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There have always been practical demands for objective and accurate assessment of
muscle spasticity beyond its clinical routine. A novel regression-based framework for
quantitative assessment of muscle spasticity is proposed in this paper using wearable
surface electromyogram (EMG) and inertial sensors combined with a simple examination
procedure. Sixteen subjects with elbow flexor or extensor (i.e., biceps brachii muscle
or triceps brachii muscle) spasticity and eight healthy subjects were recruited for the
study. The EMG and inertial data were recorded from each subject when a series
of passive elbow stretches with different stretch velocities were conducted. In the
proposed framework, both lambda model and kinematic model were constructed
from the recorded data, and biomarkers were extracted respectively from the two
models to describe the neurogenic component and biomechanical component of
the muscle spasticity, respectively. Subsequently, three evaluation methods using
supervised machine learning algorithms including single-/multi-variable linear regression
and support vector regression (SVR) were applied to calibrate biomarkers from each
single model or combination of two models into evaluation scores. Each of these
evaluation scores can be regarded as a prediction of the modified Ashworth scale (MAS)
grade for spasticity assessment with the same meaning and clinical interpretation. In
order to validate performance of three proposed methods within the framework, a 24-
fold leave-one-out cross validation was conducted for all subjects. Both methods with
each individual model achieved satisfactory performance, with low mean square error
(MSE, 0.14 and 0.47) between the resultant evaluation score and the MAS. By contrast,
the method using SVR to fuse biomarkers from both models outperformed other
two methods with the lowest MSE at 0.059. The experimental results demonstrated
the usability and feasibility of the proposed framework, and it provides an objective,
quantitative and convenient solution to spasticity assessment, suitable for clinical,
community, and home-based rehabilitation.
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INTRODUCTION

Spasticity is a clinical symptom of neural disorders and was
prevalent in stroke, spinal cord injury, cerebral palsy and multiple
sclerosis patients (Nielsen et al., 2007; Naghdi et al., 2014). It
was considered to be caused by the increased excitability of
stretch reflex (Nielsen et al., 2007). The primary manifestation
of spasticity is an abnormal muscle tone in the involved
muscle, which is generally shown as a resistance when the
muscle is stretched passively (Trompetto et al., 2014). The
resistance is also found to be velocity-dependent (Lee et al.,
2002; Mullick et al., 2013). The spasticity may cause abnormal
physical appearance and even muscle contracture (Ada et al.,
2006; Naghdi et al., 2014), consequently weakening the ability of
physical activity and seriously affecting the daily life of patients.
Therefore, quantitative assessment of spasticity is vital for early
interventions during rehabilitation treatment.

For quantitative assessment of spasticity, routine clinical scales
such as modified Ashworth scale (MAS) and the modified tardieu
scale (MTS) are most frequently used (Mehrholz et al., 2005).
The MAS measures the resistance during passive soft-tissue
stretching without consideration of stretch velocity. According
to the specified regulations pre-defined in MAS, clinicians are
able to grade the spasticity. Although limitations in performance
exist due to its rough measurement procedures and relative
subjectivity (Pandyan et al., 1999, 2003; Fleuren et al., 2010;
Phadke et al., 2015), standardized user guidelines have been
developed and the inter-rater reliability for testing of upper limb
spasticity has been proven to be acceptable (Blackburn et al.,
2002). In addition, due to its convenience without requirement
of instrument, the MAS is a primary clinical measure of spasticity
and is even considered as a gold standard of being the referential
yardstick for other new spasticity measurement methods (Pisano
et al., 2000). The measurement of MTS involves two passive
movements at a very slow speed and a high speed as fast as
possible, respectively (Mehrholz et al., 2005). It has been regarded
as a more reliable scale for spasticity assessment with higher
inter-rater reliability demonstrated in several studies (Singh et al.,
2011), but the validity and reliability of MTS are still doubtable in
some investigations (Mehrholz et al., 2005; Naghdi et al., 2014).
With this semi-quantitative manner of measurement, the use
of clinical scales just meets basic needs of clinical applications.
More objective and quantifiable tools are demanded for muscle
spasticity assessment.

Electrophysiological techniques can be used to examine
altered neurotransmission in the spinal neuronal pathway for
understanding underlying pathophysiology as well as assessing
muscle spasticity (Pisano et al., 2000; Cooper et al., 2005; Biering-
Sørensen et al., 2006; Kim et al., 2011; Bar-On et al., 2013;
Naghdi et al., 2014). Both Hoffmann-reflex (H-reflex) test and
electromyography (EMG) measurement are always involved in
these techniques. Several investigations reported that biomarkers
extracted from the H-reflex test increased in patients with
spasticity compared to healthy controls but such an increase
exhibited no or poor correlation to the clinical scores (Naghdi
et al., 2014). An increase in EMG biomarker during instrumented
passive stretch was found to moderately correlate with the MAS

grades in lower limb spasticity of children with cerebral palsy
(Jobin and Levin, 2000; Bar-On et al., 2013). Despite limited
contribution to the quantitative assessment of spasticity, the
electrophysiological examinations can provide an easy and the
most reliable way of determining the stretch reflex threshold and
information concerning neural transmission. Thus their potential
role in quantifying spasticity is significant.

Alternatively, biomechanical approaches are frequently used
to quantify the velocity-dependent resistance during passive
movement by measuring joint position, angular velocity, and
torque (reactive-resistance) (Pisano et al., 2000; Condliffe et al.,
2005; Ardabili et al., 2011; Bar-On et al., 2013; Li et al., 2017).
These investigations focus on assessing the muscular mechanics
of spasticity, and have achieved highly reliable assessment
for spasticity. For example, McGibbon et al. (2016) presented
a kinematic model and addressed the issue of identifying
categorical degrees of muscle spasticity by classification learning
using a linear discriminant analysis algorithm. However, specific
devices such as the isokinetic and torque sensors and well-
controlled laboratory environments are generally required
to ensure precise measurement and accurate quantification
(Condliffe et al., 2005; Ardabili et al., 2011). With sophisticated
protocols, biomechanical approaches are usually involved in
scientific research rather than clinical practice.

Furthermore, various investigations about spasticity have
mentioned that the spasticity resistance consists of both
neurogenic and non-neurogenic (primarily mechanical)
components (Huang et al., 2004; Lam et al., 2005). The former
mainly represents abnormal neural regulation and induced
hyperactivity of motoneuron (Nielsen et al., 2007). The latter
may result from altered mechanical properties of muscle soft
tissues (the muscle fibers and tendons) and limb joints, which
form the secondary contributor to the spasticity resistance
(Stecco et al., 2014). Thus it is reasonable that a precise spasticity
assessment would involve both electrophysiological and
biomechanical aspects. Recently, many efforts have been made
toward assessing spasticity from both aspects with simultaneous
use of electrophysiological and biomechanical measurements.
For example, NeuroFlexor has been developed by Lindberg et al.
(2011) as a fine-tuned device with capability of quantitative
discrimination between the neural and mechanical components
of the total resistance as a result of muscle spasticity. Due to
its capability, this device was reported to be used for spasticity
assessment with satisfactory precision and reliability.

Besides the precision, there is a great demand for wearability
and portability of the devices and fast and convenient
implementation of the measurement. Spasticity is always
regarded to vary across individuals and to last a long term
over multiple stages of motor recovery. Its assessment is
required to be repeated for continuous management in multiple
sites from inpatient clinic through community to home.
Specifically, considering the prevalence of muscle spasticity
after a variety of neurological injuries, there is an increasing
demands for implementing spasticity assessment in community
and home environments, where it is impractical to apply high-
cost specialized instruments and complex experimental setups.
Therefore, it is of great significance to develop a convenient
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and effective approach for quantitative assessment of muscle
spasticity suitable for community and home rehabilitation.

With the above-mentioned considerations, this paper presents
a novel regression-based framework for quantitative assessment
of muscle spasticity using a wearable sensing system including
surface EMG (sEMG) and inertial sensors along with a simple
and practical procedure. Corresponding to both the neural and
biomechanical components contributing to muscle spasticity,
two models (the lambda model and the kinematic model) are
built respectively to derive biomarkers from sensory data, which
are discriminable across different degrees of spasticity. These
biomarkers, from one model or the combination of both models
need to be processed to predict an evaluation score that is the
same meaningful as the routine clinical assessment score (i.e.,
the MAS) but has purely objective and quantitative characters.
Supervised regression learning is a nature solution as it is
able to establish an expert system (also known as numerical
model) for automatically and accurately producing numerical
evaluation scores. Therefore, supervised regression algorithms
such as single-/multi-variable linear regression and support
vector regression (SVR) were employed within the framework.
The framework proposed in this study provides a practical
solution to spasticity assessment in a convenient, objective and
quantitative way. With the demonstrated effectiveness, such
convenience can especially extend the sites for assessing the
muscle spasticity and its intervention outcome from inpatient
hospital to home, toward advanced spasticity management
and rehabilitation.

MATERIALS AND METHODS

Subjects
Sixteen subjects with spasticity (14 males and 2 females; aged
from 33 to 71 years, averaged 54 ± 10 years; time duration
since diagnosis from 19 to 86 days, averaged 52 ± 10 days)
and eight healthy subjects (six males and two females; aged
from 22 to 45 years, averaged 29 ± 9 years) were recruited
in the study. This study was approved by the Ethics Review
Committee for Clinical Medical Research of First Affiliated
Hospital of Anhui Medical University. Inclusion criteria for
participants with spasticity include: (a) currently experiencing
one of the following disease: stroke (cerebral ischemia, brain
hemorrhage or brainstem infarction and etc.), acquired brain
trauma or incomplete spinal cord injury and accompanied
by spasticity in flexor and extension muscles of the elbow;
(b) the spasticity of elbow extensor or flexor was assessed
within 1–3 grades using MAS; (c) the range of elbow
joint during passive stretch was at least 120 degrees; (d)
medically stable with clearance to participate; (e) without any
historical musculoskeletal injuries or cognition problems; (f)
able to offer informed signed consent prior to any procedure
of the experiment. For all subjects, clinical assessment of
spasticity using the MAS was performed just half an hour
prior to their participation into the experiment, by one
qualified, experienced physical therapist. The demographic
information of the participants with spasticity is presented in

Table 1, and characteristics of healthy subjects is provided
in Table 2.

Experiments
A home-made multi-channel signal recording system supporting
up to 16 sEMG recording channels and 9-axis inertial
measurement units (IMUs) was used in this study. In this
system, each individual EMG sensor consists of two parallel
bar-shaped electrodes with a width of 1 mm, a length of
10 mm, and a between-electrode distance of 10 mm, thus
constituting one single-differential sEMG recording channel.
Each IMU (MPU9250, InvenSense, San Jose, CA, United States)
consisted of a 3-axis accelerometer, a 3-axis gyroscope and
a 3-axis magnetometer for recording inertial data. In the
experiments, one sEMG sensor was used to target at the belly
of the biceps brachii muscle or the triceps brachii muscle
(depending on appearance of the muscle spasticity) with its
electrode bar perpendicular to the muscle fibers and the IMU
was placed on the ipsilateral medial wrist for recording stretch
angular velocity (see Figure 1A). The surface EMG sensor
and the IMU were embedded in a stretchable armband and
wristband respectively to ensure secured placement and to
enhance portability of both sensors. A round reference electrode
(Dermatrode; American Imex, Irvine, CA, United States) was
placed on arm fossa cubitalis on the same side. In this system,
each sEMG channel was amplified with a gain of 600 in total
and further digitized by a 16 bit anolog-to-digital converter
(ADS1198, Texas Instruments, Dallas, TX, United States) with
a sampling rate of 1 kHz. The IMU was designed to produce
digitalized data at 100 Hz per axis. The digitalized data from both
sensors were simultaneously recorded.

After skin preparation with medical alcohol, the subjects
were asked to participate into two sessions of test. Each
session consisted of 15 to 20 trials of passive stretch with
different velocities. In a single trial, the subject was instructed
to fully extend his tested elbow at 180 degrees with palm
upward. Then, the tested elbow was passively pulled by an
experimenter to elbow flexion at 40–60 degrees with a stretch
range of 120–140 degrees. After a 2-s pause, it was passively
stretched back to 180 degrees (see Figure 1B). In each trial, the
stretch velocity was determined subjectively by the experimenter
and kept to be almost constant during the stretch. Varying
stretch velocities were applied among the 15–20 trials, thus
resulting in a varying duration of 3–7 s for each trial.
Sufficiently long resting periods were allowed between any two
consecutive trials and sessions to avoid mental or muscular
fatigue and to reduce stretch-induced temporary muscle tones.
No specialized equipment was required to control and record
the velocity or stretch angle directly in this experiment.
Meanwhile, all data were recorded by the system, transferred
and restored to a portable computer via a USB cable for
further analysis.

Data Analysis
The data analysis procedure of the proposed regression learning
framework for spasticity evaluation is shown in Figure 2, with
details described as follows.
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TABLE 1 | Demographic information for each of 16 subjects with muscle spasticity.

No. Age Sex Brain lesion Involved Duration Spastic MAS

range muscle (days) side grade

1 46–50 Male Brain hemorrhage BB 56 Left 1+

2 41–45 Male Brainstem hemorrhage TB 69 Left 2

3 46–50 Male Brain hemorrhage TB 38 Right 1

4 71–75 Male Brain hemorrhage BB 29 Right 1+

5 56–60 Male Brain infarction BB 52 Right 1+

6 56–60 Female Brain infarction BB 76 Left 2

7 56–60 Male Brain infarction BB 73 Left 1+

8 56–60 Male Left thalamic hemorrhage TB 37 Right 2

9 46–50 Male Brain hemorrhage TB 62 Right 3

10 41–45 Male Spinal cord injury BB 86 Left 1

11 61–65 Female Brain hemorrhage BB 19 Right 1

12 56–60 Male Brain hemorrhage BB 52 Left 2

13 31–35 Male Brain hemorrhage BB 47 Right 1+

14 61–65 Male Acquired brain trauma BB 38 Right 1

15 46–50 Male Brain hemorrhage BB 60 Right 1+

16 36–40 Male Spinal cord injury BB 35 Right 3

BB, biceps brachii muscle; TB, triceps brachii muscle; MAS, modified Ashworth scale.

TABLE 2 | Demographic information for each of eight healthy subjects.

No. Age Sex Tested MAS

range side grade

1 25–30 Female Right 0

2 41–45 Male Left 0

3 21–25 Male Left 0

4 21–25 Male Left 0

5 21–25 Male Right 0

6 21–25 Female Left 0

7 21–25 Male Left 0

8 36–40 Male Left 0

MAS, modified Ashworth scale.

Data Pre-processing and Segmentation
All the data were processed in the Matlab (version, 2014a, The
Mathworks, Inc., Natick, MA, United States). The sEMG signals
were filtered by a zero-lag fourth-order Butterworth band pass
filter set at 20–450 Hz. Since only the angular velocity data were
used in this study, the gyroscope signals were selected and then
filtered by a zero-lag second-order Butterworth low pass filter set
at 10 Hz. Representative recorded signals of a passive stretch trial
were showed in Figure 3, including a three-axis gyroscope signal
and an EMG signal. The stretch angular velocity was the vector
superposition of the three-axis gyroscope signal. An amplitude
thresholding method was employed to detect the onset of sEMG
response as well as the onset and offset of stretch movement (Silva
et al., 2017), as the vertical dashed lines marked in Figure 3,
and its threshold was set at three times standard deviation of the
baseline (Zhang et al., 2011). After auto-detection of onset, those
segments with obvious noise contamination were discarded by
visual examination.

Lambda Model
The lambda model is a classic measure to quantitatively evaluate
spasticity using surface EMG and motion data (Levin et al.,
2000). This model evaluates the stretch reflex threshold which
refers to the joint angle when the EMG signal is exactly induced
during a stretch movement of a targeted muscle (Levin et al.,
2000). In addition, it presents that the regulation of the central
nervous system (CNS) for the stretch reflex threshold is an
essential mechanism for joint motion control, and it is related
to the control of joint position. Thus the lesion of CNS after
stroke may interferes with the regulation process then result
in a deficits of the stretch reflex threshold regulation (Levin
et al., 2000; Calota et al., 2008). As a result, the induced
timing of EMG could vary a lot due to different degrees of
CNS lesions. This could be reflected in the model in terms
of decreased stretch reflex threshold. A velocity-dependent
character of the stretch reflex threshold is also demonstrated
in this model, for it is shown by the fact that a higher stretch
velocity leads to a shorter latency of the stretch reflex. The
shorter latency can be represented by a smaller angle range
for joint motion.

Considering that the increase of stretch angular velocity
generally gives a decreasing trend of stretch reflex threshold, a
linear regression model was therefore built between the stretch
angular velocity and dynamic stretch reflex threshold (DSRT,
refers to the mutative stretch reflex threshold, the joint angular
when EMG is induced, at different stretch angular velocity which
is greater than zero) in these investigations. Please note that the
original proposer accurately quantified the angular velocity with
specialized equipment. With wearable IMU sensors to measure
elbow joint movements, however, such velocity needed to be
estimated approximately. The mean stretch angular velocity
was calculated over the entire duration of elbow stretch as a
rough estimation of the elbow joint stretch velocity. The DSRT
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FIGURE 1 | Illustrations of the band-like sensor placement (A) and a passive elbow stretch (B) in the experiment. The sensor marked in number 1 stands for the IMU
and the sensor marked in 2 a sEMG sensor, which was embedded in a wrist band and an upper-limb-band, respectively. The sEMG sensor can be used to target at
the biceps brachii muscle or the triceps brachii muscle respectively.

FIGURE 2 | Block diagram of the proposed framework for spasticity evaluation.

FIGURE 3 | Illustration of the recorded signals in a trial of passive elbow
stretch. In the (A), the black solid lines represent 3-axis gyroscope data and
the blue solid line is the angular velocity, respectively. The (B) shows the
sEMG signals evoked by passive elbow stretch.

was calculated by integrating the stretch angular velocity from
the beginning to the moment when the EMG was evoked,
which was marked as shaded area in Figure 3. Thus, the mean
stretch angular velocity (independent variable) and the DSRT
(dependent variable) were applied to construct the linear lambda
model using a linear regression, as showed in Figure 4A. Due
to the special design of approximation estimation using the
averaging approach, multiple trials were required to enhance
reliability of the regression analysis with a sufficient amount of
data points. This explains the reason for conducting multiple
trials in the experimental protocol. On this basis, exclusion

of outliers was further implemented using a 95% confidence
interval (Montgomery et al., 2012), when the linear regression
was conducted for each subject. With the determined linear
regression line, the intercept was calculated to be a special DSRT
when the stretch velocity approximated into zero. It was termed
tonic stretch reflex threshold (TSRT) in this study, indicating the
stretch reflex threshold under quasi-static stretching. According
to previous studies, the TSRT in the lambda model represents
the physiological range of stretch reflex regulation (Levin et al.,
2000). In general, the TSRT may exceed the biomechanical range
of joint movement for healthy subjects (Musampa et al., 2007), as
a reflection of normal stretch reflex regulation. For patients with
spasticity, the lesion of CNS may result in a disorder of stretch
reflex regulation, which would reduce the stretch reflex threshold
as well as limit the range of joint movement. Therefore, TSRT
was regarded as a biomarker derived from the lambda model for
spasticity assessment. Please also note that sEMG would not be
evoked until the stretch velocity exceeded a large threshold for
healthy subjects. For any subject without typically evoked EMG
in most of the trials (across multiple velocities), the TSRT was
conformably set to 120 degrees, according to the physiological
relevance of the lambda model.

In order to evaluate the degree of spasticity for each patient,
the biomarker TSRT needs to be calibrated with a meaningful
scale, which referred to the routine MAS in this study. Thus,
the calibration procedure was implemented by the means of
performing a supervised linear regression analysis between the
TSRT biomarkers and MAS grades. In this analysis, MAS grades
0, 1, 1+, 2, and 3 were numerically represented by 0, 1, 1.5, 2,
and 3, respectively. Given experimental data from 24 subjects in
total (16 subjects with spasticity and 8 healthy controls), a 24-
fold leave-one-out cross-validation was performed. Data from 23
subjects were used as the training dataset to establish a regression
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FIGURE 4 | (A) Illustration of the lambda model constructed for a representative subject (Subject 1) with MAS grade of 1+, where each data point is derived from a
trial. The regression line derived from all data points is shown in red. The data points in red represent outliers. The final regression line was represented by a blue
dashed line when outliners were excluded. (B) The scatter plot showing relationship between the TSRT value and MAS grades for all subjects. Each subject is
represented by a data point located by its TSRT value and MAS grade. The blue dashed line is derived from regression analysis based on data of all subjects
including healthy controls and subjects with spasticity. The red line denotes regression analysis performed on only subjects with spasticity.

line as the best fit between their biomarkers and MAS grades (i.e.,
labels for supervised learning), whereas data from the remaining
subject were used as the testing dataset to predict an evaluation
score from the input biomarker (i.e., the input feature) based on
the learnt regression line. Thus, after 24 rounds of testing, each
subject had a predicted evaluation score. Such a procedure was
designed also with the purpose to verify the performance of the
biomarker TSRT in assessing muscle spasticity.

Kinematic Model
The kinematic model was proposed for spasticity evaluation
by McGibbon et al. (2013), which was based on a constant-
jerk assumption. According to the assumption, the intended
motion curve of elbow stretch could be constructed for each
subject as a reference motion pattern (Musampa et al., 2007).
A consistent pattern is assumed between the actual and re-
constructed (reference) motion curve across healthy control
muscles, whereas this consistency cannot be found in spastic
muscles. Significant deviations from the reference pattern were
observed on the actual motion curve due to interference from
abnormal muscle tension. Consequently, the similarity between
the actual motion curve and reference pattern was used to
evaluate the degree of spasticity resistance.

The construction of kinematic model is illustrated in Figure 5,
with an actual example of angular velocity curve recorded
from the gyroscope (marked as a black solid line in Figure 5
II) during a stretch in a single trial. Firstly, its entire time
duration (t) was divided into two periods t1 and t2 by the
moment of its maximal value (tmax), representing an accelerating
stage and a decelerating stage respectively. Next, both integral
operation and differential operation were performed on the
angular velocity curve to obtain an angle curve (black solid
line in I) and an angular acceleration curve (black solid line
in III), respectively. Then, the angular acceleration curve (III)
was reconstructed to form a subtriangular curve according to

constant jerk assumption. Considering the fact that the vectorial
summation of the angular velocity should be zero, the peak
of angular acceleration in the second stage (denoted as acc2)
was determined while this peak in the first stage (denoted as
acc1) was optionally set at 4000 degree/s2 here. Once peaks
of angular acceleration in both stages were determined, the
reconstructed angular acceleration curve (blue dashed line in
III) was obtained following a subtriangular rule. Afterward, two
consecutive integrations were performed on the reconstructed
angular acceleration curve to calculate a reconstructed angle
curve (the blue dashed line in I), followed by a scaling
procedure for matching the range of motion. Consequently,
a reconstructed angle curve (the black dashed line in IV)
was obtained. Finally, the reconstructed angle curve in IV
was differentiated once and twice to produce a reconstructed
angular velocity curve (V) and a reconstructed acceleration curve
(VI), respectively.

It was found in this study (see section “Results”) that the
reconstructed kinematic curves presented deviations from their
corresponding recorded curves, and such deviations become
greater in the cases of higher MAS grades. Especially, the angular
acceleration curves exhibited more fluctuations with respect to
its reconstructed ones for subjects with spasticity than healthy
controls. In the kinematic model, therefore, three correlation
coefficients between the actual curves and reconstructed curves
of the angle, angular velocity and angular acceleration were
calculated as three biomarkers. In addition, the median frequency
(MDF) of actual angular acceleration curve (Szeto et al., 2005)
was also calculated. Consequently, there are four biomarkers to
measure the spasticity resistance for each subject. In order to
minimize the effect of angular velocity variation as a result of
manual stretch, we only chose the trails with time duration of
1–2 s for extracting biomarkers.

Similar to the quantitative evaluation method based on
lambda model, the four biomarkers derived from the kinematic
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FIGURE 5 | Illustration of constructing kinematic variables in the kinematic model. The black solid line in I, II, and III represents the actual angle curve, the angular
velocity curve, and the angular acceleration curve respectively during passive elbow stretch. Their reconstructed and scaled curves are shown in the black dotted
line in IV, V, VI on the right panel. The blue dotted line in I and III illustrates the scaling and reconstruction procedure respectively, in detail for comparison.

model also needed to be calibrated to produce a meaningful
evaluation score by means of performing a supervised
multivariate regression analysis (Berndt and Savin, 1977).
A 24-fold leave-one-out cross-validation was applied to data
from 24 subjects. Biomarkers and corresponding MAS grades
from any 23 subjects formed the training dataset to learn a
regression line by supervised multivariate regression analysis,
and the remaining sample was used as the testing dataset to
produce an evaluation score based on the input biomarkers and
the learnt regression line. Each subject produced an evaluation
score after 24 round of testing.

Final Assessment by Fusion of Both Models
Given different but complementary information from both
models in terms of spasticity assessment, their fusion may
ensure comprehensive and improved performance. Therefore,
fusion of both models was implemented within the proposed
framework, by combining their biomarkers through a supervised
regression learning procedure. For each tested muscle of
one subject, the TSRT from the lambda model, the four
biomarkers (i.e., correlation coefficients of the angle, the angular
velocity and the angular acceleration between the recorded
curves and the re-constructed ones, and the MDF of the
recorded angular acceleration) from the kinematic model were
concatenated to form a five-dimensional feature vector. Similarly,
a calibration procedure should be designed to interpret each
feature vector as a meaningful evaluation score. We chose a
SVR analysis for the calibration. The SVR is a version of

support vector machine (SVM) for regression analysis which
is based on the assumption of a linear regression function
in a high dimensional feature space where the input data
are mapped via a non-linear function (Basak et al., 2007).
Compared with the ordinary least square regression, SVR
can be used to fix both linear regression and non-linear
regression tasks. Besides, it avoids multicollinearity problem
between independent variables and reduce the impact of
abnormal samples on model training thus offering more
accurate model parameters. In this paper, we just briefly
review the SVR analysis here as described in the literature
(Basak et al., 2007; Ameri et al., 2014).

Assuming a set of training samples
D = {(x1, y1), (x2, y2), ..., (xL, yL)}, where xi ∈ Rn represents
input feature vectors and yi ∈ R represents the true MAS grades
for all subjects. A non-linear projection φ(x) was applied for
mapping the input data x to a higher dimensional space. Then
the case of non-linear function f is described in the form as:

f (x) = wTφ(x)+ b (1)

the SVR can be formulated as:

min
w,b,ξ−i ,ξ

+

i

1
2 ||w||

2
+ C

L∑
i=1
(ξ−i + ξ

+

i )

s.t. f (xi)− yi ≤ ε+ ξ−i
yi − f (xi) ≥ ε+ ξ+i
ξ−i ≥ 0, ξ+i ≥ 0

(2)
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where C is a properly chosen penalty factor, and ξ−i and ξ+i are
slack variables representing upper and lower constraints on the
outputs of the system. The Lagrangian multiplier method is used
to solve the constrained optimization problem, and then the f (x)
can be written in the following form:

f (x) =
L∑

i=1

(
_
α i −αi)κ(x, xi)+ b (3)

where κ(xi, x) = φ(xi)Tφ(x) is a radial basis function (RBF)
kernel as follows:

κ(xi, x) = exp(−
||xi − x||2

2σ 2 ) (4)

The coefficients αi and
_
α i in (3) are Lagrangian multiplier, and

b is the bias constant determined by Karush-Kuhn-Tucker (KKT)
conditions (Shevade et al., 2000).

In order to evaluate the spasticity for each subject, we similarly
adopted a 24-fold leave-one-out cross validation. In this case,
the input feature vectors xi and clinical MAS grades yi of any
23 subjects consisted of the training set, the remaining subject
was used for testing to predict an evaluation score. During
the training process, three important SVR parameters including
penalty factor C, radius ε and a free parameter σ of RBF kernel
needed to be determined toward optimal performance. Through
some pretests, these parameters were empirically set at 30 for C,
0.09 for ε and 0.007 for σ . Finally, the well-trained SVR can be
used as a tool to predict an evaluation score based on the input
feature vector of any subject.

Performance Evaluation and
Statistical Analysis
For each of 24 subjects, three evaluation scores were obtained
for muscle spasticity assessment from the lambda model, the
kinematic model and their combination, respectively. In fact,
each of those scores can be regarded as an estimate of
the MAS because they were calibrated with the same scale.
Therefore, mean square error (MSE) between the evaluation
scores and the corresponding clinical MAS grades was calculated
to evaluate the performance of each of the three methods for
spasticity assessment.

MSE =
1
L

L∑
i=1

(Yi−
_
Y i) (5)

where L is the sample number, Yi is the clinical MAS grades
and

_
Y i represents the assessment indicators given by the three

assessment model. There were five subgroups of subjects with five
MAS grades rating 0, 1, 1+ (1.5), 2, and 3 in this study.

In order to examine capability of three assessment methods
in discriminating subjects/muscles with different MAS grades, a
two-way ANOVA was performed on the evaluation score with
the assessment method considered as within-subject factor (three
levels) and the MAS grade as the between-subject factor (five
levels). Post hoc pairwise multiple comparisons with Bonferroni

correction were used. The significance level was set to 0.05 for
all analyses. All statistical analyses were completed using SPSS
software (ver. 16.0, SPSS, Inc., Chicago, IL, United States).

RESULTS

Figure 4 reports the experimental results from the lambda model.
A representative example of the lambda model constructed
for subject 1 was showed in Figure 4A. After excluding
the outliers using 95% confidence region, the coefficient of
determination R2 between angular velocity and the DSRT in
linear regression analysis increased from 0.86 to 0.97. The
DSRT was approximately linearly decreased with the increase
in stretch angular velocity, which was verified by the regression
line y = −0.277x + 46.765. Therefore, the obtained TSRT for
this subject was 46.765. Figure 4B reports the distribution of
TSRT values for all subjects categorized by MAS grades, where
the healthy subjects had the same TSRT value of 120 degrees.
It can be found that the TSRT was generally declined with
increased grades of spasticity, showing a negative correlation
between the MAS and the TSRT with a correlation coefficient
of −0.93 for all subjects and −0.73 for subjects with spasticity.
Subsequently, Figure 6 shows scatter plot of evaluation scores
yielded by the lambda model versus the true MAS grades for all
subjects. The evaluation score was regarded as a predicted MAS
grades, and the MSE between those scores and corresponding
MAS grades was 0.14. The linear regression analysis reported
a high coefficient of determination R2 up to 0.84 between the
evaluation scores and MAS grades.

Figure 7 showed the constructed kinematic curves for a
healthy subject and four subjects with spasticity at different
clinical MAS grades. From the subject 5 with a MAS grade of
1+, as a representative example, the kinematic curve showed a
different pattern with noticeable deviations from the reference
curve from healthy controls. This is always the case for all subjects
with spasticity. A weak or strong correlation was presented

FIGURE 6 | Evaluation scores derived from the lambda model for all subjects.
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FIGURE 7 | Representative examples for the constructed kinematic variables of a healthy subject (MAS = 0) and four subjects with spasticity (MAS = 1∼3), including
the angle, speed and acceleration curve. The black solid line was the actual kinematic curve and the blue dashed line was the constructed intended curve.

TABLE 3 | Correlation coefficients between each of biomarkers from the kenimatic
model and the MAS grade.

Biomarkers Correlation p-value

coefficient

Correlation coefficient Acc∗ −0.79 p<0.001

Velocity∗ −0.56 p<0.001

Angle∗ −0.26 p>0.05

MDF Acc 0.64 p<0.001

Acc∗, velocity∗, angle∗: three biomarkers represent the correlation coefficients
between the actual and reconstructed motion curves of angular acceleration,
angular velocity and angle, respectively.

between each of four biomarkers from the kinematic model and
the MAS, with an absolute correlation coefficient ranging from
0.26 to 0.79, as exhibited in Table 3. Using the multivariate
linear regression to calibrate the biomarkers from kinematic
model, the final evaluation scores were reported in Figure 8
for all subjects. This method predicted greatly varied evaluation
scores for subjects with the same MAS grade. Specifically, it
failed to discriminate the subjects with a MAS grade of 3 by its
predicted evaluation score. As a result, the MSE was 0.47 for
the kinematic model, and the evaluation score derived from this
model showed moderate goodness of fit (R2 = 0.4990, p < 0.001)
to the MAS grades.

Figure 9 shows the evaluation scores obtained from fusion of
both lambda and kinematic models using SVR for all subjects.
The resultant evaluation scores appeared to positively correlate
with the true MAS grades, with a regression line y = 0.91x+
0.10 whose goodness of fit was strong (R2 = 0.93, p < 0.001),
and a MSE of 0.059 was achieved. Furthermore, as compared
with the single model, the combination of two models yielded
the evaluation scores which are more distinguishable between
any two MAS grades.

FIGURE 8 | Evaluation scores derived from the kinematic model
for all subjects.

The ANOVA report no significant main effect of the
evaluation method (F = 0.42, p > 0.05), but the spasticity degree
(expressed as MAS grade) had a significant main effect on the
evaluation scores (F = 53.6, p < 0.001). In addition, interaction
between both factors was reported to be significant (F = 3.13,
p < 0.01). Multiple pairwise comparisons further revealed that
significant difference between any two MAS grades can be found
except the comparisons between 1 and 1+, and between 1+ and
2, regardless of any method/model used.

DISCUSSION

This paper presents a novel framework for quantitative muscle
spasticity assessment using supervised regression learning
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FIGURE 9 | Evaluation scores derived from combination of both models using
SVR for all subjects.

methods to mine combined sEMG and inertial data. The
evaluation procedure consisted of a series of passive elbow stretch
with different (subjectively determined) angular velocities, during
which no specialized instrument was required for constant
speed control. This simplified and convenient procedure is
suitable for daily manipulation for it is truly in accordance with
clinical routine and acceptable for both medical professionals
and patients. The wearable design of the arm-bands embedded
small, low-cost sEMG sensors and IMUs can especially ensure the
acquisition of both neural and kinematic data in a user-friendly
way. In addition, the use of regression learning, as a typical
group of machine learning, enables establishment of an expert
system without assistance of any clinician or other professional
to make assessment decisions based on input sensory data. All
these features ensure a great potential of the proposed framework
in clinical, community and even home-based rehabilitation.

Within the proposed framework, two different models namely
the lambda model and the kinematic model were tested,
respectively. The performance of any single model was re-
evaluated given sEMG and IMU data from low-cost, wearable
sensors. The biomarkers extracted from the two models showed
a weak to significant correlation with the MAS grades. After
the calibration procedure, the evaluation scores obtained from
each model had the same meanings as the corresponding
clinical MAS grades, with significant correlation for lambda
model (R2 = 0.84, p < 0.001) and strong correlation for
kinematic model (R2 = 0.50, p < 0.001) between them as
well. All these findings were exactly consistent with those
from previous studies (Feldman and Levin, 1995; Musampa
et al., 2007; Calota et al., 2008). Such consistency not only
confirmed the diagnostic efficiency of both models within the
proposed framework in assessing muscle spasticity degrees,
but also demonstrated that both models can work well under
a specially designed protocol with simple testing procedures
and essentially the same easily obtainable sensor apparatus
for data recording. Therefore, under the proposed framework,
the neurogenic component and non-neurogenic (mechanical)

component of spasticity resistance can still be well-extracted
and interpreted as potential quantitative evaluation descriptions
using both models, respectively.

Please note that there are contradictory findings regarding the
correlation between the lambda model and the MAS grade from
the literature. Several studies have reported that this correlation
was none or very poor (Levin et al., 2000; McGibbon et al.,
2013), while others reported a good correlation (Kim et al., 2011).
Consistent with the later report, our work exhibited a really
good correlation with a coefficient of −0.93. The inconsistency
between our study and others reporting no correlation can
be mainly attributed into different technical details for data
processing. For example, the TSRT of healthy individuals were
conformably set at 120 due to the absence of typically evoked
EMG associated with the spasticity. Exclusion of outliers was
further implemented using a 95% confidence interval for the
regression analysis, in order to overcome possible measurement
errors given the portable sensors and manually controlled
strength reflex. Both settings were specific to the lambda model
conducted in our study. Another reason for explaining uncertain
correspondence of the lambda model with the MAS is different
way of their spasticity measurement. As discussed previously, the
lambda model merely measured a certain aspect (i.e., neurogenic
component) of the spasticity whereas the MAS emphasizes the
spasticity-induced resistance to passive stretch of the muscle.
If the neurogenic component becomes the primary contributor
to muscle spasticity for a certain group of subjects, the lambda
model is able to be highly correlated with the MAS, and
otherwise, they may not agree very well. Both above-discussed
reasons can also be used to explain result differences between
the lambda model and kinematic model. It is suggested from
the scatter plots (Figures 6, 7) that they may not correspond
well with each other. In detail, the lambda model worked well
in assessing muscles/subjects with MAS grades of 0 and 3,
but gives indistinguishable judgments among MAS grades 1,
1+, and 2. By contrast, the kinematic model presents better
performance in discriminating MAS grades 1, 1+ and 2, but
fails to discriminate MAS grades of 0 and 3. All these findings
are regarded as evidences suggesting advanced performance
and comprehensive description of spasticity by information
fusion of both models.

Given the complementary capabilities of both models
in assessing spasticity, their fusion is also supported by the
proposed framework. Beside two single-model evaluation
methods, the third method employed the SVR working
with all biomarkers derived from both models to produce
a comprehensive evaluation score. By comparing the three
evaluation methods, the method with two-model combination
was found to outperform other two methods, in terms
of the lowest MSE value. This confirms the necessity of
information fusion toward improved performance. In fact,
the stretch reflex resistance has been regarded to be formed
by both the neurogenic and mechanical components of
the spasticity, which can be well-described by the lambda
model and the kinematic model, respectively. This provides
a very straightforward reason for explaining improved
performance when both models were considered by the
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proposed framework. Although each single model can be used
alone for spasticity assessment with satisfactory performance,
their combination further achieved improved performance
with decreased MSE. Such a finding demonstrated feasibility
and effectiveness of the proposed framework in combining
both electrophysiological and kinematic information toward
an advanced assessment of muscle spasticity. However, the
ANOVA reported no significant difference between the
three methods. The reason for explaining this could be
attributed into the fact that all three evaluation methods
within the proposed framework were calibrated into the same
scale of the MAS. Despite of this, the ANOVA reported
significant effect on the evaluation scores derived from
these methods, indicating its capability of discriminating
and quantifying different degrees of spasticity. In addition,
comparing to the graded MAS grades, the evaluation method
presented a more continuous distribution ranging from 0
to 3 (it was the maximum MAS for subjects recruited),
which helps to enhance the accuracy and sensitivity of
spasticity evaluation.

It is worth noticing that the proposed framework was applied
to wearable low-precision sensors, and that an experiment
protocol with free-hand manipulation was adopted in this
study. As a result, the stretch velocities cannot be controlled
and measured precisely. This would be expected to impact
the efficacy of the proposed framework. In order to overcome
these limitations, a series of trials with repeated passive
elbow stretches were performed. It was also designed for
ensuring sufficient data. Therefore, the proposed framework
did not rely on data from any single trial, but mined
these pooled low-precision data using machine learning
algorithms to enhance the reliability and accuracy of spasticity
evaluation. A representative example can be found in the
lambda model. When quantifying a relationship between the
dynamic stretch reflex threshold and angular velocity, a 95%
confidence interval was designed in order to exclude the
outliers. Finally, we found that the proposed framework for
spasticity assessment works well on the low-precision data,
yielding a high correlation to MAS grades, indicating the
feasibility of using the simplified protocol in assessing muscle
spasticity quantitatively. This also confirms the usability of the
proposed framework.

However, there are still several limitations exist in this
study. For all subjects, their MAS grades were taken as the
regression target to calibrate and evaluate the computerized
methods in this study. In another word, the MAS was
regarded as the ground truth. However, the clinical MAS was
a subjective evaluation with some well-known limitations, and
thus it might not be considered to be absolutely accurate
and trustable. For example, it is easy to misjudge the grade
1+ in the MAS. Therefore, the limitation in accuracy of the
MAS might be the explanation of the failure in distinguishing
the grade 1 and 1+, 1+ and 2 when implementing the
proposed computerized method. In addition, due to the
demand of sufficient data to ensure reliability of the evaluation
method, a large number of repetitive trials are required. This

protocol is a little time-assuming. The proposed framework
employed relatively classic regression learning algorithms,
many sophisticated learning algorithms such as deep learning
may be beneficial to performance improvement, given recent
development of machine learning techniques. Another key
problem is the limited sample size used in this study. No
subject with the maximal MAS grade of 4 was recruited due
to inability of their tested muscles to complete the required
experiment as a result of high stiffness. More samples would
be benefit to enhance accuracy and reliability of the proposed
framework according to supervised machine learning theory.
Therefore, it is our expectation to enlarge more samples
and to evolve the current work toward an expert system
for quantitative spasticity assessment, suitable for clinical and
family rehabilitation.

CONCLUSION

The proposed evaluation framework is in line with clinical
measurement practice, thus providing convenient, objective
and promotable spasticity assessment method in clinics.
Therefore, it provides feedback about therapy effect of patients,
which helps in the design and adjustment of effective and
individualized rehabilitation protocols and plays an important
role in spasticity management and intervention for clinical or
family rehabilitation.
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