNRs when mixing vector updated each 4, 2,
and 0.5 s for outlier artifacts and motion artifacts, respectively.
The average R2 was enhanced with increasing of input SNR
for both outlier and motion artifacts. Moreover, fast changes of
mixing vector resulted in less average R2 for different input SNRs.
This can be explained because during the adaptation, it takes
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FIGURE 2 | Example of removing outlier artifacts from the simulated multi-channel LFP data. All signals were shown with the same amplitude scale. (A) Simulated
LFP channels without noise as ground truth in the simulation analysis. (B) The clean data were mixed with simulated random outlier artifacts distributed in channels
with random scales and polarity. (C) Reconstructed data after removing artifacts from the noisy synthetic signals using the proposed weighed CAR algorithm.

FIGURE 3 | Example of removing motion artifacts from the simulated multi-channel LFP data. All signals were shown with the same amplitude scale. (A) Simulated
LFP channels without noise as ground truth in the simulation analysis. (B) The clean data were mixed with the simulated random motion artifacts distributed in
channels with random scales and polarity. (C) Reconstructed data after removing artifacts from the noisy synthetic signals using the proposed weighed CAR
algorithm.

around 200 ms to find the true weights and so there are some
difference between the reconstructed and original signal of all
channels during this period. In the case of adding outlier artifact
to the original intracortical channels, the proposed weighted CAR
filter reconstructed the original signal with average R2 higher
than 0.5 for input SNRs bigger than −25 dB. In the case of
adding motion artifacts to the original intracortical channels, the

proposed weighted CAR filter reconstructed the original signal
with average R2 higher than 0.5 for input SNRs bigger than
−10 dB. Figure 5D shows the mean square error (MSE) averaged
over all channels in the case of the input SNR of −2 dB and
update of mixing vector each 2 s. This figure shows the quick
convergence of the estimation average error toward the steady-
state error. We can simply identify parameter α in the simulation
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FIGURE 4 | Parameter optimization of Kalman filter in the simulation study. Average R2 of intracortical channels between original and reconstructed signal were
computed for different selections of noise process covariance matrix V and variance of observation model q. Parameters V and q were assumed constant for all
intracortical channels. The parameter optimization was repeated for different simulation conditions described in the title of each figure.

study in different conditions such as changing mixing vector each
4 and 2 and 0.5 s as described in the method section. The analysis
finds α = 0.99 as a good selection in a condition that mixing
vectors changes each 4 or 2 or 0.5 s. For the real applications, it is
unlikely that the mixing vector changes faster than 0.5 s.

Experimental Study Results
Figure 6 presents an example for the effect of different
CAR-based spatial filtering on removing artifacts from the
real intracortical channels. In the case of original data, no
preprocessing was applied on the intracortical channels. It is
obvious that the artifacts were distributed on the channels with
different scales in some data points. CAR filter and median CAR
filter could not efficiently remove these artifacts from the data.
Visual inspection shows that weighted CAR more accurately
removed these artifacts from the channels thanks to its Kalman
filter adaptive structure.

Figure 7 shows an example for modulation between
multichannel LFP features and MUA features and force signal
after applying weighted CAR filter. The average features obtained
from 15 trials in each rat clearly demonstrate that the LFP power
or MUA firing rate were increased during applying force on the
force sensor and decreased by releasing the force sensor.

Figure 8 demonstrates an example of force prediction from
the combination of LFP and MUA features after applying
different artifact removal algorithms. Applying weighted CAR
algorithm resulted in precise decoding of force amplitude
compared to original signal and standard CAR algorithms.

Figure 9 illustrates the error bar (mean ± standard error)
of R2 value between the real and predicted force signal

corresponding to different artifact removal algorithm. The
aim is to find out which artifact removal algorithm produces
significant improvement of decoding accuracy. The non-
parametric Friedman test was applied on the obtained R2 values
between predicted and real force signal and multiple comparison
were performed using Tukeys honestly significant difference
method (Daly et al., 2015). In the case of using both LFP
and MUA for decoding, this analysis shows that weighted CAR
significantly improves decoding performance compared with
original case (p < 0.001), mean CAR (p < 0.01) and median
CAR (p < 0.001) and other methods are not significantly
different. In the case of using only LFP information for decoding,
this analysis shows that weighted CAR significantly improves
decoding performance compared with original case (p < 0.05),
mean CAR (p < 0.001), and median CAR (p < 0.001) and other
methods are not significantly different. In the case of using only
MUA information for decoding, only weighted CAR significantly
improves decoding performance compared with original case
(p < 0.05) and other methods are not significantly different.

DISCUSSION

In this study, we presented an automatic CAR-based artifact
removal algorithm for BMI applications. The algorithm
automatically identifies the weight of common noise propagated
on the channels sample by sample. All parameters of the method
were kept fixed after setting the initial values. In the first step, it
estimates the noise signal at each sample time by computing the
average of all channels. We assume that the obtained noise signal
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FIGURE 5 | Artifact removal from simulated noisy data in different conditions. (A) Adaptation of weights in weighted CAR when the distribution of outlier artifact on
the multichannel brain signals were updated each 2 s. (B) Average R2 for different input SNR and different mixing condition in case of adding outlier artifacts to true
intracortical signals. (C) Average R2 for different input SNR and different mixing condition in case of adding motion artifacts to the true intracortical signals.
(D) Example of average MSE of all channels for input SNR of –2 dB.

is propagated through the channels with different amplitude
and polarity. In the second step, the Kalman filter adaptively
identify the amplitude and polarity of the common noise of each
channel. The simulation study demonstrates that the weighted
CAR quickly converges to the steady-state error in order to
remove artifact from the noisy data. We evaluated the efficiency
of the proposed method under different conditions. In the first
condition, we assume that a noise source was distributed across
the clean channels with random positive and negative scales. We
showed that weighted CAR successfully reconstructs the original
signal with positive R2 for input SNRs in range of −45 to 0 dB.
We also evaluated a condition that the distribution of the noise
source was changed at each 4, 2, and 0.5 s. The results showed
that the proposed method can quickly identify the true weights of
CAR filter even with quick changes of mixing vector at each 0.5 s
for both outlier and motion artifacts. Moreover, offline analysis
on the real intracortical data showed that the proposed adaptive
weighted CAR filter improved decoding accuracy of continuous
force information compared with non-adaptive mean CAR and
median CAR algorithms.

Many algorithms have been proposed in the literature to
remove artifacts from the brain data (Sweeney et al., 2013; Daly
et al., 2015; Foodeh et al., 2017). In conditions that desired
signal and noise do not have any spectral overlap, filtering-
based algorithms can be used for removing artifacts (Sweeney
et al., 2012). But, in the physiological recording, especially for
broad-band brain data, such as LFPs and ECoGs, there are
overlaps between spectral contents of the desired signal and
noise. In this work, we applied the weighted CAR algorithm
on the raw brain data, so the algorithm could remove the
artifacts from the whole spectrum of data. Adaptive filtering
algorithm is another solution to remove artifacts from the
brain data. But these algorithms often need a reference signal
to optimally filter out the artifact from the data. In many
situations the reference is not available and adding reference
may increase the complexity of the whole system for real-
world BMI applications. In this study, we estimate the reference
signal based on the CAR algorithm and use a Kalman algorithm
to update the weights. Kalman filtering is more robust and
more accurate in comparison to least mean square algorithms
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FIGURE 6 | An example of using different CAR-based spatial filtering algorithm on removing artifacts from real intracortical signals of freely moving rats. In case of
original data, no preprocessing was applied on the raw intracortical signals. In CAR Filter, common artifact was estimated using averaging of all channels. In median
CAR, common artifact was estimated using median of all channels. In weighted CAR filter, the contribution of common artifact was adaptively adjusted based on the
Kalman filter algorithm.

FIGURE 7 | Example of modulation between multichannel LFP and MUA features and force values after applying weighted CAR filter averaged over 15 trails in each
rat. Average LFP features were obtained by filtering preprocessed data between 120 and 300 Hz and computing envelope of each channel. Average MUA features
were obtained by filtering preprocessed data in range of 3004,900 Hz and computing firing rate of cross-threshold voltages.
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FIGURE 8 | Representative example for decoding of continuous force signal from intracortical channels after applying different spatial filters.

FIGURE 9 | Comparison between decoding performance of the force signal using different input types (LFP, MUA, and LFP + MUA) and different spatial filtering
algorithms (Mean CAR, Median CAR, and weighted CAR). Each bar shows mean ± standard error of R2 obtained from three animal datasets.

(Sweeney et al., 2012). One important advantage of this method
is that it does not require any prior knowledge about the
structure and the nature of the noise sources or the topography
of the noise propagation on the brain channels. For example,
independent component analysis (ICA) requires prior knowledge
about the type and structure of the noise to separate the
desired sources from the noisy sources (Zou et al., 2016).

Furthermore, for optimum implementation of other spatial
algorithms like Laplacian filters we need accurate knowledge
about the spatial distribution of artifacts on the brain channels
(Foodeh et al., 2017).

It should be noticed that CAR filter may remove the desired
information from the recording channels. But the main point is
that the CAR filter is a strong algorithm to improve the SNR in

Frontiers in Neuroscience | www.frontiersin.org 10 April 2019 | Volume 13 | Article 350

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00350 April 12, 2019 Time: 16:53 # 11

Khorasani et al. Adaptive Artifact Removal From Intracortical Channels

brain recording and this matter has been widely presented in the
previous studies (Liu et al., 2015) and (Milekovic et al., 2015).
That means there is a tradeoff between losing some information
related to the state of behavior or action and removing the high
level of noise. Hence, generally we will have better decoding
performance since the level of noise in the common signal is
much higher than the desired signal. The main problem of CAR
filter is that in some situations we may have channel specific
noises and so applying CAR filter propagates the channel specific
artifacts through the clean channels. The obtained results in this
study totally confirm this statement. First, the CAR filter has not
significantly improved the decoding performance in comparison
with the original signal supporting that CAR algorithm may
make the condition worse. Second, the proposed CAR-based
algorithm significantly improved the decoding performance in
comparison with the original data proving that the CAR filter
is a powerful algorithm, but it needs some modification for the
efficient functionality.

Several methods have been proposed to extract more
accurate estimation of common-mode artifacts. Liu et al.
(2015) suggested a median CAR filter to spatially filter out
the epidural field potentials because median values are less
sensitive against outliers in the recording. But, using median
CAR filter under normal condition may remove desired task-
related information due to non-linear characteristics of median
filtering (Rousseeuw and Hubert, 2011). Kelly et al. (2013)
proposed an adaptive CAR filter to remove noises from the ECoG
recording based on the combination of CAR algorithm with
adaptive noise canceling filter. They showed that this method
effectively outperforms conventional CAR filter on removing
artifacts from ECoG data. But, the algorithm requires to be
applied to sliding segment of the data that makes it less
practical for real-time artifact rejection. Also, this method needs
various optimizations to ensure convergence of the method.
Erickson et al. (2016) proposed an iterative artifact removal
algorithm by scaling noise template computed by median CAR
in each identified noisy section of the data. This algorithm
finds the corrupted window of brain channels and scales the
common reference obtained from the smoothed median estimate
of all channels.

We showed that the proposed artifact removal algorithm
improves the accuracy of force signal decoding from LFPs better
than MUAs. We showed that using the combination of LFPs and
MUAs together with the proposed artifact removal algorithm lead
to a high decoding performance. Moreover, the improvement of
the decoding accuracy in case of using the LFP +MUA decoder

over the LFP-only or the MUA-only decoders show that the
LFPs and the MUAs may contain different or supplementary
information about the covariate force signal.

The main reason for the poor performance during the
stationary force (zero force) is that in the designed experimental
setup, we could not continuously record the forelimb force.
However, the results obviously show that we can distinguish
force period from the non-force periods by applying a simple
thresholding in the decoded force signal. For the real BMI
applications, where the subject needs to continuously control an
external device, there is no need to estimate force values at all
times. For example, in the control of a neural prosthesis, we can
decode the kinematic information such as the movement velocity
or the limb position during the reaching phase and make the
applied force zero and when we require the force information, the
force-based decoder can control the prosthesis for object grasping
or key pressing.

CONCLUSION

We investigated the performance of adaptive weighted CAR
for real-time artifact removal from intracortical channels. The
proposed algorithm is automatic and does not need any
knowledge about the content of brain recording. We analyzed
the proposed method on both real and simulated intracortical
data to test the power of the proposed method under different
condition and scenarios. We showed that removing artifacts by
using the proposed weighted CAR filter can significantly improve
the decoding performance considering LFP or a mix of LFP and
MUA as input compared with conventional CAR filters.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the responsible local ethical committee
[Iran University of Science and Technology (IUST)]. The
protocol was approved by the ‘IUST local committee of ethics.’

AUTHOR CONTRIBUTIONS

AK, VS, and MD designed the study, interpreted the data, wrote
the initial draft of the paper, and revised and approved of the
papers’ final version. AK performed the data analyses.

REFERENCES
Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., and Donoghue, J. P.

(2012). Decoding 3D reach and grasp from hybrid signals in motor
and premotor cortices: spikes, multiunit activity, and local field
potentials. J. Neurophysiol. 107, 1337–1355. doi: 10.1152/jn.00781.
2011

Bouton, C. E., Shaikhouni, A., Annetta, N. V., Bockbrader, M. A., Friedenberg,
D. A., Nielson, D. M., et al. (2016). Restoring cortical control of functional

movement in a human with quadriplegia. Nature 533:247. doi: 10.1038/
nature17435,

Chestek, C. A., Gilja, V., Nuyujukian, P., Foster, J. D., Fan, J. M., Kaufman, M. T.,
et al. (2011). Long-term stability of neural prosthetic control signals from
silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng. 8:045005.
doi: 10.1088/1741-2560/8/4/045005

Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber,
D. J., et al. (2013). High-performance neuroprosthetic control by an individual
with tetraplegia. Lancet 381, 557–564. doi: 10.1016/S0140-6736(12)61816-9

Frontiers in Neuroscience | www.frontiersin.org 11 April 2019 | Volume 13 | Article 350

https://doi.org/10.1152/jn.00781.2011
https://doi.org/10.1152/jn.00781.2011
https://doi.org/10.1038/nature17435,
https://doi.org/10.1038/nature17435,
https://doi.org/10.1088/1741-2560/8/4/045005
https://doi.org/10.1016/S0140-6736(12)61816-9
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00350 April 12, 2019 Time: 16:53 # 12

Khorasani et al. Adaptive Artifact Removal From Intracortical Channels

Daly, I., Scherer, R., Billinger, M., and Müller-Putz, G. (2015). FORCe: fully online
and automated artifact removal for brain-computer interfacing. IEEE Trans.
Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 23, 725–736. doi:
10.1109/TNSRE.2014.2346621

Erickson, J. C., Putney, J., Hilbert, D., Paskaranandavadivel, N., Cheng, L. K.,
O’Grady, G., et al. (2016). Iterative covariance-based removal of time-
synchronous artifacts: application to gastrointestinal electrical recordings.
IEEE Trans. Biomed. Eng. 63, 2262–2272. doi: 10.1109/TBME.2016.
2521764

Fagg, A. H., Ojakangas, G. W., Miller, L. E., and Hatsopoulos, N. G. (2009). Kinetic
trajectory decoding using motor cortical ensembles. IEEE Trans. Neural Syst.
Rehabil. Eng. 17, 487–496. doi: 10.1109/TNSRE.2009.2029313

Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E., and Slutzky, M. W. (2012).
Accurate decoding of reaching movements from field potentials in the absence
of spikes. J. Neural Eng. 9:046006. doi: 10.1088/1741-2560/9/4/046006

Flint, R. D., Wright, Z. A., Scheid, M. R., and Slutzky, M. W. (2013). Long term,
stable brain machine interface performance using local field potentials and
multiunit spikes. J. Neural Eng. 10:056005. doi: 10.1088/1741-2560/10/5/056005

Foodeh, R., Khorasani, A., Shalchyan, V., and Daliri, M. R. (2017). Minimum noise
estimate filter: a novel automated artifacts removal method for field potentials.
IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1143–1152. doi: 10.1109/TNSRE.
2016.2606416

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J.,
et al. (2012). Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm. Nature 485:372. doi: 10.1038/nature11076

Kelly, J. W., Siewiorek, D. P., Smailagic, A., and Wang, W. (2013). Automated
filtering of common-mode artifacts in multichannel physiological recordings.
IEEE Trans. Biomed. Eng. 60, 2760–2770. doi: 10.1109/TBME.2013.2264722

Khorasani, A., Beni, N. H., Shalchyan, V., and Daliri, M. R. (2016). Continuous
force decoding from local field potentials of the primary motor cortex in freely
moving rats. Sci. Rep., vol. 6:35238. doi: 10.1038/srep35238

Khorasani, A., Foodeh, R., Shalchyan, V., and Daliri, M. R. (2018). Brain control
of an external device by extracting the highest force-related contents of local
field potentials in freely moving rats. IEEE Trans. Neural Syst. Rehabil. Eng. 26,
18–25. doi: 10.1109/TNSRE.2017.2751579

Liu, Y., Coon, W. G., de Pesters, A., Brunner, P., and Schalk, G. (2015). The effects
of spatial filtering and artifacts on electrocorticographic signals. J. Neural Eng.
12:056008. doi: 10.1088/1741-2560/12/5/056008

Mehring, C., Rickert, J., Vaadia, E., de Oliveira, S. C., Aertsen, A., and Rotter, S.
(2003). Inference of hand movements from local field potentials in monkey
motor cortex. Nat. Neurosci. 6:1253. doi: 10.1038/nn1158

Milekovic, T., Truccolo, W., Grün, S., Riehle, A., and Brochier, T. (2015). Local
field potentials in primate motor cortex encode grasp kinetic parameters.
NeuroImage 114, 338–355. doi: 10.1016/j.neuroimage.2015.04.008

Rousseeuw, P. J., and Hubert, M. (2011). Robust statistics for outlier detection.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1, 73–79. doi: 10.1002/widm.2

Shimoda, K., Nagasaka, Y., Chao, Z. C., and Fujii, N. (2012). Decoding continuous
three-dimensional hand trajectories from epidural electrocorticographic signals
in Japanese macaques. J. Neural Eng. 9:036015. doi: 10.1088/1741-2560/9/3/
036015

Sweeney, K. T., McLoone, S. F., and Ward, T. E. (2013). The use of ensemble
empirical mode decomposition with canonical correlation analysis as a novel
artifact removal technique. IEEE Trans. Biomed. Eng. 60, 97–105. doi: 10.1109/
TBME.2012.2225427

Sweeney, K. T., Ward, T. E., and McLoone, S. F. (2012). Artifact removal in
physiological signals—practices and possibilities. IEEE Trans. Inf. Technol.
Biomed. 16, 488–500. doi: 10.1109/TITB.2012.2188536

Tomsett, R. J., Ainsworth, M., Thiele, A., Sanayei, M., Chen, X., Gieselmann,
M. A., et al. (2015). Virtual electrode recording tool for extracellular
potentials (VERTEX): comparing multi-electrode recordings from simulated
and biological mammalian cortical tissue. Brain Struct. Funct. 220, 2333–2353.
doi: 10.1007/s00429-014-0793-x Jul. 2015.,

Zou, Y., Nathan, V., and Jafari, R. (2016). Automatic identification of artifact-
related independent components for artifact removal in EEG recordings. IEEE
J. Biomed. Health Inform. 20, 73–81. doi: 10.1109/JBHI.2014.2370646

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Khorasani, Shalchyan and Daliri. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 April 2019 | Volume 13 | Article 350

https://doi.org/10.1109/TNSRE.2014.2346621
https://doi.org/10.1109/TNSRE.2014.2346621
https://doi.org/10.1109/TBME.2016.2521764
https://doi.org/10.1109/TBME.2016.2521764
https://doi.org/10.1109/TNSRE.2009.2029313
https://doi.org/10.1088/1741-2560/9/4/046006
https://doi.org/10.1088/1741-2560/10/5/056005
https://doi.org/10.1109/TNSRE.2016.2606416
https://doi.org/10.1109/TNSRE.2016.2606416
https://doi.org/10.1038/nature11076
https://doi.org/10.1109/TBME.2013.2264722
https://doi.org/10.1038/srep35238
https://doi.org/10.1109/TNSRE.2017.2751579
https://doi.org/10.1088/1741-2560/12/5/056008
https://doi.org/10.1038/nn1158
https://doi.org/10.1016/j.neuroimage.2015.04.008
https://doi.org/10.1002/widm.2
https://doi.org/10.1088/1741-2560/9/3/036015
https://doi.org/10.1088/1741-2560/9/3/036015
https://doi.org/10.1109/TBME.2012.2225427
https://doi.org/10.1109/TBME.2012.2225427
https://doi.org/10.1109/TITB.2012.2188536
https://doi.org/10.1007/s00429-014-0793-x
https://doi.org/10.1109/JBHI.2014.2370646
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Adaptive Artifact Removal From Intracortical Channels for Accurate Decoding of a Force Signal in Freely Moving Rats
	Introduction
	Materials and Methods
	Spatial Filtering
	Common Average Reference (CAR) Filter
	Median CAR Filter
	Weighted CAR

	Data Collection
	Simulated Data
	Fast outlier artifacts
	Motion artifacts

	Real Data
	Preprocessing
	Feature extraction
	Force decoding model



	Results
	Simulation Study Results
	Experimental Study Results

	Discussion
	Conclusion
	Ethics Statement
	Author Contributions
	References


