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As a medical imaging technology which can show the metabolism of the brain,

18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) is of great value for

the diagnosis of Parkinson’s Disease (PD). With the development of pattern recognition

technology, analysis of brain images using deep learning are becoming more and more

popular. However, existing computer-aided-diagnosis technologies often over fit and

have poor generalizability. Therefore, we aimed to improve a framework based on

Group Lasso Sparse Deep Belief Network (GLS-DBN) for discriminating PD and normal

control (NC) subjects based on FDG-PET imaging. In this study, 225 NC and 125 PD

cohorts from Huashan and Wuxi 904 hospitals were selected. They were divided into

the training & validation dataset and 2 test datasets. First, in the training & validation set,

subjects were randomly partitioned 80:20, with multiple training iterations for the deep

learning model. Next, Locally Linear Embedding was used as a dimension reduction

algorithm. Then, GLS-DBN was used for feature learning and classification. Different

sparse DBN models were used to compare datasets to evaluate the effectiveness of our

framework. Accuracy, sensitivity, and specificity were examined to validate the results.

Output variables of the network were also correlated with longitudinal changes of rating

scales about movement disorders (UPDRS, H&Y). As a result, accuracy of prediction

(90% in Test 1, 86% in Test 2) for classification of PD and NC patients outperformed

conventional approaches. Output scores of the network were strongly correlated with

UPDRS and H&Y (R = 0.705, p < 0.001; R = 0.697, p < 0.001 in Test 1; R = 0.592,

p = 0.0018, R = 0.528, p = 0.0067 in Test 2). These results show the GLS-DBN is

feasible method for early diagnosis of PD.

Keywords: Parkinson’s disease, Deep Belief Network, overlapping group LASSO, sparse representation, deep
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INTRODUCTION

Parkinson’s disease (PD) is a long-term degenerative disease of
the central nervous system which effects 2–3% of the world’s
population over 65 years old, and its incidence is increasing in
recent years(Postuma and Berg, 2017). Accurate early diagnosis
of PD is crucial for treatment and prognosis.

Imaging disease-specific patterns of regional glucose
metabolism with 18F-fluorodeoxyglucose (FDG)-positron
emission tomography (PET) allows for accurate diagnosis of
PD, this has been increasingly acknowledged in recent years
(Eckert et al., 2005; Dabrowska et al., 2015; Meyer et al., 2017;
Politis et al., 2017). Some studies (Juh et al., 2004; Brajkovic
et al., 2017) used voxel-based statistical analyses or network
analysis in comparison to normal control (NC). For example,
Juh et al. used statistical parametric mapping to determine
useful metabolic patterns in diagnosing PD (Juh et al., 2004).
Brajkovic et al. combined visual assessment of individual scans
with statistical parametric mapping (Brajkovic et al., 2017).
These researches showed that compared with NC, glucose
metabolism of PD patients in sensorimotor cortex, lateral frontal
and parietooccipital areas was decreased (Meles et al., 2017),
which is of great value for the early diagnose of PD.

Currently, with the development of artificial intelligence
and data-driven analysis, various computer-aided-diagnosis
systems based on machine learning or deep learning(Chandra
and Sharma, 2016; Chen et al., 2017) methods have been
developed to identify brain disease related alterations in
neuroimaging datasets. For instance, some studies (Tang et al.,
2010; Garraux et al., 2013; Tripathi et al., 2015) classify
PD patients based on automated statistical analysis. Garraux
et al. applied logistic regression based on the expression of
metabolic covariance patterns. Tripathi et al. used a relevance
vector machine in combination with bootstrap resampling for
multiclass classification. Also, in Matthews’s research (Matthews
et al., 2018), two machine learning approaches (Canonical
Variates Analysis and Scaled Subprofile Model) were used to
represent the difference in motor symptoms between NC and PD
patients. Methods using deep learning have also been explored
to extract latent features from PET images. For example, Liu
et al. extracted potential features from 83 regions of interest
in magnetic resonance imaging and PET scans and trained a
multilayer neural network of multiple auto-encoders to combine
multimodal features for classification (Siqi et al., 2015). Suk et al.
presented that a stacked auto-encoder can be used to learn the
underlying non-linear complicated patterns in low-level features,
for example, the relationship between features (Suk et al., 2015).
Also, in Brosch et al.’s study, in order to find the modes of
variation between disease parameters and demography, they
proposed a low-dimensional manifold of brain volumes based
DBN model (Brosch et al., 2014).

While previous studies have claimed that existing machine
learning and deep learning methods achieved an acceptable
classification accuracy to discriminate PD and normal controls
(NC), these methods are still hampered by over-fitting and poor
generalizability, due to few labeled samples in neuroimaging
datasets. To solve above problems, scholars have used deep

learning models with multi-parameters, e.g., deep belief network
(DBN), to avoid models’ poor generalizability from traditional
machine learning methods (Yoshida and Miyato, 2017; Xu et al.,
2018). In addition, they have also proposed to add regular
terms to the objective function, which could optimize the loss
function, reduce the complexity of deep learning models, and
prevent models’ over-fitting (Mei et al., 2015). For these reasons,
considering the feature distribution of PET images, in this
paper, based on DBN, we add the Group Lasso Sparse (GLS)
model as a regular term to the objective function to prevent
the model over-fitting, and at the same time, to learn the
multi-level imaging features such as texture or edge information
for classifying PD vs. NC. To evaluate the effectiveness of
our method, we also compared our model with other deep
learning models.

GROUP LASSO SPARSE DEEP BELIEF
NETWORK (GLS-DBN) ALGORITHM

In this paper, we propose an improved DBN method, Group
Lasso Sparse Deep Belief Network (GLS-DBN), for feature
learning and classification of PET images. As a deep architecture,
DBN is suitable to deliver non-linear and complicated machine
learning information (Liu et al., 2011; Rui and Yang, 2017; Zheng
and Lu, 2017; Prasetio et al., 2018). Sparsity has become a key
ingredient for improving DBN because compared with non-
sparse representations, sparse representations are more efficient
from the point of view of information theory, which allow the
change of the effective number of bits per example in a fixed-
size representation (Ranzato et al., 2007; Luo et al., 2010; Halkias
et al., 2013). Sparsity is generally introduced into DBN by adding
a sparse penalty to the objective function and considering it
as a convex optimization problem. For example, based on the
DBNs of Hinton et al. (2006), Lee et al. proposed a sparse DBN
which faithfully simulating some properties of visual region V2
(Lee et al., 2007). Ji et al. proposed a sparse-response DBN
based on rate distortion theory, in which the distortion function
was based on Kullback-Leibler divergence between equilibrium
distribution in DBN model and data distribution, then a small
code rate was realized by adding sparse response regularization
(Ji et al., 2014). Xu et al. examined the problem of invariance
existing in sparse regular term and proposed an improved sparse
DBN (Xu et al., 2018). This model uses Laplace distribution
to induce the sparse state of hidden layer nodes, and uses
location parameters in the distribution to control the intensity
of sparsity. In addition to these, Keyvanrad et al added normal
regularization term in DBN which make the whole model has
different response according to difference between hidden units’
activation and fixed value (Keyvanrad and Homayounpour,
2017). Compared with base DBNmodel (without sparse penalty),
all of these models achieved better performance in natural image
recognition, but it is unknown whether these methods can
be applied to PET images. Therefore, to evaluate PET image
patterns, we combined traditional DBN with the overlapping
group lasso model and propose a novel sparse DBN model(Rao
et al., 2015; Jian et al., 2017; Liu et al., 2017; Yuan et al., 2018),
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GLS-DBN, adding a sparse penalty to learn useful low-level
feature representations.

GLS-DBN is based on GLS Restricted Boltzmann Machine
(GLS-RBM). As an improved Restricted Boltzmann Machine
(RBM) (Fischer and Igel, 2012), GLS-RBM combines the
overlapping group lasso model with the pre-training of
traditional RBM, grouping its hidden units according to the same
overlap ration of each group. Through this, GLS-RBM connects
similar features between groups. When a large number of similar
features exist discretely in multiple groups, multiple groups
are activated simultaneously, effectively solving the problem of
over fitting in the traditional learning model and improving the
recognition rate of the model.

We implement the GLS-RBM model by adding a sparse
penalty to the objective function. In this paper, we also use the
Cauchy distribution to replace the traditional L1 normal form
between groups in the overlapping groups Lasso model, making
the entire model sparser at the group level (Lü et al., 2016).
For sample collection:

{

v1, v2 . . . vm
}

, the optimization model of
unsupervised pre-training of GLS-RBM is:

F = Funsup + τFsprase (1)

Fsprase = λFLasso + ϕFCachy (2)

Where Funsup is the likelihood function of the RBM. The new
objective function of the optimization GLS-RBM model after
adding a sparse penalty is:

minimize{wij ,bi ,cj}F = −
1

m

∑m

l=1
log
∑

h

P
(

v(l), h(l)
)

+ τ
∑m

l=1
Fsprase (3)

For a GLS-RBMmodel, all hidden units
{

h1, h2 . . . hn
}

are evenly
distributed to I overlapping groups. Each group has the same
number of nodes, and there is overlap between each group.
The degree of overlapping is determined by α (between-group
and group). Figure 1 shows a simple GLS-RBM model based
overlapping group lasso.

The Fsprase in the whole layer becomes:

Fsprase = λFLasso + ϕFCachy

= λ

I
∑

i=1

√

√

√

√

∑

n∈Groupi

p
(

hn = 1 | v
)2 + ϕ

n
∑

j=1

L
(

γ ,µ, pj
)

(4)

L
(

γ ,µ, p
)

=
1

π

γ

(x− µ)2 + γ 2
=

1

πγ

1
[

1+
(

pj−µ

γ

)2
] (5)

Where p is the probability distribution of the hidden unit, γ is
the scale parameter, which controls the degree of sparsity, and µ

is the location parameter.
The Gradient descent algorithm is used to iteratively solve

and update parameters of the function. We use the objective
function with penalty to update the weight w, and the hidden
layer bias b. The visible layer bias is obtained according to the

original objective function. The gradient of the objective function
is solved as follows:

∂F

∂Wij
=

∂

∂Wij

(

1

m

m
∑

l=1

ln
(

P
(

v(l)
))

+
∂Fsprase

∂Wij

)

(6)

∂F

∂bj
=

∂

∂bj

(

1

m

m
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(

P
(

v(l)
))

+
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)

(7)

∂F
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1

m
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P
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)

(8)
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2
(9)

The second item with sparse penalty is expanded as follows:

∂Fsprase

∂Wij
=

n
∑

j=1

∂Fsprase

∂pj
×

1

m

m
∑

l=1

plj

(

1− plj

)

vli (10)

∂Fsprase

∂bj
=

n
∑

j=1

∂Fsprase

∂pj
×

1

m

m
∑

l=1

plj

(

1− plj

)

(11)

In whole GLS-DBN, multiple basic GLS-RBMs can be stacked
upon each other to form a deep hierarchy. The output of
each GLS-RBM serves as the input of the next basic GLS-
RBM at successive levels. In the last layer of GLS-DBN, a back
propagation (BP) network is set, receiving the output feature
vector of GLS-RBM as learned features, and adopting a gradient
descent algorithm to fine-tune the weight of the whole network,
thereby coordinating and optimizing the parameters of the whole
DBN. The feature vector mapping of GLS-DBN is optimized and
the size of the input space is simplified.

MATERIALS AND METHODS

Materials
Two different cohorts of PD and NC subjects was included
in this study. The first cohort came from Huashan Hospital,
Fudan University, Shanghai, China. Subjects were recruited from
Chinese populations and totaled 300 participants: 200 NC and
100 PD patients. Before the study, follow-up data for at least
1 year from all participants was collected. Then clinicians who
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FIGURE 1 | A simple RBM model based overlapping Group Lasso model. All visible units are evenly divided into three groups, and overlapping rate is 0.2.

were unaware of the imaging results were followed up to further
confirm the clinical diagnosis. Healthy controls in this study
were accepted by senior movement disorders expert neurological
examination, to rule out a history of psychiatric or neurologic
disorders. All participants had no drug use or exposed to
antipsychotic drugs.

The subjects in the Huashan cohort were randomly divided
into training & validation and test (Test 1) datasets. The Test 1
dataset consisted of 50 subjects, including 25 PD patients and 25
NC subjects. Due to the variability of sampling when grouping
data sets, the random cross validation method is used in the
training & validation dataset, which included 75 PD patients
and 175 NC subjects randomly partitioned into deep learning
model training (80%) and validation (20%), with 50 iterations.
The purpose of multiple cross-validation was to find the optimal
parameter combination. Finally, the Test 1 dataset was used to
verify the performance of the trained model.

The second cohort was from 904 Hospital in Wuxi, China,
and included 25 NC and 25 PD patients, enrolled between 2011
and 2015. Also, before the study, necessary screening and clinical
examinations from the two senior investigators of movement
disorders were used to select eligible subjects. All subjects in the
Wuxi cohort were used as a test dataset (Test 2) to verify the
reliability and robustness of the deep learning model.

The demographic information and clinical data of two
cohorts are shown in Table 1. The clinical characteristics (HY,
UPDRS) were not significantly different among Training &
Validation dataset and test datasets (Test 1 and Test 2) for PD
or NC (P > 0.05). The study was ethically approved by the
Institutional Review Boards at North Shore University Hospital
and Huashan Hospital. The study was conducted in accordance
with the Code of Ethics of the World Medical Association
(Declaration of Helsinki) and the standards set by the local
Institutional Review board and funding agencies. After a detailed
explanation of the scanning procedure, each subject received
written consent from each institution. During or after data
collection, authors can access information that could identify
all participants.

PET Imaging Acquisition
All participants were asked to fast before imaging. And the
whole experiment was carried out in a dimly-lit room. The
equipment used in this study was Siemens Biograph 64 PET/
computed tomography (CT; Siemens, Germany). After 45min
of intravenous injection of 185 MBq of FDG, the scans were
performed for about 10min. Hanning filter is used for image
reconstruction and then projection, with an axial and transaxial
cut-off frequency of 0.5.

PET Pre-processing
The pre-processing of original PET data was completed by SPM5
software (Wellcome Department of Imaging Neuroscience,
Institute of Neurology, London, UK). And the software platform
is implemented in Matlab7.4.0 (Mathworks Inc., Sherborn,
MA). First, through linear and non-linear transformations,
PET scans from all samples were spatially normalized into
Montreal Neurological Institute brain space. Then, a Gaussian
filter of 10mm FWHM was used for smooth images over three-
dimension space. After that, an automated anatomic labeling
template was used to remove unrelated regions in PET images.
Due to individual variation in FDG uptake, finally, each PET
image was normalized to the range of 0 to 1 through following
formula, where v is the voxel value of the image:

vnormalization =
v− vmin

vmax − vmin
(12)

Data Dimension Reduction
Locally linear embedding (LLE) (Roweis and Saul, 2000;
Xin et al., 2005) was used to reduce the dimensionality
of pre-processed PET data in all subjects, including the
Huashan and Wuxi cohorts. Since high-dimensional features are
often associated with many redundant and hidden important
relationships, we need a more concise PET data representation.
LLE is a typical manifold learning algorithm that has been used
to reduce the dimensionality of medical images (Liu et al., 2013).
LLE solves globally non-linear problems using locally linear
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TABLE 1 | Demographic and clinical information of Huashan hospital control and Wuxi 904 hospital cohort.

Cohort N Gender(M/F) Age(years) H&Y UPDRS

Huashan Hospital Cohort Training & Validation dataset NC 175 98/77 49.5 (29) N/A N/A

PD 75 51/24 56.5 (14.5) 2 (1) 20 (19.05)

P-Value – 0.9217a 0.593b – –

Test dataset (Test 1) NC 25 10/15 50 (22.5) N/A N/A

PD 25 14/11 55 (16) 2.5 (1.5) 25 (19.5)

P-Value – 0.4218a 0.258b – –

Wuxi 904 Hospital Cohort Test dataset (Test 2) NC 25 12/13 59 (9) N/A N/A

PD 25 19/6 65 (11.5) 2.5 (1.5) 28 (18.5)

P-Value – 0.1884a 0.771b – –

Age and clinical ratings are given as. Median (Interquartile range). H & Y, Hoehn and Yahr scale; UPDRS, Unified Parkinson’s Disease Rating Scale; Pa, The chi-square test; Pb, The

two-sample t-test.

fitting, which means a sample x1 can be represented linearly by
several samples from its k neighborhoods:

x1 = w12x2+ w13x3 + . . . + w1kxk (13)

Through LLE, we projected x1, x2, x3 . . . xk onto a lower
dimensional space x1

′, x2
′, x3

′ . . . xk
′ keeping the same

linear relationship:

x1
′ ≈ w12x2

′ + w13x3
′ + . . . + w1kxk

′ (14)

For high-dimensional data, LLE can maintain the local linear
characteristics of the sample in the case of dimensionality
reduction and map it to a low-dimensional global coordinate
system, establishing a bridge between the high-dimensional data
space and the low-dimensional latent space. In this paper, we use
LLE to get a laconic representation of PET data. An automated
method was used to optimize the LLE parameters number of
neighbors, K, and corresponding dimensionality, D (Kayo, 2006).

GLS-DBN for Feature Learning and
Classification
Based on the proposed GLS-RBM model, we used three GLS-
RBM stacks to form a sparse GLS-DBN network for feature
relearning and classification of PD and NC samples. The input
of the GLS-DBN model is the low-dimensional feature learned
from original PET data using the LLE algorithm, and the output
is the prediction result.

Figure 2 shows the structure of our GLS-DBN for PD
classification. We used a greedy layer-wise algorithm for pre-
training of the GLS-DBN. First, the weights (W1) were optimized
to represent the distribution of the input data. Then the weights
were frozen, the first level output was generated after input data
through them. This output was used to train the next GLS-
RBM, with training performed in the same way. Finally, on the
top of the GLS-DBN, a SoftMax layer was added, all the layers
performed supervised fine-tuning as one deep neural network.

In the training progress, all the training steps shared the same
BP approach. The training set was randomly divided into several
mini-batches or subsets, and the cost function was minimized
using mini-batch gradient descent. At every iteration, only one

mini-batch was used for minimization. After all the samples were
used once for training, the training set was divided again so that
batches in each echo had different samples. The initial learning
rate was set to 0.0001.

The training progress of the model was carried out on
the training & validation dataset from the Huashan cohort.
Parameters were optimized through the mean accuracy of the
validation dataset. Finally, the two test datasets (Test 1 and Test
2) were used to verify the performance of the trained model.

Correlation Analyses
Before passing through the last layer of GLS-DBN, SoftMax
function, the values of the two nodes indicate scores for PD and
NC, respectively (Choi and Jin, 2018). The quantitative value of
the PD node was defined as RiskScore, a score that indicates
the proximity of PET data to PD or NC. In addition, RiskScore
was correlated with Hoehn and Yahr scale (H&Y) and Unified
Parkinson’s Disease Rating Scale (UPDRS), in which Pearson
correlation was used.

Experimental Comparison
To verify the reliability of our algorithm, we compared it
to traditional DBN and improved sparse DBN networks. The
sparse representation capability in various improved models
was examined, including Lee’s model, based on a quadratic
regularization term (Lee et al., 2007), Ji’s model, based on rate
distortion theory (Ji et al., 2014), Keyvanrad’s model, based on
normal distribution (Keyvanrad and Homayounpour, 2017), and
Xu’s model (Xu et al., 2018), based on Laplace distribution. In
addition, we compared our model with traditional DBN (without
sparse penalty), Cauchy distribution, and group lasso distribution
to examine the effectiveness of overlapping group lasso model.
All of these methods are based on different regularization
term definitions.

In all experiments, the DBN-based algorithm used the same
structure, namely the same layers and the same hidden units.
Weights and biases were initialized to uniformly distributed
random numbers.

We used the sparsity measurement method proposed by
Hoyer to accurately calculate the sparsity of the feature
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FIGURE 2 | Structure of GLS-DBN for PD classification.

representation learned by the model (Hoyer, 2004). The sparsity
measurement method is as follows:

sparseness (x) =

√
n−

(
∑n

i=1 |xi|
)

/

√

∑n
i=1 x

2
i

√
n− 1

(15)

Where x is the input data, n is the dimension of input data, and
the value range of sparsity is [0,1]. The closer to 1, the sparser
x is. The sparsity of activation probability of hidden units in
batch data was calculated first, and then the average sparsity of
activation probability of all data hidden units was calculated.

Sensitivity, specificity and accuracy of the test datasets (Test 1
and Test 2) were used as indicators to measure the performance
of the model. In order to further evaluate the performance of
the proposed method, we used receiver operating characteristic
(ROC) graph to visualize the result of contrast experiments. The
area under the curve (AUC) of the ROC was also computed to
quantitatively evaluate the classification performance.

In addition, to verify the robust of our proposed method,
we conducted a second experiment analysis and reassigned the
distribution of the training & validation set and test dataset
according to the H&Y. Appendix A shows the demographic and
clinical information on the second experiment analysis. Similar
to the first experiment analysis, we repeated above steps to
calculate sensitivity, specificity, accuracy and AUC of the training
& validation and test datasets (Test 1 and Test 2).

RESULTS

Determination of Parameters
Following an automated method (Kayo, 2006), the number of
dimensions and nearest neighbors in LLE were set to 350 and 10.

To determine the optimal structure and parameters of
the GLS-DBN model, including the scale parameter, location
parameter, overlapping rate, and the number of hidden units,
the greedy search algorithm was used in the whole training
progress until the average accuracy of the validation dataset
was optimized. These were chosen as the initial parameters for
fine-tuning of the GLS-DBN.

Finally, hyper-parameters were set: number of hidden units,
scale parameter, location parameter, and overlapping rate were
set to 500, 1, 0.025, and 0.2. The maximum number of
iterations of GLS-RBM and BP network were 50 and 300. Using

features from LLE and GLS-DBN as classifiers, the classification
experiment achieved 94% accuracy distinguishing PD and NC in
the validation dataset.

Classification Results
Two different batches of data from the Huashan and Wuxi
cohorts were used to validate the model’s performance. Figure 3
and Table 2 show the final classification performance on the
validation dataset, Test dataset 1, and Test dataset 2 under
hyper-parameters in two experiments. Using features from LLE
and GLS-DBN as classifiers, in Experiment 1, the classification
experiment distinguishing PD and NC achieved 90.0% accuracy,
96% sensitivity, 84% specificity, and AUC of 0.9120 in Test
dataset 1 and 86% accuracy, 92% sensitivity, 80% specificity,
and AUC of 0.8992 in Test dataset 2; while in Experiment 2,
the classification experiment distinguishing PD and NC achieved
88.0% accuracy, 92% sensitivity, 84% specificity, and AUC of
0.9320 in Test dataset 1 and 84% accuracy, 88% sensitivity, 80%
specificity, and AUC of 0.8947 in Test dataset 2. As a result, we
observed that the effect of different data distribution was slight
for the classification. It means that our proposed model may have
good robustness for other datasets.

Experimental Comparison
To verify the recognition ability of the algorithm, the
classification accuracies of different models were compared.
The results are shown in Figures 4, 5 and Table 3.

As shown inTable 3, Figures 4, 5, GLS-DBN achieved the best
accuracy on the training and test datasets when using the same
network structure. GLS-DBN resulted in improved performance
when compared to the traditional DBN classifier. Although
the best sensitivities in the test dataset were seen in DBN
models based on quadratic regularization and rate distortion,
the specificities of these models were quite low (0.56 and 0.50)
indicating that the rate of missed diagnosis is low but the rate
of misdiagnosis is high. Improved DBNmodel-based group lasso
achieved the best sensitivity, but the specificity was relatively low.
These results indicate that our model has the ability to balance
specificity and sensitivity when the best accuracy is reached. The
accuracy in the Test 2 dataset was not significantly lower than the
accuracy in the Test 1 dataset, demonstrating the generalizability
of our model. Our model also achieved the best AUC in the Test
2 dataset and close to the optimal result in the Test 1 dataset.
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FIGURE 3 | ROC curves on Validation dataset, Test dataset 1 and Test dataset 2.

TABLE 2 | Classification performance on Validation and Test datasets.

Accuracy Sensitivity Specificity AUC

Experiment 1 Validation dataset 0.924 0.973 0.80 0.9325

Test dataset 1 0.90 0.96 0.84 0.9120

Test dataset 2 0.86 0.92 0.80 0.8992

Experiment 2 Validation dataset 0.9380 0.9642 0.834 0.9634

Test dataset 1 0.88 0.92 0.84 0.9320

Test dataset 2 0.84 0.88 0.80 0.8947

In a comprehensive sense, compared with other sparse DBN
models based on different sparse penalties, our model optimizes
the prediction of PD diagnosis.

Correlation Analyses
RiskScore calculated from the GLS-DBN model was significantly
correlated with clinical scale value in the Test dataset, shown in
Figure 6. RiskScore was significantly positively correlated with
UPDRS (r =0 .705, P < 0.0001), and HY (r = 0.697, p < 0.0001)
in Test 1, UPDRS (r = 0.592, P = 0.0018), and HY (r = 0.528,
p= 0.0067) in Test 2.

These results show that RiskScore could be used as a
quantitative biomarker for early diagnosis of Parkinson’s disease.

DISCUSSION

In this paper, we used an improved sparse DBN named
GLS-DBN for the diagnosis of PD. Compared with other
sparse DBN models based on different sparse penalties, our
model showed better performance in classification of PD
and NC, demonstrating that GLS-DBN can be used for
effectively learning superior feature representation from small
neuroimaging data. Results from other datasets also proved the
preferable generalizability of GLS-DBN.

In addition, we compared the results of other similar studies
to our results. Due to differences in datasets, number of samples,

FIGURE 4 | ROC curves on Test dataset 1 in different models.

and methods of feature selection and reduction, while the
accuracy was not the best, our proposed method still exceeded
most relevant studies. Further, the sensitivity of our result was
significantly higher than those automated classifications (96 vs.
86.67%, 96 vs. 84.4%) (Fung and Stoeckel, 2007; Rana et al.,
2015). And the accuracy is closer to those methods based on
voxel statistical analyses (90 vs. 90.9%, 90 vs. 86.5%) (Eckert
et al., 2005). Our results also show a better specificity compared
with automated classifications. Our automated method based
deep learning performs better than traditional CADmethods and
approaches results with manual diagnosis.

In terms of feature extraction and dimension reduction, the
research of Rana et al. considered five brain areas, while the
features used in our experiment were chosen from the whole
brain (Rana et al., 2015). For high-dimensional PET data, LLE has
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FIGURE 5 | ROC curves on Test dataset 2 in different models.

learned the potential non-linear expression in PET image data
and embedded the features after dimensionality reduction into
linear coordinates, which can map the PET data of PD and NC
to different feature spaces, that is, subjects with different clinical
manifestations have different distribution of brain features
(Roweis and Saul, 2000). So, LLE reduces the recognition error
caused by redundant information and significantly improves the
feature difference between PD and NC samples, which is crucial
for later feature learning and classification.

In terms of feature learning, almost all studies using
pattern recognition in PD diagnosis use features directly for
classification, without the progress of feature relearning. In this
study, the GLS-DBN model based on a deep learning algorithm
can re-encode features before classification, which improves
accuracy. The experimental results also show that GLS-DBN can
learn more appropriate features in PET data compared with
the traditional RBM and DBN algorithms. One possible reason
is that sparse coding learns helpful low-dimensional feature
representations from unlabeled data. By constraining the hidden
layer, GLS-RBM can obtain a simpler andmore structured weight
pattern, thus avoiding the redundant and sequential-value code
that RBM may produce that RBM may produce. Figure 7 shows
the activation probability of hidden units caused by an input data,
in other words, the representation of this input data obtained by
traditional RBM and GLS-RBM. As we can see from Figure 7, the
activation probability of RBM approaching is much lower than
that of GLS-RBM, while the activation probability of the hidden
units in sparse-RBM is very close to 0, which means DBN-based
sparse penalty can learn a sparser representation of input data.
Table 4 shows the results of sparseness in different improved
DBN models. Although Lee’s model and Ji’s model achieved the
best sparseness (0.8594, 0.8239), classification performance in
Table 3 showed high sensitivity (0.925, 0.9750 in Test 1, 0.9630,
0.96 in Test 2) but low specificity (0.70, 0.56 in Test 1, 0.50, 0.45 in
Test 2). Compared with other sparse models, our model achieved

TABLE 3 | Classification performance on test datasets in different sparse models.

Model Dataset Accuracy Sensitivity Specificity AUC

Base DBN model Validation 0.7596 0.7845 0.6843 0.7769

Test 1 0.66 0.72 0.60 0.7568

Test 2 0.68 0.68 0.68 0.7408

Lee’s model Validation 0.9245 0.9353 0.8247 0.9275

Test 1 0.88 0.925 0.70 0.91

Test 2 0.84 0.9630 0.56 0.8726

Moham’s model Validation 0.7968 0.7164 0.6852 0.8087

Test 1 0.70 0.72 0.68 0.7744

Test 2 0.72 0.72 0.72 0.7904

Ji’s model Validation 0.8727 0.8867 0.7589 0.8977

Test 1 0.86 0.9750 0.500 0.9125

Test 2 0.84 0.96 0.45 0.8726

Xu’s model Validation 0.8443 0.8847 0.7964 0.8876

Test 1 0.74 0.72 0.76 0.8096

Test 2 0.80 0.80 0.80 0.8752

Cauchy model Validation 0.8034 0.8181 0.7443 0.8232

Test 1 0.72 0.72 0.72 0.7824

Test 2 0.76 0.72 0.80 0.8016

Group Lasso model Validation 0.898 0.9341 0.7877 0.9012

Test 1 0.80 0.72 0.88 0.8320

Test 2 0.78 0.72 0.84 0.8160

Our model Validation 0.935 0.925 0.85 0.9487

Test 1 0.90 0.96 0.84 0.9120

Test 2 0.86 0.92 0.80 0.8992

The bold values represents means the highest value of accuracy, sensitivity, specificity

and AUC on test dataset 1 and test dataset 2 in different models.

the highest sparseness (0.8011 vs. 0.6619, 0.7145, 0.7473, 0.7963,
0.7852) and also the best classification performance. The results
in Table 4 show that the sparsest DBN model does not represent
the most suitable model for learning useful low-level feature
representation of PET image patterns. Combining the results
of Table 3, through the adjustment of parameters, the GLS-
DBN base overlapping group lasso model can achieve optimal
sparseness, and balance specificity and sensitivity while ensuring
the accuracy of the model.

PD reflects in a small part of the brain pathology, causing
differences in only part of the brain compared to healthy people.
When using LLE dimensionality reduction for 3D PET images,
there may be a group relationship between features; moreover,
it is possible that there is overlap of features between groups.
The overlapping group lasso model takes this relationship into
account, and using a sparse penalty term effectively suppresses
expression of some redundant features. This increases the feature
difference between PD and NC samples, achieving improved
classification. The results of Test 1 from theHuashan cohort show
the excellent performance of our model. The results of Test 2
from the Wuxi cohort show the reliability of the model, and also
its generalizability to other datasets.

Considering the clinical effectiveness of the results, including
HY and UPDRS, this paper analyzed the correlation between
RiskScore and the clinical scale, shown in Figure 6. RiskScore
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FIGURE 6 | Correlation between output of the network and clinical scale value.The last layer provides an output score for NC or PD converter, defined as RiskScore.

FIGURE 7 | Activation probability of hidden units obtained by RBM (left) and GLS-RBM (right).

calculated from the GLS-DBNmodel was significantly correlated
with clinical scale value (0.705, 0.697, p < 0.001; 0.592, 0.528, p
< 0.01) in the Test dataset, indicating that the features learned by
GLS-DBN correlate with clinical information. To better describe
the discriminability of the results, we conducted a statistical

analysis of the risk values, and the distribution of RiskScore in
PD and NC are shown in Figures 8, 9. RiskScore of PD was
significantly higher than that of NC (0.31± 0.23 and 0.73± 0.14,
p < 0.01 in Test 1, 0.26 ± 0.22 and 0.72 ± 0.17, p < 0.01 in Test
2). These results indicate that this method can effectively classify
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TABLE 4 | Average sparseness of different models.

Model Base DBN model Lee’s model Ji’s model Xu’s model Cauchy model Keyvanrad’s model Group Lasso model Our model

Sparseness 0.6619 0.8594 0.8239 0.7145 0.7473 0.7963 0.7852 0.8011

FIGURE 8 | RiskScore of PD and NC.

FIGURE 9 | RiskScore of PD and NC in test dataset 1 and in test dataset 2.

PD and NC, and that RiskScore can be used as a quantitative
biomarker for early diagnosis of PD.

LIMITATIONS

Despite the impressive performance of the proposed method,
the method also has some limitations and disadvantages. First,
trial and error was used to determine the learning rate, and
the parameter values in the network structure were optimized
through a large number of experiments, causing a relatively
large time complexity of the algorithm. Proper selection of
parameters merits further studies; we propose using optimization
algorithms such as a grid search algorithm to search for the

optimal parameter combination as a next step. Second, while our
work has a large number of subjects compared with several recent
studies, it’s still not enough to generalize our experimental results.
Further, our work focuses on PET features only. Multimodal
data, such as MRI and diffusion tensor imaging features, can be
used for feature confusion and classification. Third, our classifier
is a BP network, and other classifiers such as extreme learning
machine and support vector machine can be combined with
DBN. Combining other classifiers with DBN would allow the
last layer before BP to be features learned from the DBN model
and as an input for traditional classifiers, possibly improving
classification results. Finally, as our study is based on PD and
NC samples, it would be meaningful and of vital importance
to further grade of different forms of Parkinson’s disease or
distinguish idiopathic Parkinson’s disease from other forms of
degenerative Parkinson’s disease.

CONCLUSION

In this paper, we introduced a sparse feature learning framework
in PD early diagnosis. GLS-DBN model accurately classifies
patients into diagnostic groups with limited image processing
and provides a quantitative biomarker which can predict early
Parkinson’s disease. Longitudinal changes of rating scales about
movement disorders (UPSRS and H&Y), was significantly
correlated with the output value of prediction model. In the
future, our approach may be used in independent cohorts, and as
an accurate biomarker, it could identify appropriate prodromal
patients who might benefit from early intervention.
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