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Quantized Sampled-Data Control for
T-S Fuzzy System Using
Discontinuous LKF Approach
Shenquan Wang, Shuaiqi Chen, Wenchengyu Ji and Keping Liu*

College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China

In this study, the stability for a class of sampled-data Takagi-Sugeno (T-S) fuzzy

systems with state quantization was investigated. Using the discontinuous Lyapunov-

Krasoskii functional (LKF) approach and the free-matrix-based integral inequality bounds

processing technique, a stability condition with less conservativeness has been obtained,

and the controller of the sampled-data T-S fuzzy system with the quantized state

has been designed. Furthermore, based on the results, the sampled-data T-S fuzzy

system without the state quantization was also discussed, and the required controller

constructed. The results of two simulation examples show that both the maximum

sampling intervals, with andwithout the quantized state for T-S fuzzy systems, are actually

superior to the existing results.

Keywords: stabilization, T-S fuzzy systems, quantization, sampled-data system, discontinuous LKF approach

1. INTRODUCTION

In the real world, most physical systems and processes can be modeled mathematically as complex
nonlinear systems. Because some parts of nonlinear systems are always coupled and influence each
other, it is difficult to analyze and synthesize these systems. Therefore, establishing an effective and
suitable control model to address this issue in nonlinear systems, is significant. In recent years, T-S
fuzzy systems has been an effective method to analyze and synthesize nonlinear systems, because
of the fact that the T-S fuzzy model is able to transform a complex nonlinear system into several
simple linear systems with membership functions, approximating the nonlinear function smoothly
with an arbitrary precision in the closed set space, which is ubiquitous in chemical processes,
robotics systems, and automatic systems (Tanaka andWang, 2004). Thus, many results on T-S fuzzy
systems, analyzing nonlinear systems, have been reported in terms of various methods, including
stability analysis (Lam et al., 2007; Zhao et al., 2009; Zhu et al., 2012, 2018a), controller design (Xia
et al., 2010; Wu et al., 2014a,b, 2015; Liu et al., 2016; Wang et al., 2018a; Zhong et al., 2018; Zhao
et al., 2019), and fault detection and filter design (Li et al., 2015; Wang et al., 2016, 2017, 2018b; Zhu
et al., 2018b), etc.

At the front line of other research, there has been increasing interest in the sampled-data control
system, a rapid development of digital and communication technology (Chen and Francis, 2012).
The sampled-data control systems involve both continuous-time and discrete-time signals, which
make the analysis and synthesis more complicated and challenging. It should be noted that the
sampling period is an important issue when analyzing system stability. A larger sampling period
can reduce the occupation of the communication channel, and the actuation of the controller
and signal transmission. Thus, it is very important to guarantee the stability of the sampled-data
system, with a sampling period as large as possible. Over the past several years, sampled-data
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control systems have drawn much attention (see Hu et al., 2007;
Zhu et al., 2012; Shao et al., 2014; Wu et al., 2014a,b, 2015; Liu
et al., 2016; Lee and Park, 2017; Wang et al., 2018a and the
references therein), and one popular and widely used approach
to analyze and synthesize sampled-data systems is the input delay
approach, which is based on the representation of the sampled-
data system as a continuous-time system with a delayed control
input, and does not require the sampling interval to be constant
(Fridman et al., 2004; Fridman, 2010; Yang et al., 2014; Li et al.,
2015). The authors in Hu et al. (2007) designed a sampled-data
controller for networked linear control, and Shao et al. (2014)
researched the problem of sampling-interval-dependent stability
for sampled-data systems with state quantization. Nevertheless,
the results of Hu et al. (2007) and Shao et al. (2014) required
the research system to be linear, which is impractical for
many applications. Very recently, the problem of stability and
stabilization for sampled-data nonlinear fuzzy systems with state
quantization was investigated in Liu et al. (2016). Furthermore,
the authors in Wang et al. (2018a), designed a dissipativity-based
reliable controller for the sampled-data T-S fuzzy system, using
the limited Bessel-Legendre inequality proposed in Liu et al.
(2017), and a less conservative sufficient stabilization criterion
was obtained to guarantee that the sampled-data systems are
asymptotically stable. Although there are few results to study the
stability of sampled-data T-S fuzzy systems, it is still necessary to
decrease the conservativeness of the stability criteria further.

It is well-known that due to the limited capacity and energy
consumption in the network system, it is especially important
to quantize the sampled-data before transmission. However,
most existing studies assume that the data transmission can be
performed with infinite precision, and the impact of quantization
is always ignored in the network environment. On the other
hand, sampling quantization before signal transmission may lead
to a limited cycle and chaos. Thus, the study of sampled-data
systems with state quantization has attracted significant research
attention (Fu and Xie, 2005; Niu et al., 2009; Shao et al., 2014;
Liu et al., 2016; Dong et al., 2017a,b). The author in Dong
et al. (2017b) studied the reliable control problem for fuzzy
systems with state quantization and switched actuator failures.
The output feedback control problem of the network control
systems with signal quantization and packet loss has been studied
in Niu et al. (2009). The stability for sampled-data systems and
linear systems with state quantization, have been studied in
Dong et al. (2017a), Shao et al. (2014), and Fu and Xie (2005),
respectively. Up to now, to the best of authors’ knowledge,
little attention is given to the issue of quantized sampled-data
control for T-S fuzzy systems. Thus, the aim of this work, with
a focus on the stability and stabilization problem for sampled-
data T-S fuzzy systems with state quantization, is to decrease the
conservativeness of the stability criteria even further.

Motivated by that, this work mainly discusses the stability
and stabilization control problem for nonlinear T-S fuzzy
sampled-data systems with quantized states. By using the
discontinuous LKF approach and free-matrix-based integral
inequality boundary processing technique, stability conditions
with less conservativeness are obtained for T-S fuzzy systems,
with sampled-data and quantized states, and the controllers

are designed accordingly. Furthermore, the stability of T-S
fuzzy sampled-data systems without quantized states is also
analyzed utilizing the above theoretical results, and the required
sampling data controllers are designed simultaneously. The main
contributions of this paper can be summarized as follows:
(1) In constructing LKF aspects, it is not necessary that the
discontinuous LKF approach applied in this work are positive
for all time t, only at the sampling times tk and tk+1, which
can broaden the restriction in LKF. (2) In estimating the
derivation of LKF, the free-matrix-based integral inequality
boundary processing technique is used to provide more freedom
in deriving stability for sampled-date T-S fuzzy systems. From
two points of view, the conservativeness of stability conditions
can be decreased for sampled-data T-S fuzzy systems with and
without quantized states effectively through the methods of our
design in this work.

Notations. Throughout this paper, I denotes the identity
matrix with appropriate dimensions. Sym(A) denotes A + AT .
R

n denotes the n dimensional Euclidean space, and R
n×m is the

set of all n × m real matrices. Sn+ denotes the n dimensional
symmetric positive matrices. ∗ denotes the elements below the
main diagonal of a symmetric block matrix.

2. PROBLEM FORMULATION

A class of continuous-time nonlinear systems can be described
using the following T-S fuzzy model

The rules of plant i: If θ1(t) isMi1(t) and . . . and θn(t) isMin(t),
then

ẋ(t) = Aix(t)+ Biu(t) (1)

where x(t) ∈ R
n and u(t) ∈ R

m are the state and control input
vectors of the system, respectively.Ai andBi are anymatrices with
appropriate dimensions. θ(t) = [θ1(t) · · · θn(t)] is the premise
variable;Mij(t) is the fuzzy set, with i = 1, 2, · · · , r as the amount
of fuzzy rules. Then the above continuous time T-S fuzzy system
(Equation 1) can be expressed in the following form

ẋ(t) =

r
∑

i=1

hi(θ(t))
[

Aix(t)+ Biu(t)
]

(2)

where hi(θ(t)) represents the membership function and satisfies
hi(θ(t)) = ωi(θ(t))/

∑r
i=1 ωi(θ(t)); ωi(θ(t)) =

∏n
j=1Mij(θj(t)),

where Mij(θj(t)) is the degree of membership and θj(t) belongs
to the fuzzy set of Mij, which has the following properties. For
θ(t), ωi(θ(t)) ≥ 0 and

∑r
i=1 ωi(θ(t)) > 0, we can determine

hi(θ(t)) ≥ 0 (∀i = 1, 2, · · · , r) and
∑r

i=1 hi(θ(t)) = 1.
Suppose the control signal is a sequence of holding times

generated by a zero-order-holder function.

0 = t0 < t1 < · · · < lim
k→∞

tk = +∞

This paper designs the controller based on the state feedback for
T-S fuzzy systems described in (1) and uses the idea of parallel
distributed compensation to share the same fuzzy set with the
fuzzy model in the premise part of the designed fuzzy controller.

Frontiers in Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 372

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Quantized Sampled-Data Control

Controller rules j: If θ1(tk) isMj1(t) and . . . and θn(tk) isMjn(t),
then

u(t) = Kjx(tk), tk ≤ t ≤ tk+1, j = 1, 2, · · · , r (3)

where Kj is the state feedback gain matrix with appropriate
dimension, and x(tk) is the discrete measurement value at the
sampling time of tk.

The logarithm quantizer is described as

q(•) =
[

q1(•) q2(•) · · · qn(•)
]T

Themth sub-quantizer qm(•) is symmetric, and therefore we have

qm(xm(tk)) = −qm(−xm(tk))

The quantizer satisfies the following quantization criteria

{

±σ r
m|σ

r
m = (ρm)

rσ (0)
m , m = 0,±1,±2, · · ·

}

⋃

{0}

0 ≤ ρm < 1 , σ (0)
m > 0

where ρm and σ
(0)
m are quantizer density and initial quantization

values, respectively. qm(•) is strictly defined as follows

qm(x(tk)) =















σ
(r)
m , σ

(r)
m

1+lm
≤ xm(tk) ≤

σ
(r)
m

1−lm
, if xm(tk) > 0

0, if xm(tk) = 0

−qm(−xm(tk)), if xm(tk) < 0

where lm = 1− ρm/1+ ρm(m = 1, 2, · · · , n) is the parameter of
the quantizer. When xm(tk) > 0, the following relationship is
established

(1− lm)xm(tk) ≤ σ (r)
m ≤ (1+ lm)xm(tk)

For xm(tk) < 0, the following is satisfied

(1+ lm)xm(tk) ≤ σ (r)
m ≤ (1− lm)xm(tk)

Therefore, the quantizer can be expressed as

q(x(tk)) = x(tk)+ f (x(tk))

where

f (x(tk)) =
[

f1(x(tk)) f2(x(tk)) · · · fn(x(tk))
]T

− lm[xm(tk)]
2 ≤ xm(tk)fm(x(tk)) ≤ lm[xm(tk)]

2 (4)

Hence, the overall state feedback controller with the quantized
state can be designed

u(t) =

r
∑

j=1

hj(θ(tk))Kj[x(tk)+ f (x(tk))] (5)

Suppose the distance between two consecutive sampling instants
belongs to an interval, and then for all k > 0 there exists

tk+1 − tk = hk, hk ∈ [hL, hU ] (6)

where hL and hU are known constants satisfying 0 ≤ hL ≤ hU .
Combining Equations (1)–(6), the T-S fuzzy sampled-data system
with state quantization can be obtained as follows

ẋ(t) =

r
∑

i=1

r
∑

j=1

hi(θ(t))hj(θ(tk))
[

Aix(t)+ BiKj

(

x(tk)+ f (x (tk))
)]

(7)

The following lemma is important for further analysis.
Lemma 1. Lee and Park (2017) (Free-Matrix-Based Integral

Inequality) For given matrices R ∈ Sn+, N1, N2 ∈ R
3n×n, the

following inequality holds for any continuously differentiable
function x(t) in [a, b] ∈ R

n

−

∫ β

α

ẋT(s)Rẋ(s)ds ≤ φT(α,β)9(α,β)φ(α,β)

where

9(α,β) = (β−α)

(

N1R
−1NT

1 +
(β − α)2

3
N2R

−1NT
2 + Z1

)

+Z2

φ(α,β) =
[

xT(β) xT(α)
∫ β

α
xT(s)ds

]T

Z1 = −Sym
[

N2 N2 0
]

Z2 = Sym
[

N1 −N1 2N2

]

Remark 1. Note that the free-matrix-based integral inequality
in Lemma 1 provides more freedom in deriving stability for
sampled-date T-S fuzzy systems. So, it provides the possibility

of finding a tight bound for −
∫ β

α
ẋT(s)Rẋ(s)ds. On the other

hand, the augmented vector φ(α,β) includes
∫ β

α
xT(s)ds instead

of 1
β−α

∫ β

α
xT(s)ds, and this avoids appearance of the term (t −

tk)φ(tk, t) in sampled-data systems, which is actually much easier
to handle.

3. MAIN RESULT

3.1. Stability Analysis of the Sampled-Data
T-S Fuzzy System With State Quantization
In this section, the asymptotic stability conditions of T-S fuzzy
systems with state quantization are analyzed.

For the convenience of system analysis and design, we define

ei =
[

0n×(i−1)n In 0n×(5−i)n

]

,

ξT(t) =
[

xT(t) xT(tk)
∫ t
tk
xT(s)ds ẋT(t) f T(x(tk))

]
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where ei is defined as the block entry matrix. Other notations are
defined as

ηT1 (t) =
[

xT(t)− xT(tk)
∫ t
tk
xT(s)ds f T(x(tk))

]

ηT2 (t) =
[

xT(tk) ẋT(t) f T(x(tk))
]

ηT3 (t) =
[

ẋT(t) xT(t) 0
]

ηT4 (t) =
[

xT(t) xT(tk)
∫ t
tk
xT(s)ds

]

ηT5 (t) =
[

ẋT(t) 0 xT(t)
]

5T
1 =

[

eT1 − eT2 eT3 eT5
]

5T
2 =

[

eT2 eT4 eT5
]

5T
3 =

[

eT4 eT1 0
]

5T
4 =

[

eT2 eT2 eT3
]

5T
5 =

[

eT4 0 eT1
]

Theorem 1. For given scalars hL and hU , satisfying 0 ≤ hL ≤ hU ,
system (Equation 7) is asymptotically stable, if there are some
symmetric positive definite matrices P ∈ Sn+, X1, Q ∈ S3n+ ,
R ∈ S7n+ ; a diagonal matrix D ∈ Sn+; any matrices G1, G2, X2,
N1, N2 with appropriate dimensions, and for any i ≥ 1 and j ≤ r,
the following linear matrix inequalities (LMIs) hold

81 + hk82 < 0 (8)





81 + hk83 812 813

∗ −Q4 0
∗ ∗ −3Q4



 < 0 (9)

where

81 = Sym(eT1 Pe4)− 5T
1X151 − Sym(eT3X2e2)

−Sym

(

[

e2
e5

]T [
Q2

Q5

]

(e1 − e2)

)

+ 5T
4ℜ154

+Sym(5T
4ℜ255)+ eT4 R6e4 + 5T

4 Z254

+Sym((eT1G1 + eT4G2)9)

−Sym
[

(e5 + Le2)
TD(e5 − Le2)

]

82 = Sym(5T
1X153)+ Sym(eT1X2e2)+ 5T

2Q52

83 = −

[

e2
e5

]T [
Q1 Q3

∗ Q6

] [

e2
e5

]

+ Sym(5T
4ℜ155)+ 5T

4 Z154

812 =
√

hk5
T
4N1

813 = hU
√

hk5
T
4N2

with

ℜ1 = R1 +
h2U
3
R4 − Sym

[

R5 R5 0
]

ℜ2 = Sym
[

R3 −R3 2R5
]

9 =
[

Ai BiKj 0 −I BiKj

]

Q =





Q1 Q2 Q3

∗ Q4 Q5

∗ ∗ Q6





R =





R1 R2 R3
∗ R4 R5
∗ ∗ R6





and Z1, Z2 have been defined in Lemma 1.
Proof: The novel discontinuous LKF in this work is

constructed as follows

V(t) = V1(t)+ V2(t)+ V3(t) t ∈ [tk, tk+1] (10)

where

V1(t) = xT(t)Px(t)

V2(t) = (tk+1 − t)

(

ηT1 (t)X1η1(t)+ Sym

(∫ t

tk

xT(s)dsX2x(tk)

)

+

∫ t

tk

ηT2 (s)Qη2(s)ds

)

V3(t) = ηT4 (t)ℜη4(t)+

∫ t

tk

ẋT(s)R6ẋ(s)ds

with

ℜ = (t − tk)ℜ1 +ℜ2

Remark 2. It should be noted that the constructed LKF (Equation
10) of this work is the discontinuous Lyapunov functional,
as V3(t) is actually a time-dependent discontinuous term.
Moreover, it is not necessary that V1(t) and V2(t) in LKF
(Equation 10) are positive for all time t, but only positive
at the sampling times tk and tk+1. All this can decrease the
conservativeness of stability conditions effectively.

The derivative of V1(t), V2(t), and V3(t) can, respectively, be
deduced as

V̇1(t) = 2xT(t)Pẋ(t) (11)

V̇2(t) = −ηT1 (t)X1η1(t)− Sym

(∫ t

tk

xT(s)dsX2x(tk)

)

−Sym

(

[

x(tk)
f (x(tk))

]T [
Q2

Q5

]

(x(t)− x(tk))

)

−(t − tk)

[

x(tk)
f (x(tk))

]T [
Q1 Q3

∗ Q6

] [

x(tk)
f (x(tk))

]

−

∫ t

tk

ẋT(s)Q4ẋ(s)ds

+(tk+1 − t)
(

Sym

(

ηT1 (t)X1η3(t)
)

+ Sym

(

xT(t)X2x(tk)
)

+ ηT2 (t)Qη2(t)
)

(12)

Frontiers in Neuroscience | www.frontiersin.org 4 April 2019 | Volume 13 | Article 372

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Quantized Sampled-Data Control

V̇3(t) = ηT4 (t)ℜ1η4(t)+ Sym(ηT4 (t)ℜη5(t))+ ẋT(t)R6ẋ(t) (13)

By Lemma 1, we obtain the inequality

−
∫ t
tk
ẋT (s)Q4 ẋ(s)ds ≤ ηT4 (t)

(

(t − tk)

(

N1Q
−1
4 NT

1 +
(t−tk)

2

3 N2Q
−1
4 NT

2 + Z1

)

+ Z2

)

η4(t) (14)

Based on the closed-loop system (Equation 7), the following
equality holds

Sym

(

xT (t)G1 + ẋT (t)G2

)

×



−ẋ(t)+

r
∑

i=1

r
∑

j=1

hi(θ(t))hj(θ(tk))
[

Aix(t)+ BiKjx(tk)+ BiKjf (x(tk))
]



 = 0,

and it can be further written as

r
∑

i=1

r
∑

j=1

hi(θ(t))hj(θ(tk))Sym
(

xT(t)G1 + ẋT(t)G2

)

([

Ai BiKj 0 −I BiKj

]

ξ (t)
)

= 0 (15)

From Equation (4), for the diagonal matrix D > 0, it holds that

− Sym

(

[

f (x(tk))+ Lx(tk)
]T

D
[

f (x(tk))− Lx(tk)
]

)

≥ 0 (16)

Then combining (Equations 11–16), an upper bound of V̇(t) can
be obtained as follows

V̇(t) ≤

r
∑

i=1

r
∑

j=1

hi(θ(t))hj(θ(tk))ξ
T(t)

(

tk+1 − t

hk
(81 + hk82)+

t − tk

hk
(81 + hk8̆3)

)

ξ (t) (17)

where

8̆3 =−

[

e2
e5

]T [
Q1 Q3

∗ Q6

] [

e2
e5

]

+ Sym(5T
4ℜ1e2)+ 5T

4 Z154

+ 5T
4

(

N1Q
−1
4 NT

1 +
(t − tk)

2

3
N2Q

−1
4 NT

2

)

54

with the following two equalities

81 + hk82 =
hU − hk

hU − hL
(81 + hL82)+

hk − hL

hU − hL
(81 + hU82)

81 + hk8̆3 =
hU − hk

hU − hL
(81 + hL8̆3)+

hk − hL

hU − hL
(81 + hU8̆3)

Therefore, using Schur Complement, Equations (8) and (9) are
equivalent to V̇(t) < 0. This completes the proof.

Additionally, Theorem 1 has provided the stability results
for T-S fuzzy sampled-data systems (Equation 7) with state
quantization, and, the following Theorem 2 will be given in order
to obtain the sampled-data controller.

Theorem 2. For given scalars hL and hU , satisfying 0 ≤ hL ≤

hU , system (Equation 7) is asymptotically stable, if there are some
symmetric positive definite matrices P̄ ∈ Sn+, X̄1, Q̄ ∈ S3n+ ,
R̄ ∈ S7n+ ; diagonal matrix D̄ ∈ Sn+; any matrices G, Tj, X̄2, N̄1,
N̄2 with appropriate dimensions, and for any i ≥ 1 and j ≤ r, the
following LMIs hold

8̄1 + hk8̄2 < 0 (18)





8̄1 + hk8̄3 8̄12 8̄13

∗ −Q̄4 0

∗ ∗ −3Q̄4



 < 0 (19)

where

8̄1 = Sym(eT1 P̄e4)− 5T
1 X̄151 − Sym(eT3 X̄2e2)

−Sym

(

[

e2
e5

]T [
Q̄2

Q̄5

]

(e1 − e2)

)

+ 5T
4 ℜ̄154

+Sym(5T
4 ℜ̄255)+ eT4 R̄6e4 + 5T

4 Z̄254

+Sym((eT1 + εeT4 )9̄)

−Sym
[

(e5 + Le2)
TD̄(e5 − Le2)

]

8̄2 = Sym(5T
1 X̄153)+ Sym(eT1 X̄2e2)+ 5T

2 Q̄52

8̄3 = −

[

e2
e5

]T [
Q̄1 Q̄3

∗ Q̄6

] [

e2
e5

]

+ Sym(5T
4 ℜ̄155)+ 5T

4 Z̄154

8̄12 =
√

hk5
T
4 N̄1

8̄13 = hU
√

hk5
T
4 N̄2

with

Z̄1 = −Sym
[

N̄2 N̄2 0
]

Z̄2 = Sym
[

N̄1 −N̄1 2N̄2

]

ℜ̄ = (t − tk)ℜ̄1 + ℜ̄2

ℜ̄1 = R̄1 +
h2U
3
R̄4 − Sym

[

R̄5 R̄5 0
]

ℜ̄2 = Sym
[

R̄3 −R̄3 2R̄5
]

9̄ =
[

AiG
T BiTj 0 −GT BiTj

]
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Q̄ =





Q̄1 Q̄2 Q̄3

∗ Q̄4 Q̄5

∗ ∗ Q̄6





R̄ =





R̄1 R̄2 R̄3
∗ R̄4 R̄5
∗ ∗ R̄6





The gain matrix Kj of the sampled-data controller with state

quantization is defined as Kj = TjG
−T .

Proof: Define

G = G−1
1 , G2 = εG1, P̄ = GPGT , X̄2 = GX2G

T

R̄ = diag{G,G,G,G,G,G,G}Rdiag{G,G,G,G,G,G,G}T

N̄2 = diag{G,G,G}N2G
T , N̄1 = diag{G,G,G}N1G

T ,

D̄ = GDGT

Q̄ = diag{G,G,G}Qdiag{G,G,G}T ,

X̄1 = diag{G,G,G}X1diag{G,G,G}
T

Equation (8) is pre- and post-multiplied by diag{G,G,G,G,G}
and its transpose, respectively. Equation (9) is pre- and
post-multiplied by diag{G,G,G,G,G,G,G} and its transpose,
respectively.We accordingly obtain Equations (18) and (19). This
completes the proof.

Remark 3. Theorems 1 and 2 provide the stability condition
and the controller design for the sampled-data T-S fuzzy system
with the quantized state, using the discontinuous LKF approach.
If we do not consider the impact of the state quantization in
system (Equation 7), f (x(tk)) in V2(t) could be eliminated, and
the result can be degenerated for the case without the quantized
state, which will be discussed in the next section.

Remark 4. In order to obtain less conservativeness sufficient
stability condition for sampled-data T-S fuzzy systems with
state quantization, some other methods combined with free-
matrix-based integral inequality bounds processing technique
could be used, such as parameter-dependent LKF and two-sided
looped-functional.

3.2. Stability Analysis of Sampled-Data T-S
Fuzzy System Without State Quantization
In this section, the impact of the quantized state is not considered,
and the T-S fuzzy sampled-data system then becomes

ẋ(t) =

r
∑

i=1

r
∑

j=1

hi(θ(t))hj(θ(tk))
[

Aix(t)+ BiKj

(

x(tk)
)]

(20)

Define

ẽi =
[

0n×(i−1)n In 0n×(4−i)n

]

,

ξ̃T(t) =
[

xT(t) xT(tk)
∫ t
tk
xT(s)ds ẋT(t)

]T

η̃T1 (t) =
[

xT(t)− xT(tk)
∫ t
tk
xT(s)ds

]

η̃T2 (t) =
[

xT(tk) ẋT(t)
]

η̃T3 (t) =
[

ẋT(t) xT(t)
]

η̃T4 (t) =
[

xT(t) xT(tk)
∫ t
tk
xT(s)ds

]

η̃T5 (t) =
[

ẋT(t) 0 xT(t)
]

5̃T
1 =

[

ẽT1 − ẽT2 ẽT3
]

5̃T
2 =

[

ẽT2 ẽT4
]

5̃T
3 =

[

ẽT4 ẽT1
]

5̃T
4 =

[

ẽT2 ẽT2 ẽT3
]

5̃T
5 =

[

ẽT4 0 ẽT1
]

Now, using the same method used in Theorem 1, we have the
following Corollary without considering the state quantization.

Corollary 1. For given scalars hL and hU with 0 ≤ hL ≤ hU ,
the system (Equation 20) is asymptotically stable, if there are
some symmetric positive definite matrices P ∈ Sn+, X1, Q̃ ∈ S2n+ ,
R ∈ S7n+ and any metrics G1, G2, X2, N1, N2 with appropriate
dimensions, and for any i ≥ 1 and j ≤ r, the following LMIs hold

ϒ1 + hkϒ2 < 0 (21)





ϒ1 + hkϒ3 ϒ12 ϒ13

∗ −Q̃3 0

∗ ∗ −3Q̃3



 < 0 (22)

where

ϒ1 = Sym(ẽT1 Pẽ4)− 5̃T
1X15̃1 − Sym(ẽT3X2ẽ2)

−Sym((ẽT2 Q̃2)(ẽ1 − ẽ2))+ 5T
4ℜ154

+Sym(5T
4ℜ255)+ ẽT4 R6ẽ4 + 5T

4 Z254

+Sym((ẽT1G1 + ẽT4G2)9̃)

ϒ2 = Sym(5̃T
1X15̃3)+ Sym(ẽT1X2ẽ2)+ 5̃T

2 Q̃5̃2

ϒ3 = −ẽT2 Q̃1ẽ2 + Sym(5T
4ℜ155)+ 5T

4 Z154

ϒ12 =
√

hk5
T
4N1

ϒ13 = hU
√

hk5
T
4N2

with

9̃ =
[

Ai BiKj 0 −I
]
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Q̃ =

[

Q̃1 Q̃2

∗ Q̃3

]

where Z1, Z2, R, ℜ1 and ℜ2 have been defined in Theorem 1.
Furthermore, the following Corollary regarding the sampled-

data controllers design can be derived using a similar method
used in Theorem 2.

Corollary 2. For given scalars hL and hU with 0 ≤ hL ≤

hU , system (Equation 20) is asymptotically stable, if there exist
symmetric positive definitematrices P̄ ∈ Sn+, X̄1, Q̂ ∈ S2n+ , R̄ ∈ S7n+
and any matrix G, Tj, X̄2, N̄1, N̄2 with appropriate dimensions,
and for any 1 ≤ i, and j ≤ r, the following LMIs hold

ϒ̄1 + hkϒ̄2 < 0 (23)

FIGURE 1 | State responses of system (Equation 25) with state quantization in

Example 1.

FIGURE 2 | Control input of system (Equation 25) with state quantization in

Example 1.





ϒ̄1 + hkϒ̄3 ϒ̄12 ϒ̄13

∗ −Q̂3 0

∗ ∗ −3Q̂3



 < 0 (24)

where

ϒ̄1 = Sym(ẽT1 P̄ẽ4)− 5̃T
1 X̄15̃1 − Sym(ẽT3 X̄2ẽ2)

−Sym((ẽT2 Q̂2)(ẽ1 − ẽ2))+ 5T
4 ℜ̄154

+Sym(5T
4 ℜ̄255)+ ẽT4 R̄6ẽ4 + 5T

4 Z̄254

+Sym((ẽT1 + εẽT4 )9̆)

ϒ̄2 = Sym(5̃T
1 X̄15̃3)+ Sym(ẽT1 X̄2ẽ2)+ 5̃T

2 Q̂5̃2

ϒ̄3 = −ẽT2 Q̂1ẽ2 + Sym(5T
4 ℜ̄155)+ 5T

4 Z̄154

ϒ̄12 =
√

hk5
T
4 N̄1

ϒ̄13 = hU
√

hk5
T
4 N̄2

with

9̆ =
[

AiG
T BiTj 0 −GT

]

Q̂ = diag{G,G}Q̃diag{G,G}T

where Z̄1, Z̄2, X̄1, X̄2, N̄1, N̄2, R, ℜ̄1 and ℜ̄2 have been defined in
Theorem 2, and the gain matrixKj of the sampled-data controller

without state quantization is defined as Kj = TjG
−T .

Remark 5. The stability of the sampled-data T-S fuzzy system
with and without the quantized state is investigated in Theorem
1 and Corollary 1. And the upper bound of the sampling interval
for T-S fuzzy system is larger than the existing results in Lam et al.
(2007), Zhu et al. (2012), Wu et al. (2014b), and Liu et al. (2016),
which will be proven in further simulation examples.

4. NUMERICAL EXAMPLES

This section provides two numerical examples to demonstrate the
effectiveness and superiority of the proposed method.

Example 1. The Lorenz system with an input term (Wu et al.,
2014b) is given as follows







ẋ1(t) = −ax1(t)+ ax2(t)+ u1(t)
ẋ2(t) = cx1(t)− x2(t)− x1(t)x3(t)
ẋ3(t) = x1(t)x2(t)− bx3(t)

(25)

The Lorenz system (Equation 25) can be represented as a type of
T-S fuzzy system (Equation 2) with the following parameters

TABLE 1 | Maximum allowable bounds h without state quantization in Example 1.

Lam et al., 2007 Zhu et al., 2012 Wu et al., 2014b Liu et al., 2016 Corollary 2

h 0.0158 0.0270 0.0347 0.0560 0.0741
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A1 =





−a a 0

c −1 −d

0 d −b



 , A2 =





−a a 0

c −1 d

0 −d −b



 , B1 = B2 =





1

0

0





and the membership functions satisfy h1(x1(t)) = (1 + x1(t)
2 )/2

and h2(x1(t)) = 1− h1(x1(t)).
Here we choose a = 10, b = 8/3, c = 28, and d = 25.
Case I: For the case with the quantized state, take the quantizer

densities as

ρi = 1/2, i = 1, 2, 3,

FIGURE 3 | State responses of system (Equation 25) without state

quantization in Example 1.

FIGURE 4 | Control input of system (Equation 25) without state quantization in

Example 1.

and the quantizer parameter is supposed as

lm = (1− ρi)/(1+ ρi) = 1/3

Considering the quantized state based on Theorem 2, when ε =

0.1, the allowable maximum sampling period that can ensure the
asymptotic stability of system (Equation 1) is 0.0742, which is
larger than 0.0503 obtained in Liu et al. (2016) actually, and the
corresponding gain matrices are

K1 = [−11.0256− 15.249511.5024]

K2 = [−11.0256− 15.2495− 11.5024]

FIGURE 5 | State responses of system (Equation 26) with state quantization in

Example 2.

FIGURE 6 | Control input of system (Equation 26) with state quantization in

Example 2.
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The response curves of system (Equation 25) under the initial
condition x(0) = [20 50 80]T with the obtained gain matrices
are given in Figure 1, and the control input u(t) is shown in
Figure 2. This proves that the Lorenz system (Equation 25) with
state quantization under the obtained sampled-data controller, in
this work, is asymptotically stable.

TABLE 2 | Maximum allowable bounds h without state quantization in Example 2.

Zhu et al., 2012 Wu et al., 2014b Liu et al., 2016 Corollary 2

h 0.0377 0.0480 0.0830 0.1040

FIGURE 7 | State responses of system (Equation 26) without state

quantization in Example 2.

FIGURE 8 | Control input of system (Equation 26) without state quantization in

Example 2.

Case II: For the case without state quantization, based on
Corollary 2, as ε = 0.1, the allowable maximum sampling period
ensuring the asymptotic stability of system (Equation 7) is 0.0741.
And the allowable upper bounds h for the sampling interval are
obtained, listed inTable 1. It can be seen that the upper bound for
the sampling interval under the proposed method is larger than
those obtained with existing methods in Lam et al. (2007), Zhu
et al. (2012), Liu et al. (2016), and Wu et al. (2014b).

Simulation results are provided to verify the effectiveness of
the proposed method. When h = 0.0741, by solving LMIs
(Equations 23, 24), we can obtain corresponding gain matrices
as follows

K1 = [−11.2795− 15.291011.4783]

K2 = [−11.2795− 15.2910− 11.4783]

The response curves of the system (Equation 25) with the initial
condition x(0) = [10 10 10]T under the obtained gain matrices
are given in Figures 3, 4 shows the control input u(t). This proves
that the controller obtained in this work is correct and valid.

Example 2. The dynamic of unified chaotic system with an
input term (Liu et al., 2016) is given as







ẋ1(t) = −(25a+ 10)(x1(t)− x2(t))+ u1(t)
ẋ2(t) = (28− 3a)x1(t)+ (29a− 1)x2(t)− x1(t)x3(t)
ẋ3(t) = x1(t)x2(t)− (8+ a)x3(t)/3

(26)

Note that the unified chaotic system (Equation 26) with x1(t) ∈
[−d, d] can be represented in the T-S fuzzy system (Equation 2)
with

A1 =





−(25a+ 10) 25a+ 10 0
28− 3a 29a− 1 −d

0 d −(8+ a)/3





A2 =





−(25a+ 10) 25a+ 10 0
28− 3a 29a− 1 d

0 −d −(8+ a)/3





B1 = B2 =





1
0
0





and themembership functions are h1(x1(t)) = (d+x1(t))/2d and
h2(x1(t)) = (d − x1(t))/2d, respectively.

Here a = 0.2 and d = 10 are chosen, and two cases with and
without state quantization are considered further.

Case I: Taking the same quantizer densities as in Example 1,
and using Theorem 2, when ε = 0.01, system (Equation 26)
can be asymptotically stable with the maximum sampling period
h = 0.0535, which is larger than 0.0424 in Liu et al. (2016). Then,
we choose h = 0.02, and by solving LMIs (Equations 18, 19), the
corresponding gain matrices can be obtained as follows

K1 = [−25.4237− 30.89792.6211]
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K2 = [−25.4237− 30.8979− 2.6211]

Under the obtained gainmatrices and the initial condition x(0) =
[10 10 10]T , the state response and control input u(t) for system
(Equation 26) are shown in Figures 5, 6, respectively. This proves
that the controller obtained in this work is correct and valid.

Case II: Themaximum allowable upper bound of the sampling
interval h without state quantization under the sampled-data
control is listed in Table 2, which shows that the results in
Corollary 2 is superior to existing ones.

When ε = 0.1 and h = 0.04, by solving LMIs (Equations 23,
24), we can obtain the corresponding gain matrices as follows

K1 = [−11.7978− 20.67591.2851]

K2 = [−11.7978− 20.6759− 1.2851]

The response curves of system (Equation 26) with initial
condition x(0) = [0.5 0.2 − 0.3]T under the above gain matrices
are displayed in Figure 7, and the corresponding control input
u(t) is given in Figure 8. This proves that the controller proposed
in Corollary 2 can ensure the asymptotic stability of the T-S fuzzy
sampled-data system (Equation 26) without state quantization.

5. CONCLUSIONS

In this work, we have investigated the stability for a class
of nonlinear T-S fuzzy sampled-data systems with state
quantification. A new LKF approach has been constructed

and a Free-Matrix-Based boundary treatment technique for

integral inequalities has been adopted in order to obtain
less conservative stability conditions and correspondingly, a
controller has been designed. Furthermore, the stability of
the T-S fuzzy sampled-data system without quantized states,
has also been discussed and sampled-data controllers have
been designed accordingly. The experimental results show that
the maximum sampling interval for T-S fuzzy sampled-data
systems with and without quantized states in our work, are
both larger than the results in previous studies. Nevertheless,
some other interesting problems that need to be addressed
still exist, such as the reliable control design for the sampled-
data T-S fuzzy systems with state quantization, and the
extension of our developed approaches to the dissipativity-
based sampled-data control design, which deserve further
investigation.
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