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Hyperparameters and learning algorithms for neuromorphic hardware are usually chosen

by hand to suit a particular task. In contrast, networks of neurons in the brain were

optimized through extensive evolutionary and developmental processes to work well on

a range of computing and learning tasks. Occasionally this process has been emulated

through genetic algorithms, but these require themselves hand-design of their details

and tend to provide a limited range of improvements. We employ instead other powerful

gradient-free optimization tools, such as cross-entropy methods and evolutionary

strategies, in order to port the function of biological optimization processes to

neuromorphic hardware. As an example, we show these optimization algorithms enable

neuromorphic agents to learn very efficiently from rewards. In particular, meta-plasticity,

i.e., the optimization of the learning rule which they use, substantially enhances

reward-based learning capability of the hardware. In addition, we demonstrate for the first

time Learning-to-Learn benefits from such hardware, in particular, the capability to extract

abstract knowledge from prior learning experiences that speeds up the learning of new

but related tasks. Learning-to-Learn is especially suited for accelerated neuromorphic

hardware, since it makes it feasible to carry out the required very large number of

network computations.

Keywords: spiking neural networks, learning-to-learn, markov decision processes, multi-armed bandits,

neuromorphic hardware, HICANN-DLS, meta-plasticity, transfer learning

1. INTRODUCTION

The computational substrate that the human brain employs to carry out its computational
functions, is given by networks of spiking neurons (SNNs). There appear to be numerous reasons
for evolution to branch off toward such a design. For example, networks of such neurons facilitate
a distributed scheme of computation, intertwined with memory entities, thereby overcoming
known disadvantages in contemporary computer designs such as the von Neumann bottleneck.
Importantly, the human brain serves as an inspiration for a power efficient learning machine,
solving demanding computational tasks while consuming little resources. A characteristic property
that makes energy efficient computation possible is the distinct communication among these
neurons. In particular, neurons do not need to produce an output at all times. Instead, information
is integrated over time and communicated sparsely using a format of discrete events, “spikes.”

The connectivity structure, the development of computational functions in specific brain
regions, as well as the active learning algorithms are all subject to an evolutionary process. In
particular, evolution has shaped the human brain and successfully formed a learning machine,
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capable of carrying out a range of complex computations. In
close connection to this, a characteristic property of learning
processes in humans is the ability to take advantage of previous,
related experiences and use them in novel tasks. Indeed, humans
show both, the ability to quickly adapt to new challenges in
various domains, and the ability to transfer prior acquired
knowledge about different, but related tasks to new, potentially
unseen ones (Taylor and Stone, 2009; Robert Canini et al., 2010;
Wang and Zheng, 2015).

One strategy to investigate the benefit of a knowledge transfer
between different, but related learning tasks is to impose a so-
called Learning-to-Learn (L2L) optimization. L2L employs task-
specific learning algorithms, but also tries to mimic the slow
evolutionary and developmental processes that have prepared
brains for the learning tasks humans have to face. In particular,
L2L introduces a nested optimization procedure, consisting of an
inner loop and an outer loop. In the inner loop, specific tasks
are learned, while an additional outer loop aims to optimize
the learning performance on a range of different tasks. This
concept gave rise to an interesting body of work (Hochreiter
et al., 2001; Wang et al., 2016; Finn et al., 2017) and showed that
one can endow artificial learning systems with transfer learning
capabilities. Recently, this concept was also extended to networks
of spiking neurons. In a study by Bellec et al. (2018) it is shown
that a biologically inspired circuit can encode prior assumptions
about the tasks it will encounter.

Usually, one takes advantage of the availability of gradient
information to facilitate optimization, here instead, we
employ powerful gradient-free optimization algorithms
in the outer loop that emulate the evolutionary process.
In particular, we demonstrate the benefits of evolutionary
strategies (ES) (Rechenberg, 1973) and cross entropy methods
(CE) (Rubinstein, 1997), as they are able to deal with noisy
function evaluations and perform in high-dimensional spaces.
In the inner loop, on the other hand, we consider reinforcement
learning problems (RL problems), such as Markov Decision
Processes and Multi-armed bandits. Problems of this type
appear quite often in general and therefore, a rich literature has
emerged. However, it still remains that learning from rewards
is particularly inefficient, as the feedback is given by a single
scalar quantity, the reward. We show that by employing the
concept of L2L we can produce agents that learn efficiently
from rewards and exploit previous experiences on related,
new tasks.

As another novelty, we implement the learning agent
on a neuromorphic hardware (NM hardware). Specialized
hardware of this type has emerged by taking inspiration
of principles of brain computation, with the intent to port the
advantages of distributed and power efficient computation to
silicon chips (Mead, 1990). This holds the great promise to
install artificial intelligence in devices without cloud connection
and/or limited resource. Numerous architectures have been
proposed that are either based on analog, digital or mixed-signal
approaches: (Schemmel et al., 2010; Furber et al., 2014; Furber,
2016; Pantazi et al., 2016; Aamir et al., 2018; Ambrogio et al.,
2018; Davies et al., 2018; Wunderlich et al., 2018). We refer to
Schuman et al. (2017) for a survey on neuromorphic systems.

In order to further enhance the learning capabilities of
NM hardware, we exploit the adjustability of the employed
neuromorphic chip and consider the use of meta-plasticity. In
other words, we evolve a highly configurable plasticity rule that
is responsible for learning in the network of spiking neurons.
To this end, we represent the plasticity rule as a multilayer
perceptron (section 2.5.2) and demonstrate that this approach
can significantly boost learning performance as compared to
the level that is achieved by plasticity rules that we derive from
general algorithms, see section 3.3.

NM hardware is especially well-suited for L2L because it
renders the large number of simulations that need to be carried
out feasible. Spiking neurons that are simulated on NM hardware
typically exhibit accelerated dynamics as compared to their
biological counterparts. In addition, the chosen neuromorphic
hardware allows to emulate both, the RL environment as
well as the learning algorithm at the same acceleration factor
and hence, one unlocks the full potential of the specialized
neuromorphic chip.

First, in section 2 we will discuss our approaches andmethods,
as well as the set of tools (https://github.com/bohnstingl/
Neuromorphic_Hardware_learns_to_learn) that was used in
our experiments. In particular, the employed NM hardware is
discussed in section 2.3. Then, in section 3.1 we will exhibit the
increase in performance and learning speed that we obtained
on NM hardware for the conducted tasks and discuss which
gradient-free algorithms worked best for our setting. Afterwards,
we discuss in section 3.3 that performance can be further
increased by the adoption of a highly customizable learning rule,
i.e., meta-plasticity, that is shaped through L2L, and discuss its
relevance in transfer learning. We also discuss the impact in
terms of simulation time thanks to the underlying NM hardware.
Finally, we conclude our findings and results in section 4.

2. METHODS AND MATERIALS

This section provides the technical details to the conducted
experiments. First, we describe the background for L2L in
section 2.1, and discuss the gradient-free optimization techniques
that are employed. Subsequently, we provide details to the
reinforcement learning tasks that we considered (section 2.2).

Since the agent that interacts with the RL environments is
implemented on a NM hardware, we discuss the corresponding
chip in section 2.3. We exhibit the network structure that we used
throughout all our experiments in section 2.4. Subsequently, we
provide details to the learning algorithms that we used in section
2.5 and discuss methods for analysis.

2.1. Learning-to-Learn and Gradient-free
Optimization
The goal of Learning-to-Learn is to enhance a learning systems’
capability to learn. In models of neural networks, learning
performance can be enhanced by several methods. For example,
one can optimize hyperparameters that affect the learning
procedure or optimize the learning procedure as such. Often, this
optimization is carried out manually and involves a lot of domain
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knowledge. Here instead, we evolve suitable hyperparameters as
well as learning algorithms automatically by the means of L2L.

In particular, L2L introduces a nested optimization that
consists of two loops: an inner loop and an outer loop as displayed
in Figure 1. In the inner loop, one considers a particular taskCi in
which the modelN has to use its learning capabilities to succeed.
The outer loop, on the other hand, is responsible to adapt the
learning procedure that is used by N such that it becomes better
at learning tasks in a given family F that share some similar
concepts. To express the quality of the learning procedure, we
introduce a learning fitness f (Ci;2) that measures how well the
model N can learn a task Ci, e.g., what is the cumulative reward
that was achieved. This learning fitness depends on both the
specific task that is being learnt, as well as the hyperparameters
2 that characterize the learning procedure. We write the goal of
L2L is then as an optimization problem, where we want to find
hyperparameters that yield the best learning procedure for tasks
in the family F :

max
2′

EC∼F

[
f (C;2′)

]
. (1)

In practice, the family of tasks could be comprised of
infinite tasks and hence, the expectation in Equation
(1) is approximated using batches of N different tasks:
EC∼F

[
f (C;2)

]
≈ 1

N

∑N
i=1 f (Ci;2) = f̂ (2). As a result of

considering different tasks Ci in the inner loop each time, the
hyperparameters can only assume task independent concepts
that are shared throughout the family. In fact, one can consider
L2L as an optimization that happens on two different timescales:
fast learning of single tasks in the inner loop, and a slower
learning process that adapts hyperparameters in order to boost
learning on the entire family of learning tasks.

The L2L scheme allows separating the learning process in
the inner loop from the optimization algorithms that work in
the outer loop. We used Q-Learning and Meta-Plasticity to
implement learning in the inner loop (discussed in section 2.5),

FIGURE 1 | Learning-to-Learn scheme. Learning-to-Learn introduces a

nested optimization with two loops. In the inner loop a model is required to

perform a learning task Ci from a family F . The learning capabilities of the

model are influenced by hyperparameters 2 that are optimized in the outer

loop in order to maximize the average learning fitness over the entire task

family F .

while at the same time, we considered several gradient-free
optimization techniques in the outer loop. The requirements
for a well-suited optimization algorithm in the outer loop are
the ability to operate in a high-dimensional parameter space,
the ability to deal with noisy fitness evaluations, the ability to
find a good final solution and the ability to do so using a
small number of fitness evaluations. Due to this broad set of
requirements, the choice of the outer loop algorithm is non-
trivial and needs to be adjusted based on the task family that
is considered in the inner loop. We selected a set of gradient-
free optimization techniques such as cross-entropy methods,
evolutionary strategies, numerical gradient-descent as well as a
parallelized variation of simulated annealing. In the following,
we provide a brief outline of the algorithms used and refer to
the corresponding literature. For the concrete implementation,
we employ a L2L software framework that provides several such
optimization methods (Subramoney et al., 2019). In particular,
the L2L optimization is carried out on a Linux-based host
computer, whereas the inner loop is simulated in its entirety on
the later discussed neuromorphic hardware, section 2.3.

2.1.1. Cross-entropy (CE) (Rubinstein, 1997)
In each iteration, this algorithm fits a parameterized distribution
p(·;φ) to the set of n best-performing hyperparameters
in terms of maximum likelihood. In the subsequent step,
new hyperparameters are sampled from this distribution and
evaluated. Afterwards, the procedure starts over again until a
stopping criterion is met. Through this process, the algorithm
tries to find a region of individuals where the performance is high
on average. We used a univariate Gaussian distribution with a
dense covariance matrix.

2.1.2. Evolution Strategies (ES) (Rechenberg, 1973)
In each iteration, this algorithm maintains base hyperparameters
2 which are perturbed by random deviations ǫ to form a new set
of n hyperparameters. This set is then evaluated and ranked by
their fitness. In a subsequent step, the perturbations are weighted
according to their rank to produce a direction of increasing
fitness, which is used to update the base hyperparameters. Similar
to Cross-entropy, ES also finds a region of hyperparameters
with high fitness, rather than just a single one. Note that many
variations of this algorithm have been proposed that differ for
example in the way how the ranking or how the perturbations
are computed (Salimans et al., 2017). In particular, we used
Algorithm 1 from Salimans et al. (2017).

2.1.3. Simulated Annealing (SA) (Kirkpatrick et al.,

1983)
In each iteration, the algorithm maintains hyperparameters
2 and a temperature T. The hyperparameters are
perturbated with a random ǫ, whose size depends on the
temperature T, and are evaluated later. The fitness of the
unperturbed hyperparameters 2 is then compared with
the perturbated hyperparameters 2′. The 2′ replaces 2

with a probability of min
(
1, exp

(
−

(
f̂ (2′)− f̂ (2)

)
/T

))
.

In the next step, the temperature is decreased following
a predefined schedule and the new hyperparameters get
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perturbed. In contrast to the other methods discussed
before, a single set of hyperparameters is the result.
In our experiments, we simultaneously perform a
number of parallel SA optimizations, using a linear
temperature decay.

2.1.4. Numerical Gradient-Descent (GD)
In each iteration, the algorithm maintains hyperparameters 2

which are perturbed randomly in many directions and then
evaluated. Subsequently, the gradient is numerically estimated
and an ascending step on the fitness landscape is performed.

2.2. Reinforcement Learning Problems
In all our experiments we considered reinforcement learning
problems. Tasks of this type usually require many trials
and sophisticated algorithms in order to produce a well-
performing agent, since a teacher signal is only available in
the form of a scalar quantity, the reward. To the worse,
a reward does not arrive at every time step, but is often
given very sparsely and only for certain events. Figure 2A

depicts a generic reinforcement learning loop. The agent
observes the current state s(t) of the environment and has
to decide on an action a(t). In particular, the agent samples
an action according to policy π(a|s), which is a probability
distribution over actions a given a state s. Upon executing
the action, the environment will advance to a new state
s(t + 1) and the agent receives a reward r(t). In all our
experiments, the RL environment was simulated on the
neuromorphic chip.

2.2.1. Markov Decision Process
Markov Decision Processes (MDPs) are a well-known and
established model for decision making processes in literature. A
MDP is defined by a five-tuple (S,A, p, r, γ ), with S representing
the state space, A the action space, p the state transition function,
r the reward function and γ a discount factor that weights
future rewards differently from present ones. In particular, we

are concerned here with such MDPs that exhibit discrete and
finite state and action spaces. In addition, rewards are given in
the range of [0, 1]. Figure 2B shows a simple example of such a
MDP with ‖A‖ = 2 and ‖S‖ = 3.

The goal of solving aMDP is to find a policy actions that yields
the largest discounted cumulative reward R that is defined as:

R =

T∑

t=0

γ tr(t) (2)

In order to perform well on MDPs, the agent has to keep track
of the rewarding transitions and must therefore represent the
transition probabilities. Furthermore, the agent has to make a
trade-off between exploring new transitions and consolidating
already known transitions. Such problems have been studied
intensively in literature and a mathematical framework was
developed to optimally solve them by Bellman et al. (1954).
The so-called Value-Iteration (VI) algorithm emerged from
this framework and yields an optimal policy. Therefore, this
algorithm is considered as the optimal baseline in all following
MDP results.

In order to apply the L2L scheme, we introduce a family of
tasks consisting of MDPs with a fixed size of the action and the
state space. MDPs of that family are generated according to the
following sampling procedure: whenever a new task is required,
the rewards r and the transition probabilities p are randomly
sampled from the range [0, 1]. In addition, the elements of p are
normalized such that the outgoing probabilities for all actions in
each state sum up to 1.

We report our results in the form of a normalized discounted
cumulative reward, where we scale between the performance of
a random action selection and the performance of an optimal
action selection, given by a policy produced by VI.

2.2.2. Multi-Armed Bandits
As a second category of RL problems, we consider multi-armed
bandit (MAB) problems. A MAB is best described as a collection

FIGURE 2 | Structure of reinforcement learning problems with examples for Markov Decision Processes (MDPs) and Multi-armed bandits (MABs). (A) General

structure for reinforcement learning problems. An agent interacts with an environment in a loop. The agent selects an action based on state observations and receives

a reward. (B) Example MDP with three states and two actions. State transitions are marked as arrows with annotated transition probabilities. A reward for a particular

transition is indicated by a red arrow with the reward value along. Transitions with a probability of 0 or rewards with a value of 0 are omitted. (C) Illustration of a MAB:

bandit arms can be pulled that produce a reward stochastically. “Multi-Armed Bandit” by Carson Reynolds is licensed under CC BY-SA 3.0.
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of several one-armed bandits, each of which produces a reward
stochastically when pulled. A depiction of which can be found
in Figure 2C. In other words, one can view MAB problems
as MDPs with a single state and multiple actions. Despite the
deceptive simplicity of such problems, a great deal of effort was
made in science to study these problems and the celebrated
result of Gittins and Gittins (1979) showed that a learning
strategy exists.

For the sake of brevity, we use the same notations for MABs as
for MDPs. In particular, we say that the environment is always in
one state s1 and the agent is given the opportunity to pull several
bandit arms i, which corresponds to actions ai. In all experiments
regarding MABs, we considered two-armed bandits, where each
bandit produces a reward of either 0 or 1 with a fixed reward
probability pi. We investigate the impact of L2L on the basis of
two different families of MAB tasks:

1. unstructured bandits: A task of this family is generated
by sampling each of the two reward probabilities p1, p2
independently and uniform in [0, 1].

2. structured bandits: A task of this family is generated by
sampling the reward probability p1 uniformly in [0, 1] and
compute p2 = 1− p1.

Similar to MDPs, we report our results for MABs in the form
of a normalized cumulative reward, where we scale between the
performance of a random action selection and the performance
of an oracle that always picks the best possible bandit arm. As
a comparison baseline, we employ the Gittins index policy and
note that the computation of the Gittins index value is calculated
in the same way for both families. In particular, the Gittins index
values are calculated assuming that the reward probabilities are
independent (unstructured bandits).

2.3. Neuromorphic Hardware - HICANN
DLSv2
Various approaches for specialized hardware systems
implementing spiking neural networks emerged and
fundamentally differ in their realizations, ranging from
pure digital over pure analog solutions using optical fibers up
to mixed-signal devices (Indiveri et al., 2011; Nawrocki et al.,
2016; Schuman et al., 2017). Every NM hardware comes with
certain advantages and limitations, one promising platform is
the HICANN-DLS (Friedmann et al., 2017), herein it is used in
the prototype version 2.

The hardware is a prototype of the second generation
BrainScaleS-2 system currently under development as part of the
Human Brain Project neuromorphic platform (Markram et al.,
2011). It represents a scaled-down version of the future full-size
chip and is used to evaluate and demonstrate new features as
illustrated in this work.

Conceptually the chip is a mixed-signal design with analog
circuits for neurons and synapses, spike-based, continuous time
communication and an embedded microprocessor. The NM
hardware is realized in a 65 nm CMOS process node by the
company TSMC. It features 32 neurons of the leaky-integrate-
and-fire (LIF) type connected by a 32x32 crossbar array of

synapses such that each neuron can receive inputs from a
column of 32 synapses. Synaptic weights can be set with a
precision of 6-bits and can be configured row-wise to deliver
excitatory or inhibitory inputs. Synapses feature local short-term
(STP) and long-term (STDP) plasticity, which is implemented by
the embedded microprocessor described later. All analog time
constants are scaled down by a factor of 1000 to represent an
accelerated neuromorphic system compared to biological time-
scales, a feature that is strongly exploited in this paper.

The embedded microprocessor is a 32-bit CPU implementing
the Power-PC instruction set with custom vector extensions.
It is used as a plasticity processing unit (PPU) to implement
all synaptic weight changes. In particular, the PPU allows to
devote memory to synapses in order to equip them with tagging
mechanisms such as eligibility traces. As a general purpose
processor, it can also act on any other on-chip data like neuron
and synapse parameters as well as on the network connectivity.
It can also send and receive off-chip signals like rewards or
other control signals. Because of the large freedom in specifying
programs for the PPU (written in C), we investigated different
learning algorithms that are explained in section 2.5. They all
exploit the proposed network structure from section 2.4 and
have the commonality, that the reward information of the state
transitions is encoded in the synaptic efficacy. In addition to
learning algorithms, the plasticity processing unit also allows
implementing environments for an agent. Since the system
features a high speedup factor, any environment must also
provide the same speedup factor in order to unlock full potential
of the neuromorphic hardware, when using a closed-loop setup.

Some of the basic design rationales behind the second
generation BrainScaleS-2 system with special emphasis on the
PPU are described in Friedmann et al. (2017). Figure 3A

shows the micrograph of the hardware and Figure 3B shows
the measurement setup. In addition to other components,
the measurement setup hosts the neuromorphic chip, a USB-
Interface to connect the baseboard with a host computer as
well as a separate FPGA board to control the experiments.
The micrograph of the neuromorphic chip shows the different
components and where they are located. A description of the
actual prototype used in this work including details on the
neuron implementation and the synaptic array can be found in
Aamir et al. (2016).

2.4. Network Structure and Action
Selection
As discussed in section 2.2, the agent is required to select
an appropriate action a(t) given a particular state s(t) of
the environment. We discuss in this Section how the agent
can be implemented using a network of spiking neurons on
neuromorphic hardware. Since our experiments were concerned
with either Multi-armed bandits or Markov Decision Processes,
we designed the network structure for the more general MDP
problems. In particular, the design is based on the Markov
Property of MDPs, using the fact that the next state s(t + 1)
solely depends on the chosen action a(t) and the current state
s(t), similarly to Friedrich and Lengyel (2016).
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Concretely, we make use of a feed-forward network of spiking
neurons with two populations, as illustrated in Figure 4A.
One population encodes the state of the environment (state
population, marked in red) and the second population encodes
all possible action choices (action population, marked in blue).
We assume that all states exhibit the same number of possible

actions. Under this assumption, the resulting agent commits to
specific actions by the following action selection protocol: Given
that the agent finds itself in state sj, then the corresponding state
neuron receives stimulating input and produces output spikes
that are transmitted to the neurons ai of the action population by
excitatory synapses wij. Eventually, this stimulation will trigger

FIGURE 3 | Neuromorphic chip micrograph and measurement setup adopted from Aamir et al. (2016). (A) Micrograph of the neuromorphic hardware. The plasticity

processing unit, the area responsible for the synaptic part, the neuronal part, a memory area as well as analog to digital converters (ADCs) are marked. (B)

Measurement setup and prototype board. The board shows the neuromorphic chip itself, the interface to the host computer and a supportive FPGA board.

FIGURE 4 | Neural network structure and realization on neuromorphic hardware. (A) Network structure with two populations: state population (red), action population

(blue). Excitatory synapses wij (black and red) are plastic and used for learning. Inhibitory synapses (gray) introduce mutual inhibition in the action population. (B)

Mapping of the network onto the neuromorphic hardware. Synapses are organized in crossbar array of size (32 x 32). We use autapses (green) for persistent exication

of state neurons. Persistent excitation is stopped by additional inhibitory synapses that connect the action population to the state population. (C) Three examples of

the action selection process. In case 1, none of the action neurons received enough input to emit a spike: a random action is selected. In case 2, each action neuron

emits a spike: A random action among active neurons is selected. In case 3, only a single neuron of the action population emits a spike that determines the selected

action.
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a spike in the action population, depending on the synaptic
strengths wij. The action a(t) that will be taken is determined
by the neuron of the action population that emits a spike first.
In addition, neurons coding for actions are connected inhibitory
among each other with synapses of strength ξ , through which a
WTA-like network structure arises. Due to thismutual inhibition,
mostly a single neuron of the action population will emit a spike
and hence, trigger the corresponding action.

In practice, additional tricks are required to implement the
proposed scheme on the neuromorphic device, see Figure 4B.
To continually excite the active state neuron, we send a single
spike that triggers a persistent firing through strong excitatory
autapses (marked in green). If a neuron from the action
population eventually emits a spike, the active state neuron
needs to be prevented from further spiking. For this purpose,
we use inhibitory synapses of strength ζ projecting from action
neurons to state neurons. Due to synaptic delays, more than
one action neuron may emit a spike. In such a case, an action
is randomly selected among the set of active neurons. It is to
be noted that smaller inhibition weights lead to more random
exploration, because insufficient inhibition will not prevent
spikes of other action neurons, in which case action selection
becomes randomized.

One other implementation detail comes from the fact that the
synaptic weights on the NM hardware yield a limited resolution
of only 6 bit. This might cause that weights saturate at either 0
or the maximum weight value and prevent efficient learning. To
avoid this problem, the weights wij are rescaled with a certain
frequency frescale according to:

k =
Wmax −Wmin

max(wij)−min(wij)
(3)

d = Wmax − kmax(wij) (4)

w′
ij = kwij + d (5)

where Wmax and Wmin provide the upper and lower
rescale boundary.

Figure 4C depicts typical examples of the action selection
process for three common cases occurring throughout the
learning process. In case 1 (usually before training), a state
neuron, i.e., corresponding to state 2, is active and persistently
emits a spike. However, none of the synapses connecting to the
action neurons is strong enough to cause a spike. In such a case,
after a predefined time, the state neuron is externally inhibited
and a random action is selected by the implementation of the
environment. In case 2 (likely during learning), another state
neuron is active, but all synapses to the action neurons are strong
enough to cause every action neuron to spike before the mutual
inhibition sets in. In such a case, a random action among the
active action neurons is selected (random selection is performed
by the environment). Eventually, the system reaches case 3 (after
learning), where a single action neuron is excited by a given
state neuron.

Learning in this network structure is implemented by synaptic
plasticity rules that act upon the excitatory weights wij projecting
from the state to the action population. In particular, these

weights pin down which action has the highest priority for
each state.

2.5. Learning Algorithms
2.5.1. Q-Learning
MDPs have been studied intensively in computer science and
a rigorous framework on how to solve problems of this kind
optimally was introduced by Bellman. An important quantity
in MDPs is the so-called Q-Function, or Action-Value function.
The Q-Function Qπ (s, a) expresses the expected discounted
cumulative reward, when the agent starts in state s, takes action
a and subsequently proceeds according to its policy π . Formally,
one writes this as:

Qπ (sj, ai) = E

[
∞∑

k=0

γ kr(t + k+ 1)|s(t) = sj, a(t) = ai

]
(6)

where γ is the discount factor of the MDP and r(t) is the
immediate reward at time step t. As discussed before in section
2.2.1, we consider only discrete MDPs and the Q-Functions can
therefore be represented in a tabular form. This property suits our
network structure, since the synapses that project from the state
population to the action populationwij can represent all Q-values

Qπ (sj, ai). Hence, we define wij
def
= Qπ (sj, ai).

To solve MDPs, the goal is to determine the optimal policy
π∗. A common approach is to infer the Q-Function of an optimal
policy Q∗ and then reconstruct the policy according to:

π∗(a|s) =

{
1 if a = arg maxa′Q

∗(s, a′)

0 else
(7)

Indeed, as we aim to encode Q-values in synaptic weights wij, we
emphasize that the argmax operation will be naturally carried out
by the spiking neural network, as proposed in section 2.4. To infer
the Q-values of the optimal policy, we derive rules of synaptic
plasticity based on temporal difference algorithms as proposed
by Sutton and Barto (1998).

2.5.1.1. TD(1)-Learning
Temporal Difference Learning (TD(1)-Learning) was developed
as a method to obtain the optimal policy. The estimate of the
optimal Q-Function is improved based on single interactions
with the environment and TD(1)-Learning is guaranteed to
converge to the correct solution (Watkins and Dayan, 1992;
Dayan and Sejnowski, 1994). Based on TD(1), the synaptic weight
updates take on the following form:

wij(t + 1) = wij(t)+ α

(
r(t)+ γ max

k
wkj(t)− wij(t)

)

for s(t) = sj, a(t) = ai (8)

Where α denotes a learning rate.
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2.5.1.2. TD(λ)-Learning
The convergence speed of TD(1)-Learning can be further
improved if one uses additional eligibility traces eij(t) per synapse.
The resulting algorithm is then referred to as TD(λ)-Learning. In
particular, the trace eij indicates to what extent a current reward
makes the earlier visited state-action pair (sj, ai) more valuable
and several convergence proofs of the resulting algorithm have
been established (Dayan, 1992; Dayan and Sejnowski, 1994). To
implement the algorithm, we update eligibility traces at every
time step t according to the schedule

eij(t) =

{
γ λeij(t − 1)+ 1 if s(t) = sj and a(t) = ai

γ λeij(t − 1) otherwise
(9)

where the parameter λ ∈ [0, 1] controls how many state
transitions are taken into account. In the limit of λ = 1 one
obtains TD(1)-Learning. In addition, we define an error δ(t)
according to

δ(t) = r(t)+γ max
k

wkj(t)−wij(t) for s(t) = sj, a(t) = ai (10)

which enables us to express the resulting plasticity rule as a
product of the eligibility trace and error δ(t). This update is
carried out for every synapse wij:

wij(t + 1) = wij(t)+ αδ(t)eij(t) for all i, j (11)

2.5.2. Meta-Plasticity
In order to tailor the specific update rule toward the actual
task family at hand, we approached the problem also from the
perspective of meta-plasticity. That is, we represent the synaptic
weight update by a parameterized function approximator. We
then optimize its parameters with L2L in such a way that a
useful learning rule for a given task family emerges. We used
a multilayer perceptron, the architecture of which is visualized
in Figure 5. The perceptron receives five inputs, computes seven
hidden units with sigmoidal activation and provides one output,
the weight update 1wij. Effectively, the input to output mapping
of this approximator is specified by a number of free parameters
θ (weights of the multilayer perceptron) that are considered as
hyperparameters and optimized as part of the L2L procedure.
Since the multilayer perceptron is a type of an artificial neural
network, this plasticity rule is referred to as ANN learning rule.
The update of synaptic weights wij thus takes on the general
form of:

wij(t + 1) = wij(t)+ fANN(inputsij(t); θ) (12)

The specific choice of inputs is salient for the possible set of
learning rules that can emerge. In the case of the ANN learning
rule, we only considered structured MAB, where each of the two
synapses is updated at every time step. We set the inputs in this
case to a vector

inputsi 1(t) =




t
11a(t)=ai
r(t)

wi 1(t)
w3−i 1(t)




(13)

FIGURE 5 | Meta-plasticity for a two-armed bandit task. The plasticity rule is

represented by a parametrized multi-layer perceptron with one hidden layer

(denoted as ANN). It receives as inputs the time step t, a binary flag 1a(t)=ai
that indicates if the weight to be updated was responsible for the selected

action, the obtained reward r(t), as well as the weights wi 1 and w3−i 1.

that is composed of the current time step t, the obtained reward
r(t), the weight wi 1(t), and the weight of the synapse associated
to the other bandit arm w3−i 1(t). In addition, we included here a
binary flag 11a(t)=ai that is one iff the postsynaptic neuron caused
the executed action at the last time step.

2.6. Analysis of Meta-Plasticity
After optimizing an artificial neural network in our meta-
plasticity approach, we may have limited insight in what causes
the emergent plasticity rule to work well. Therefore, we conduct
in section 3.3 an analysis of the arising plasticity rule based on
an approach called functional Analysis of Variance (fANOVA)
which was presented by Hutter et al. (2014). This method
originally aims to assess the importance of hyperparameters in
the machine learning domain. It does so by fitting a random
forest to the performance data of themachine learningmodel that
was gathered using different hyperparameters.

We adopted this method but applied it to a slightly different,
but related problem. Our goal is to assess the impact of each input
of the ANN rule with respect to its output. To do so, the weights
2 of the plasticity network remain fixed, while the input values
to the plasticity network as well as the output from the plasticity
network are considered as inputs to the fANOVA framework.
Based on this data, a random forest with 30 trees is fitted and
the fraction of the explained variance of the output with respect
to each input variable can be obtained.

3. RESULTS

This section presents the results of our approach implemented
on the described neuromorphic hardware. First, we report
how L2L can improve the performance and learning speed
in section 3.1. Then, we investigate the impact of outer loop
optimization algorithms in section 3.2 and demonstrate in
section 3.3 that Meta-Plasticity yields competitive performance,
while also enhancing transfer learning capabilities. Finally, we
investigate the speedup gained from the neuromorphic hardware
by comparing our implementation on the NM hardware
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to a pure software implementation of the same model in
section 3.4.

3.1. Learning-to-Learn Improves Learning
Speed and Performance
Here, we first demonstrate the generality of our network
structure when applied to Markov Decision Processes. Then, we
examine the effects of an imposed task structure more closely by
investigating Multi-armed Bandit problems. To efficiently train
the network of spiking neurons, we employed Q-Learning and
derived corresponding plasticity rules, as described in see section
2.5.1. The plasticity rule, as well as the concrete implementation
on NM hardware, are influenced by hyperparameters 2 that we
optimized by L2L, such that the cumulative discounted reward
for a given family of tasks is improved on average, see section 2.1.

We implemented a neuromorphic agent that learns MDPs.
In fact, the proposed network structure in section 2.4 is
particularly designed for such tasks and we applied concretely
TD(λ), see Equation (11). Hyperparameters included all
occurring parameters of the employed TD(λ)-Learning rule
α, γ , λ, the inhibition strength among the action neurons
ξ , the strength of inhibitory weights connecting the action
neurons to the state neurons ζ , as well as the variables
influencing the hardware-specific rescaling frescale,Wmax and
Wmin. Therefore, the complete hyperparameter vector was
given as 2 = (α, γ , λ, ξ , ζ , frescale,Wmax,Wmin). We used
the discounted cumulative reward, Equation (2), as the fitness
function f (C;2) and optimized 2 using CE. We used a batch
size of N = 20.

The results for theMDP tasks are depicted in Figure 6Awhere
we report the discounted cumulative reward for T = 2, 000 steps.
The discounted cumulative reward is normalized in such a way,
that VI is scaled to 1 and the random policy is scaled to 0. To
compare with, we used TD(λ)-Learning as a baseline, using the
implementation from a software library1 without a spiking neural
network (green line).

We found that applying L2L improved the discounted
cumulative reward (red solid line), compared to the case
where the hyperparameters are randomly chosen (blue line). In
addition, the learning speed was also increased, which can be seen
in the zoom depicted in Figure 6B.

In the case of MABs, we focused on small networks and
two arms in the bandit, which allowed us to complement the
results that were obtained for general MDPs of larger size.
We considered two families of MABs: unstructured bandits
and structured bandits (2.2.2) which the neuromorphic agent
had to learn using the TD(1)-Learning rule, see Equation (8),
where we set γ = 1. In addition, we introduced here a
learning rate schedule α(t) = αt

decay
· α0 that decays a base

learning rate α0 at every time step by a constant decay factor of
αdecay ∈ [0, 1]. We then used L2L to carry out a hyperparameter
optimization separately for both MAB families and optimized
the parameters of the TD(1)-Learning rule α0 and αdecay, the
inhibition strength among action neurons ξ and the inhibitory

1https://pymdptoolbox.readthedocs.io/en/latest/index.html

FIGURE 6 | Impact of L2L for Markov Decision processes. (A) Average

learning performance on the MDP task family (‖S‖ = 2, ‖A‖ = 4) using

TD(λ)-Learning, see Equation (11). Learning performance is expressed as the

normalized cumulative discounted reward (0 random, 1 optimal) and is

averaged over 50 different tasks. Shaded areas mark the uncertainty of the

mean. (B) Zoom into the first 200 steps to emphasize increased learning

speed.

weights of synapses that connect the action population to the
state population ζ . Hence, the hyperparameter vector was given
as 2 = (α0,αdecay, ξ , ζ ). We used the cumulative reward as the
fitness function f (C;2) and optimized 2 using CE. We used a
batch size of N = 40.

In Figure 7 we report the performance results that were
obtained before and after applying L2L. The agent interacted
for T = 100 steps with a single MAB and we compare with a
baseline given by the Gittins index policy, as described in section
2.2.2. We found that after performing a L2L optimization the
performance was enhanced, which was even more apparent for
structured bandits. In particular, L2L endowed the agent with
a better learning speed, which is exhibited by a faster rising
of the performance curve. This can only be achieved when
the hyperparameters of the learning system are well-tailored
to the tasks that are likely to be encountered, which was the
responsibility of L2L. We also observed that the agent could
still learn a MAB task to a reasonable level even if no L2L
optimization was carried out. This is implied by the fact that
TD(1)-Learning is primed to learn RL tasks. However, this also
raises the question of how well such a general plasticity rule can
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FIGURE 7 | Impact of L2L for Multi-armed Bandit tasks. We report the

normalized cumulative reward (0 random, 1 optimal) on MAB tasks averaged

over 1, 000 different tasks. The shaded areas mark the uncertainty of the

mean. The neuromorphic agent uses TD(1)-Learning, see Equation (8). (A)

unstructured bandits (B) structured bandits.

adapt to the level of variations exhibited by analog circuitry. We
consider extensions in section 3.3.

3.2. Performance Comparison of
Gradient-Free Optimization Algorithms in
the Outer Loop
The results presented so far suggest that the concept of L2L can
improve the overall performance and also lays the foundation
that abstract knowledge about the task family at hand is
integrated into an agent. However, the choice of a proper outer
loop optimization algorithm is also crucial for this scheme to
work well. The modular structure of the L2L approach used in
this paper allows to interchange different types of optimization
algorithms in the outer loop for the same inner loop task. To
demonstrate the impact in terms of performance when using
different optimization algorithms, several such algorithms were
investigated for both general MDPs and also for specialized
MAB tasks. Figure 8 shows a comparison of the final discounted
cumulative reward at the end of the tasks for different outer loop
optimization algorithms.

Depending on the inner loop task considered, we found
that the cross-entropy (CE) method, as well as evolution
strategies (ES), work well because both aim to find a region

FIGURE 8 | Performance impact of different outer loop algorithms. We exhibit

the performance of an L2L optimized neuromorphic agent on MDP tasks with

‖S‖ = 2 and ‖A‖ = 4. The performance is measured as the final normalized

discounted cumulative reward after T = 2, 000 steps and are averaged over

50 different tasks. We compare Cross-Entropy (CE), Evolution strategies (ES),

Simulated annealing (SA), and numerical Gradient descent (GD), as described

in section 2.1. The dimensionality of the hyperparameter vector was 8, as in

section 2.2.1.

in the hyperparameter space, where the fitness is high. This
property is particularly desired when it comes to noise in
the fitness landscape due to imperfections of an underlying
neuromorphic hardware. In addition, both can cope with noisy
fitness evaluations and do not overestimate a single fitness
evaluation which could easily lead to a wrong direction in the
presence of high noise in the fitness landscape.

However, a simpler algorithm such as simulated annealing
(SA) can also find a hyperparameter set with rather
high fitness. Especially when running multiple separate
annealing processes in parallel with different starting points,
the results can almost compete with the ones found by
CE or ES. However, SA does not aim at finding a good
parameter region but just tries to find a single good set of
working hyperparameters. This is prone to cause problems
because a single good set of hyperparameters offers less
robustness compared to an entire region of well-performing
hyperparameters. A simple numerical gradient-based approach
did not yield good results at all because of the noisy fitness
landscape. In general, the developer is free to choose any
optimization algorithm in the outer loop when using L2L.
New algorithms can also be implemented which are specially
tailored to a particular problem class, which can lead to a new
research direction.

3.3. Performance Improvement Through
Meta-Plasticity
Since the plasticity rule used so far is based on TD(1)-
Learning, and also agnostic to the hardware being used, we
raised the question if one could improve training on particular
tasks by using an evolved plasticity rule, tailored specifically
toward the neuromorphic device and task family at hand. We
specified the plasticity rule by a multilayer perceptron with 7
hidden units (Figure 9) and considered the weights thereof as
hyperparameters. This is apparently the first example of meta-
plasticity on neuromorphic hardware, where a rule for synaptic
plasticity is evolved through optimization by L2L.
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FIGURE 9 | Meta-plasticity for a two-armed bandit task. (A) The plasticity rule is represented by a parametrized multi-layer perceptron. (B) Performance of the

meta-plasticity as compared to an optimized TD(1)-Learning neuromorphic agent and Gittins index on structured MABs. (C) Relative contributions of each input to the

variance of the weight update as computed by fANOVA. Mostly responsible are the action flag and the reward signal. (D) The weight update as shown for the different

possible cases of 1a(t)=ai and r(t) depending on the current weight wi 1. Shaded areas indicate effects of inputs that are not fixed by the variables on the axes: t and

w3−i 1.

To test the approach, we used L2L to optimize all occurring
hyperparameters on the task family of structured bandits. In
particular, the hyperparameter vector was composed of the
parameters of the plasticity rule θ and the inhibition strengths
ξ and ζ : 2 = (θ , ξ , ζ ). We used the cumulative reward,
Equation (2), as the fitness function f (C;2) and optimized 2

using CE with a batch size of N = 40.
We summarize our results in Figure 9 and observed a

drastic increase in learning performance. Clearly, the use of
meta-plasticity endowed the agent with better skill at learning
structured bandits, as compared to the TD(1)-Learning rule. It
also allows the agent to achieve a performance that is on the same
level as the Gittins index policy. This highlights that the evolved
plasticity rule can absorb task-structure, and counteract possible
negative effects of imperfections in the neuromorphic hardware.

Even though the arising learning rule performswell on average
on the family of tasks it has been trained on, there is no theoretical
guarantee for that. Hence, an analysis of the optimized learning
rule was conducted, where we examined the importance of the
multiple inputs provided to the update rule for the resulting
output, see Figure 9C. Apparently, the most important inputs
are the flag that represents if the current weight was responsible
for the last action and the obtained reward. Since both of the
inputs can assume only two values, one can visualize the four
different cases in four different curves. We report the expected
weight change depending on the current weight, see Figure 9D,

where we average over other unspecified inputs. Updates for
weights which were responsible for the previous action are in the
direction of the obtained rewards. Hence, the meta-plasticity rule
reinforced actions depending on the reward outcome, similarly
to Q-learning rules. Interestingly however, the update of the
synaptic weight which had not caused the last action was always
negative independently of the reward. We believe that L2L
simply found that it does not matter what happens to the
weight that did not cause actions, because as long as it does
not increase, it will not disturb the current belief of the best
bandit arm.

To test if the reinforcement learning agent on the
neuromorphic hardware has been optimized for a particular
range of tasks, we carried out another experiment. We tried
to answer if the agent can take advantage of the abstract
task structure if it was present. To do so, we always tested
learning performance on structured bandits, denoted as
F ′. For optimization with L2L, we instead used either
unstructured bandits or structured bandits, and we denote
the family on which hyperparameter optimization was
carried out by F . This experimental protocol (Figure 10A)
allowed us to determine to which extent abstract task
structure can be encoded in hyperparameters. We report
the results for neuromorphic agents in Figure 10B, where we
considered the TD(1)-Learning rule and the meta-plasticity
learning rule. Consistently, we observed that optimizing
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FIGURE 10 | Transfer-learning. (A) Setup to investigate transfer learning capabilities. (B) Comparison of transfer-learning capabilities of different learning rules. The

meta-plasticity update rule (ANN) can potentially encode more task structure through a greater dimensionality of the hyperparameter vector 2.

hyperparameters for the appropriate task family enhances
performance. However, we conjecture that the greater
adjustability of the meta-plasticity learning rule renders it
to be better suited for transfer learning as compared to
TD(1)-Learning rule.

3.4. Exploiting the Benefit of Accelerated
Hardware for L2L
One of the main features of neuromorphic hardware devices
is the ability to simulate spiking neural networks very fast and
efficiently. To make this more explicit for the MDP tasks, a
software implementation with the same network structure and
the same plasticity rule was conducted on a standard desktop PC
using one single core of an IntelTM XeonTM CPU X5690 running
at 3.47 GHz. The spiking neural network was implemented using
the Neural Simulation Tool (NEST) (Gewaltig and Diesmann,
2007) with a Python interface and the plasticity rule as well as the
environment were also implemented in Python. To have a better
comparison, two families ofMDP tasks with different sizes of ‖S‖
and ‖A‖ were defined. The first family is defined by ‖S‖ = 2 and
‖A‖ = 4 (small MDP) and the second family by ‖S‖ = 6 and
‖A‖ = 8 (large MDP).

Figure 11A shows a comparison of the simulation time
needed for a single randomly selected MDP tasks, averaged
over 50 MDPs and for each of the two families. The simulation
times include implementation specific overheads, for example,
the communication overhead with the neuromorphic hardware.
One can see that the simulation time needed for MDP tasks with
both sizes are shorter using the neuromorphic hardware and
in addition, the simulation time needed to solve the larger task
does not increase. First, this indicates, that the neuromorphic
hardware can carry out the simulation of the spiking neural
network faster and second, that using a larger network structure
does not yield an additional cost, as long as the network can fit
on the NM hardware. In contrast to this, using more neurons
requires longer simulation times in pure software. A similar key
message can be found in Figure 11B, where instead of a single
MDP run, an entire L2L run is evaluated on the neuromorphic
hardware as well as with the software implementation. Both, the
L2L run on neuromorphic hardware as well as the one in software

can in principle be easily parallelized when using more hardware
systems or more CPU cores which would decrease the overall
simulation time. Note that scheduler overheads are not taken
into considerations.

4. DISCUSSION

Outstanding successes have been achieved in the field of deep
learning, ranging from scientific theories and demonstrators to
real-world applications. Despite impressive results, deep neural
networks are not out of the box suitable for low-power or
resource-limited applications. Instead, spiking neural networks
are inspired by the brain, an arguably very power efficient
computing machine. In this work we employ a neuromorphic
hardware that was designed to port key aspects of the astounding
properties of this biological circuitry to silicon devices.

The human brain has been prepared by a long evolutionary
process with a set of hyperparameters and learning algorithms
that can be used to cover a large variety of computing and
learning tasks. Indeed, humans are able to generalize task
concepts and port them to new, similar tasks, which provides
them with a tremendous advantage as compared to most of the
contemporary neural networks. In order to mimic this behavior,
we employed gradient-free optimization techniques, such as the
cross-entropy method or evolutionary strategies (see section 2.1),
applied in a Learning-to-Learn setting. This two-looped scheme
combines task-specific learning with a slower evolutionary-
like process that results in a good set of hyperparameters as
demonstrated in section 3.1. The approach is generic in the sense
that both, the algorithms mimicking the slower evolutionary
process and the learning agent can be exchanged. In principle,
any agent with learning capabilities can be used as the learning
agent and any optimization algorithms as the evolutionary
process. We found that some outer loop optimization algorithm
perform better than others and the optimization algorithms
should ideally be chosen with the inner loop task in mind.
Outer loop optimization algorithms need to operate in a high-
dimensional parameter space, have the ability to deal with noisy
result evaluations, have the ability to find a good final solution
and also require a low number of parameter evaluations before
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FIGURE 11 | Impact of accelerated neuromorphic hardware on simulation time. (A) Shows the comparison of the required simulation time, averaged over 50 different

MDP tasks of two different sizes. In software simulations, only a single CPU core was used. The simulation time of the NM hardware is shorter and remains constant

for the two families. (B) Shows the duration comparison for an entire L2L optimization for two different families.

reaching a good solution. Algorithms that aim to find a region
of hyperparameters with high performance such as evolution
strategies or cross-entropy worked the best for us, see section 3.2.

L2L offers both, either to find optimal hyperparameters for
a fixed individual task or to boost transfer learning capabilities
of an agent when using a family of tasks. In addition, new
optimization algorithms can be developed to further improve
performance in the outer loop of L2L. In this work, we
used reinforcement learning problems in connection with NM
hardware to demonstrate the aforementioned benefits.

In particular, the concept of L2L allows to shape highly
adjustable plasticity rules for specific task families. The usage
is not only limited to spiking neural networks but can also be
applied to artificial neural networks. This may yield potential
for a future research direction. Apparently, this is the first
time that the idea of L2L and Meta-Plasticity was applied to a
NM hardware, see section 3.3. In addition, the NM hardware
provides the possibility to implement advanced plasticity rule
on a separate digital processor on-chip. This enables the
search for new plasticity rules and might also enable new
research directions.

A central role in the approaches explained in this paper is the
used NM hardware. It allows to emulate a spiking neural network
with a significant speedup compared to the biological equivalent,
which makes a large number of computations, required in the
L2L scheme feasible. To quantify the overall speedup of the
accelerated NM hardware, a comparison with a pure software
simulation on a conventional computer was carried out (see
Figure 11). We conclude that the two-looped L2L scheme as
well as the highly adjustable on-chip plasticity rule are especially
suited for accelerated neuromorphic hardware.
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