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Recent neuroimaging studies have indicated that abnormalities in brain structure and
function may play an important role in the etiology of lifelong premature ejaculation
(LPE). LPE patients have exhibited aberrant cortical structure, altered brain network
function and abnormal brain activation in response to erotic pictures. However, it
remains unclear whether resting-state whole brain functional connectivity (FC) is altered
in LPE patients. Machine learning analysis has the advantage of screening the best
classification features from high-throughput data (such as FC), which has the potential to
identify the pathophysiological targets of disease by establishing classification indicators
for patients and healthy controls (HCs). Therefore, the supported vector machine based
classification model using FC as features was used in the present study to confirm
the most specific FCs that distinguish LPE patients from healthy controls. After feature
selection, the remained features were used to build the classification model, with an
accuracy 0.85 ± 0.14, sensitivity of 0.92 ± 0.18, specificity of 0.72 ± 0.30, and recall
index of 0.85 ± 0.17 across 1000 testing groups (100 times 10-folds cross validation).
After that, two-sample t-tests with family-wise error correction were used to compare
these features that occur more than 500 times during training steps between LPE
patients and HCs. Four FCs, (1) between left medial part of orbital frontal cortex (mOFC)
and right mOFC, (2) between the left rectus and right postcentral gyrus, (3) between the
right insula and left pallidum, and (4) between the right middle part of temporal pole and
right inferior part of temporal gyrus showed significant group difference. These results
demonstrate that resting-state brain FC might be a discriminating feature to distinguish
LPE patients from HCs. These classification features, especially the FC between bilateral
mOFC, provide underlying abnormal central functional targets in LPE etiology, which
offers a novel alternative target for future intervention in LPE treatment.
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INTRODUCTION

In recent years, more and more neuroimaging studies have found
that the etiology of sexual function dysfunction may be related
to brain abnormalities, including brain structure, and functional
aberrance (Zhao et al., 2015a,b; Chen et al., 2017; Jin et al.,
2017; Li et al., 2018). Lifelong premature ejaculation (LPE) is
one of the most common male sexual dysfunction diseases.
According to the International Society for Sexual Medicine,
LPE is defined as “a male sexual dysfunction characterized by
ejaculation which always or nearly always occurs prior to or
within about 1 min of vaginal penetration since the first sexual
experience; and inability to delay ejaculation on all or nearly all
vaginal penetrations; and negative personal consequences, such
as distress, bother, frustration and or the avoidance of sexual
intimacy (Althof et al., 2014).” Although selective serotonin
reuptake inhibitors have been found to produce a side effect
of delayed ejaculation in the treatment of depression and have
gradually become the first-line drug for clinical treatment of
premature ejaculation (PE) (Giuliano and Clement, 2012), the
pathophysiological mechanisms of LPE remain unclear. As early
as 10 years ago, neuroimaging studies demonstrated that the
brain is involved in ejaculation behavior (Holstege et al., 2003;
Georgiadis et al., 2007); however, evidence regarding to the role
of the brain in the etiology of LPE remains limited, especially at
the supraspinal level.

In Zhang et al. (2017), the first neuroimaging study of brain
changes in LPE patients was conducted. Subsequently, there have
been a few studies reporting brain structural and functional
abnormalities in LPE, including by our group. These studies
have shown that LPE patients have increased cortical thickness
and possible improved sensory ascending conduction efficiency
(Guo et al., 2017; Gao et al., 2018), and abnormal brain function
either in resting state or during erotic picture stimulation (Zhang
et al., 2017; Lu et al., 2018; Yang et al., 2018), which have
provided new evidence for the neurobiological etiology of LPE.
Recently, machine learning methods have also been used in
the analysis of high-throughput brain imaging data to obtain
more disease-specific imaging features. For example, classifiers
based on brain structure or brain function features have been
used to distinguish psychiatric patients from healthy people,
to distinguish different subtypes of patients, and to predict
remission and non-remission when evaluating therapeutic effects
(Fu et al., 2008; Grotegerd et al., 2014; Redlich et al., 2016; Du
et al., 2018). These classification features offer useful insight for
detecting the biological mechanisms of diseases. Interestingly,
a recent study investigating the brain mechanism of venous
erectile dysfunction used machine learning classification to
distinguish patients from healthy controls, and revealed more
various white matter-derived indices that might underlie imaging
targets related to the neurobiological etiology of venous erectile
dysfunction (Li et al., 2018).

Therefore, in the present study, we aimed to use a machine
learning method to classify LPE patients from healthy subjects
based on high-throughput resting brain functional connectivity
(FC) data, in effort to find the most specific discriminating
indicators between LPE patients and healthy controls. We believe

our results provide novel information for understanding the
neurobiological mechanism of LPE.

MATERIALS AND METHODS

Participants
Sixty male adults non-medicated PE patients and sixty male
non-drug-using healthy controls (HCs) were recruited in our
study. LPE was diagnosed according to the International Society
for Sexual Medicine’s guidelines for the diagnosis and treatment
of premature ejaculation (Althof et al., 2010). All participants
underwent history taking and physical examination. Each patient
had an intravaginal ejaculatory latency time (IELT) within 1 min.
The premature ejaculation diagnostic tool (PEDT) score of each
LPE patient was >11, but <5 for each control. The International
Index of Erectile Function score was no less than 21 for all subjects.
Participants were excluded if they met any of the following criteria:
(1) had a history of alcohol or drug abuse, (2) had a history of
psychiatric or neurologic diseases, (3) having a history of head
trauma, and (4) had any contra-indication to MRI scanning.

According to the selection standards above, 45 PE patients and
40 HCs were included in the current study. Written informed
consent was obtained from all study participants. Research
procedures were approved by the ethical committee of the
Northwest Women’s and Children’s Hospital in China, and were
conducted in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki).

Imaging Data Acquisition
All subjects underwent a series of image scanning using a 3T GE
MR750 scanner at the Department of Radiology, Xijing Hospital,
the Fourth Military Medical University, Xi’an, China. A standard
8-channel head coil was used together with a restraining foam pad
to minimize head motion and diminish scanner noise. Resting-
state functional images were acquired with a single-shot gradient
recalled echo planar imaging sequence. (TR/TE: 2000 ms/30 ms,
field of view: 240× 240 mm2, matrix size: 64× 64, flip angle: 90◦,
in-plane resolution: 3.75 × 3.75 mm2, slice thickness: 3.5 mm
with no gaps, 45 axial slices). For each subject, a total of 210
volumes were acquired. High resolution T1-weighted images
were collected with a volumetric three-dimensional spoiled
gradient recall sequence (TR/TE: 8.2 ms/3.18 ms, field of view:
256 × 256 mm2, matrix size: 512 × 512, flip angle = 9◦, in-plane
resolution: 0.5 × 0.5 mm2, slice thickness = 1 mm, 196 sagittal
slices). During the resting scanning, subjects were instructed to
keep their eyes open and to not think about anything.

Imaging Data Preprocessing
Functional image preprocessing was carried out using CONN
software1. Briefly, after excluding the first five images to
ensure the signal had reached equilibrium, functional images
were corrected for head motion and temporal differences.
A participant was excluded if any translation or rotation
parameters in subject’s data set exceeded ± 1 mm or ± 1◦,

1http://web.mit.edu/swg/software.htm

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 448

http://web.mit.edu/swg/software.htm
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00448 May 7, 2019 Time: 16:50 # 3

Xu et al. LPE Research Using Classification Method

respectively. After this step, 39 patients and 30 HCs remained.
After that, outlier detection was performed. Next, the corrected
functional images were coregistered to each subject’s T1 image
without reslicing the image. After that, T1 images were
normalized to the Montreal Neurological Institute (MNI) space,
which generated a transformed matrix from native space to MNI
space. Functional images were then transformed to the MNI
space using this matrix and resampled at 2 × 2 × 2 mm3.
Finally, all images were smoothed with a 6-mm full width at half
maximum Gaussian kernel.

To remove spurious sources of variance, time series of each
brain voxel were performed by the following steps: (1) linear
detrending; (2) regressing out the six head motion parameters
and their first-level derivative, the averaged cerebrospinal fluid
and white matter signals, and the scrubbing signal from the
time series generated by the functional outlier detection (ART-
based identification of scans for scrubbing) process in CONN; (3)
0.01–0.1 Hz band-pass filtering.

After data preprocessing, time series of each region of interest
(ROI) were extracted as the average time series across all voxels
in that ROI based on the Anatomical Automatic Labeling (AAL)
cortical and subcortical atlas (Tzourio-Mazoyer et al., 2002). In
this step, 90 ROI time series were extracted. Finally, the FC
coefficient (e.g., Pearson’s correlation coefficient) between each
pair of these 90 time series was calculated, which resulted in 4005
edges for each subject for subsequent analysis.

Features Selection and Classification
Model
Ten-folds cross validation (CV) was used to assess the reliability
of the classification model. Briefly, 69 subjects were randomly
separated into 10 groups. Each time, one group in turn was
used as a testing group and the other nine groups were used
as training group.

Firstly, two sample T-test was used as the first step to
preliminarily select features from the 4005 edges in training

group. The edges with a p-value less than P0 were selected as
initial features. After that, we used a 10-folds CV based Least
Absolute Shrinkage and Selection Operator (CV-LASSO) method
to further select features. Briefly, subjects in training group were
again randomly separated into 10 groups. Each time, one group
in turn was excluded from the dataset, and the LASSO (Sauerbrei
et al., 2007) method with mean of square error (MSE) as the cost
function was used on the remaining nine groups to narrow down
the initial features into the most important features according
to the MSE+1SE criteria (Sauerbrei et al., 2007). This step was
repeated 10 times, which resulted in 10 different groups of
selected features. Finally, the edges that were included in the
selected feature group at least N times (i.e., occurring N times)
were selected as LASSO features for further analysis. Next, the
linear supported vector machine (LSVM) method was used to
construct the classification model based on LASSO features in
training group, which was implemented using libsvm software2.
The accuracy, sensitivity, specificity and recall indices of the
constructed model were calculated using testing group.

All these steps above were repeated 10 times. As for the setting
of P0, N, and the cost parameter c in libsvm, we used grid-
search method to find them. These parameters were set at a group
of specific values when the accuracy index of the constructed
classification model achieved the maximum. The P0 was set from
0.025 to 0.2 with a step of 0.025 and including 0.001, 0.005, and
0.01. The N was set from 1 to 10 with a step of 1. The c was set
from 0.1 to 2 with a step of 0.1.

To avoid the random group effect, we repeated the 10-folds
CV 100 times. For each time, a new random group was split.
The mean ± standard deviation of each index across the 1000
testing groups (10× 100) was used to assess the performance and
stability of the constructed model. Finally, 1000 times permutation
test (group label permutation) was performed to check if our
results were significantly different from random label. Figure 1
illustrates the framework of our study.

2https://www.csie.ntu.edu.tw/~cjlin/libsvm/

FIGURE 1 | The framework of study procedure.
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RESULTS

Clinical and Demographic
Characteristics
Clinical and demographic characteristics of the subjects are
shown in Table 1. The PEDT scores of LPE patients were
significantly higher than those of HCs, and the IELT of LPE
patients was dramatically shorter than that of HCs.

Classification
The 100 times 10-fold CV results of the model were shown in
Table 2. The accuracy, sensitivity, specificity and recall indices of
the classification model were 0.8490 ± 0.1401, 0.9238 ± 0.1817,
0.7250 ± 0.3038, and 0.8506 ± 0.1740, respectively. Figure 2B
displays the receiver operating characteristic curve (ROC) of the
classification model, and the AUC was 0.8047. Figure 3 shows
the permutation test results of our constructed classification
model. Together, these results demonstrate the stability of our
classification model and the reliability of our method.

After counting the occurring time of each LASSO feature in
100 times 10-fold CV, 5 LASSO features with occurring time
larger than 500 were finally selected as the most important
features in classification, which involved brain regions in the
frontal, temporal and limbic lobes (Table 3), since we believed
that features which occurring time less than 500 were to a large
extent relied on the specific splitting group. Figure 2A gives the
spatial distribution of these 5 LASSO features.

DISCUSSION

By using a machine learning classification method to assess
resting-state brain function in LPE patients, the present study
screened 9.042 (average across every training step during 100
times 10-folds CV) out of 4005 FC features to construct the
optimal classifier, which could separate patients from healthy
people with an accuracy of 0.85. These FC features are mainly

TABLE 1 | Clinical and demographic characteristics.

HC (n = 30) LPE (n = 39) P-value

Age (years) 31.33 ± 2.77 30.52 ± 5.06 0.44

PEDT score 0.80 ± 1.40 17.50 ± 1.96 <0.0001

IIEF-5 score 24.5 ± 0.63 24.29 ± 0.47 0.17

IELT (min) 644.00 ± 366.47 37.02 ± 16.75 <0.0001

Data were presented as mean ± SD. HC, healthy control; IELT, intravaginal
ejaculatory latency time; IIEF-5, International Index of Erectile Function-5; LPE,
lifelong premature ejaculation; PEDT, Premature ejaculation diagnostic tool.

distributed in some areas in the frontal, temporal, and parietal
cortex, and limbic system. Compared with previous studies,
our results provide more novel FC-derived indicators through
a strategy of classification research to understand the potential
abnormalities of brain function in LPE patients.

The classification algorithm in machine learning is useful for
exploring the best classification features from high-throughput
information, in which multivariate decoding algorithms like
supported vector machine are trained on a portion of the data
by weighting all connections in order to separate the known
clinical status from HCs, rather than testing each connection
independently for group differences. The whole brain functional
connections belong to a high-throughput data set, in which there
are more than 4000 FCs in the whole brain when the human brain
is divided into 90 ROIs. In our present study, through CV-LASSO
dimension reduction method, we have obtained a classifier with
a relatively high accuracy to individually distinguish LPE patients
from HCs. This machine learning-based classification approach
based on resting-state FC has previously been used to distinguish
patients with brain disorders from HCs, and responders from
non-responders in clinical drug or invention trials (van Waarde
et al., 2015; Sarpal et al., 2016; Arbabshirani et al., 2017; Plaschke
et al., 2017). Therefore, the features based on the resting-state
FC in our present study may be biomarkers that allow the
classification of individual LPE patients.

Among the five selected features which occur more than
500 times in training step during 100 times 10-fold CV, the
connections between bilateral mOFC had the highest weight
according to our results. OFC has been implicated in ejaculation
control. A previous positron emission tomography study has
reported a remarkable decrease of regional cerebral blood flow
throughout the prefrontal cortex during ejaculation in male
volunteers (Holstege et al., 2003; Georgiadis et al., 2007). Our
previous study has also found abnormal prefrontal control
function in LPE patients by using classical inhibitory control
tasks, and reduced FC between the inferior frontal cortex and
the frontal pole was found in LPE patients (Yang et al., 2018).
Together with the present results that the synchronized activity
of the mirror symmetric OFC had absolute superiority in
discriminating LPE patients from the healthy controls, it further
indicates that the OFC is likely closely involved in the etiology
of LPE, and the OFC-related inhibitory control function may
be impaired in LPE patients, which might cause the loss of the
inhibitory tone on ejaculation in LPE patients.

Besides, most of the other FC related regions in the current
study were also reported to be related to male sexual physiology.
Zhang et al. (2017) have found that the insula and middle
part of temporal gyrus showed abnormal activation in response
to erotic stimulation, and also had aberrant regional activity

TABLE 2 | Performance information of classification model.

Accuracy Sensitivity Specificity Recall AUC

0.8490 ± 0.1401 0.9238 ± 0.1817 0.7250 ± 0.3038 0.8506 ± 0.1740 0.8047

Permutation < 0.001 – – – < 0.001

AUC, area under the curve; Permutation, 1000 Permutation test.
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FIGURE 2 | (A) The spatial distribution of five selected LASSO features and (B) the receiver operating characteristic (ROC) curve of the classification model. LASSO,
least absolute shrinkage and selection operator.

FIGURE 3 | The 1000 times permutation test results of (A) classification model accuracy index and (B) area under curve (AUC).

TABLE 3 | Detailed information of five selected LASSO features.

Edge Weight

HC>PE

Frontal_Med_Orb_L Frontal_Med_Orb_R 0.4874

Rectus_L Postcentral_R 0.0020

Insula_R Pallidum_L 0.1270

HC<PE

Frontal_Mid_L SupraMarginal_L 0.1370

Temporal_Pole_Mid_R Temporal_Inf_R 0.2466

Frontal_Med_Orb, medial part of orbital frontal cortex; Frontal_Mid, middle part
of frontal cortex; Temporal_Pole_Mid, middle part of temporal pole; Temporal_Inf,
inferior part of temporal gyrus; L for left and R for right; LASSO, absolute shrinkage
and selection operator.

and FC during resting state in LPE patients. By using cerebral
cortical thickness measurements, we once reported widespread
cortical thickening in the orbitofrontal, middle frontal, and
supramarginal gyrus in LPE patients (Guo et al., 2017). A recent
fMRI study detected the resting-state FC density in LPE patients,
which found that anterior cingulate cortex, insula, and precuneus
had increased long-range FC density in LPE patients compared
to healthy controls (Lu et al., 2018). Although the role of gyrus
rectus and postcentral gyrus in LPE has not been reported
yet, the gyrus rectus is located in the medial orbital gyrus and
plays an inhibition role in sexual arousal (Stoleru et al., 2012),
and sensory stimuli from penis could induce Rolandic opercula
area and postcentral gyrus activation (Stoleru et al., 2012).
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So, despite our results were derived from a data-driven method,
these classification features that are involved in ejaculation and
other sexual behaviors extend our knowledge of the central
pathophysiology in LPE patients.

There are several limitations in the current study. We only
included LPE patients without secondary PE patients. So, we do
not know if our classifier was specific to LPE or trans-disease
subtypes across all PE patients. Further research is necessary to
include more subtypes of PE patients for classification studies.
In addition, other than FC, brain gray matter and white matter
structure have often been used as classification indicators. Li
et al. (2018) have used white matter indicators to successfully
distinguish venous erectile dysfunction patients from HCs.
These measures were not included in the present study, but
multimodal brain imaging information should be used in future
classification studies of PE.

CONCLUSION

By using machine learning analysis, this study identified
potential neuroimaging markers based on resting-state whole
brain FC that could distinguish LPE patients from HCs.
These classification features provide novel information for
explaining the central mechanisms of LPE, and further
emphasize the potential functional abnormalities of the central
inhibitory control network and sexual-related regions in
LPE patients.
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