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Brain–computer interfaces (BCIs) benefit greatly from performance feedback, but
current systems lack automatic, task-independent feedback. Cortical responses elicited
from user error have the potential to serve as state-based feedback to BCI decoders.
To gain a better understanding of local error potentials, we investigate responsive
cortical power underlying error-related potentials (ErrPs) from the human cortex during
a one-dimensional center-out BCI task, tracking the topography of high-gamma (70–
100 Hz) band power (HBP) specific to BCI error. We measured electrocorticography
(ECoG) in three human subjects during dynamic, continuous control over BCI cursor
velocity. Subjects used motor imagery and rest to move the cursor toward and
subsequently dwell within a target region. We then identified and labeled epochs
where the BCI decoder incorrectly moved the cursor in the direction opposite of the
subject’s expectations (i.e., BCI error). We found increased HBP in various cortical
areas 100–500 ms following BCI error with respect to epochs of correct, intended
control. Significant responses were noted in primary somatosensory, motor, premotor,
and parietal areas and generally regardless of whether the subject was using motor
imagery or rest to move the cursor toward the target. Parts of somatosensory, temporal,
and parietal areas exclusively had increased HBP when subjects were using motor
imagery. In contrast, only part of the parietal cortex near the angular gyrus exclusively
had an increase in HBP during rest. This investigation is, to our knowledge, the first
to explore cortical fields changes in the context of continuous control in ECoG BCI.
We present topographical changes in HBP characteristic specific to the generation
of error. By focusing on continuous control, instead of on discrete control for simple
selection, we investigate a more naturalistic setting and provide high ecological validity
for characterizing error potentials. Such potentials could be considered as design
elements for co-adaptive BCIs in the future as task-independent feedback to the
decoder, allowing for more robust and individualized BCIs.

Keywords: brain–computer interface, electrocorticography, error-related potential, error potential, execution
error, low-level error
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INTRODUCTION

Everyone makes mistakes and can learn from them. But the
neurophysiological mechanisms behind how we recognize and
use these mistakes to learn is still not completely understood.
Prior studies have focused on the error-related potential (ErrP),
an event-locked electrophysiological response generated during
task rule violations. The vast majority of our understanding
to date of the ErrP originates from electroencephalography
(EEG) studies (Ferrez and Millan, 2008; Iturrate et al., 2013;
Spüler and Niethammer, 2015; Zhang et al., 2015; Kreilinger
et al., 2016). The typical coverage and high temporal resolution
of EEG, relative to fMRI, allow for the identification of
wide-spread voltage changes in response to error. However,
because EEG is non-invasive, electrical signals from the cortex
attenuate and diffuse as they travel up through the skull,
leading to lower signal-to-noise ratio (SNR) and challenges
in source localization (Jatoi et al., 2014; Olson et al., 2016).
To circumvent some of these limitations, we investigate
error-related potentials in a one-dimensional brain–computer
interface (BCI) task using subdural electrocorticography (ECoG)
in human subjects.

Brain–computer interfaces represent a particularly useful
opportunity to characterize error-related brain responses. BCIs
rely on closed-loop (typically) visual feedback to inform the
user of their control and on-going performance. This feedback
is hypothesized to be key to the BCI learning process and
performance improvement (Green and Kalaska, 2011), analogous
to the utility of somatosensory feedback during the acquisition of
new motor skills (Newell, 1991). BCI decoders have traditionally
been static, in the sense that initial parameters in the algorithm
would be set and only changed by manual updates performed
by the BCI technician. Recently, however, there has been a push
to develop dynamic feedback systems that automatically update
over time based on pre-task parameters (DiGiovanna et al., 2009;
Orsborn et al., 2014; Pohlmeyer et al., 2014; Merel et al., 2015).
However, most efforts so far rely on knowledge of the task and
of actuator kinematics, thus limiting BCI co-adaptation to the
research setting and do not allow for automatic updating based
on signals generated by the user. A co-adaptive BCI may improve
the user experience by promoting faster mastery of the BCI and
by allowing longer term use through accounting for changes in
the brain due to plasticity.

Our motivation in this report was to gain a better
understanding of the electrophysiological signatures of error
potentials in BCI and whether this will serve to better inform
unsupervised co-adaptive BCIs. Specifically, relying on ErrPs
as a feedback source to inform adaptive BCI decoders, rather
than on specific task data, will allow for BCI use in less
constrained environments.

Previous work suggests there are different types of error-
related potentials which manifest in different contexts (Milekovic
et al., 2012; Spüler and Niethammer, 2015). Such potentials
are generally categorized into two classes, high-level error and
low-level error (Krigolson and Holroyd, 2007). Krigolson and
Holroyd distinguish the two on temporal disparities. Specifically,
low-level errors are those immediately correctable in control, and

high-level errors as not immediately correctable, which prevent
the achievement of a desired goal (Krigolson and Holroyd,
2007). For example, a reactionary turn of the steering wheel to
adjust for an unseen bump in the road would be considered
low-level error, and failing to reach your destination would be
considered high-level error. High-level error, also called outcome
error, is thought to be represented by the error-related negativity
(ERN), which is often localized to the medial-frontal cortex
(Krigolson and Holroyd, 2007; Wessel, 2012) and is believed to
be essential to reinforcement learning (Nieuwenhuis et al., 2004).
The reinforcement learning theory of the ERN suggests the error
signals are generated in the basal ganglia and propagate to the
cortex through the anterior cingulate cortex (ACC). Localization
of the cortical error-related potentials to the ACC has been
suggested in EEG (Krigolson and Holroyd, 2007; O’Connell et al.,
2007) and confirmed through ECoG (Bechtereva et al., 2005).

Low-level error, known as target error (Krigolson and
Holroyd, 2007; Krigolson et al., 2008) or execution error
(Milekovic et al., 2012, 2013), is believed to be represented
by positive deflections originating from the posterior parietal
cortex (PPC) following commitment of a behaviorally-defined
error (Krigolson and Holroyd, 2007; Ladouceur et al., 2007;
Krigolson et al., 2008). Although the exact role of this positive
activity over PPC is not completely agreed upon, the extent
literature converges on a general hypothesis that the PPC is
involved with action conflict monitoring, including movement
correction (Falkenstein et al., 2000; Nieuwenhuis et al., 2001;
Van Veen and Carter, 2002; Krigolson and Holroyd, 2007).

Various EEG studies have identified and investigated ErrPs
in the form of ERN (Nieuwenhuis et al., 2001; Ullsperger
and von Cramon, 2006; Ladouceur et al., 2007; Krigolson
et al., 2008; Iannaccone et al., 2015), PE (Nieuwenhuis et al.,
2001; Ladouceur et al., 2007; Navarro-Cebrian et al., 2016),
P300 (Krigolson et al., 2008; MacLean et al., 2015), and
other signals (Krigolson and Holroyd, 2007; Ferrez and Millan,
2008; Chavarriaga and Millan, 2010; Kim and Kirchner, 2013;
Spüler and Niethammer, 2015).

Here we aimed to expand upon our understanding of ErrPs
by bridging EEG efforts and characterizing time-frequency
responses through ECoG, cross-referencing evoked power effects
to the common cortical-localized sites of evoked response ErrPs.
We focus on low-level error and its presentation in the parietal
cortex, as clinical requirements of electrode placement often
constrain consistent frontal coverage. In addition, low-level error
is ultimately more relevant in influencing real-time BCI control
on a finer time scale than high-level error, which can only be used
to provide feedback on longer time-scales (e.g., once per trial).

A previous ECoG study by Milekovic and colleagues
demonstrated the presence of ErrPs across multiple cortical
regions in a continuous, overt-movement task in human ECoG
(Milekovic et al., 2012, 2013). The researchers observed low-level
and high-level ErrPs, described as execution and outcome errors,
respectively, in the motor, somatosensory, parietal, temporal, and
pre-frontal areas. Here, we utilize ECoG to investigate whether
errors induced during a motor-imagery BCI task would also
result in the typical ErrP profile. We focused exclusively on high-
gamma (70–100 Hz) activity. High frequency broadband power
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(HBP) is thought to best reflect local activity (Ray et al., 2008;
Manning et al., 2009; Miller et al., 2009) and is reliably recorded
through ECoG. We are particularly interested in examining local
response activity for error-processing across the surface of the
human brain. Rather than examining errors resultant from (1)
failed trial outcomes, (2) induced error, or (3) unexpected stimuli
beyond the user’s control, we took a novel approach by examining
naturally occurring errors in the BCI decoder’s performance in a
continuous control one-dimensional center-out task.

We hypothesize significant HBP changes in error-related
detection cortex. This is built on literature and computational
models describing ErrPs as a mismatch between sensory
expectation from an efference copy and from actual sensory input
(in this case, visual) (Holroyd and Coles, 2002; Nieuwenhuis
et al., 2004). This mismatch can be thought of as the sensory
discrepancy described in Miall and Wolpert’s forward model,
which is the difference between actual sensory feedback and
expected sensory feedback from an efference copy (Miall and
Wolpert, 1996). By gaining a better understanding of the
contribution of HBP to ErrPs, we eventually hope to enable
unsupervised reinforcement learning in the BCI decoder allowing
for robust co-adaptation and improvement of BCI usability.

MATERIALS AND METHODS

Participants
Three patients with medically intractable epilepsy (mean age:
19.67 years, one male), undergoing clinical seizure monitoring
at either Harborview Medical Center or Seattle Children’s
Hospital, consented and volunteered to participate in research
in accordance with the University of Washington Institutional
Review Board (see Table 1 for demographics).

Data Recording and Electrode
Localization
The electrocorticogram was acquired from subdural macro-
scale grid electrodes (Ad-Tech 8 × 8 platinum, 10 mm contact
spacing). Cortical potentials were recorded at 1200 Hz using
g.USBamps (GugerTec, Graz, Austria) through the BCI2000
software suite (Schalk et al., 2004). Pre-operative T1 MRI scans
were co-registered with post-operative CT scans (SPM8) to allow
for individualized electrode localization through BioImageSuite
software imaging package (Papademetris et al., 2006) in
accordance with previously published reports (Casimo et al.,
2016). Each subjects’ electrodes were then normalized to the
1 mm MNI 251 brain coordinate system (Evans et al., 1993)
using Freesurfer’s ReconAll for multi-subject analysis (Fischl,
2012) and a secondary transform through FSL FLIRT (part of the
FMRIB Software Library – FSL1) algorithms. Center value MNI
coordinates for each electrode were transformed to Talairach
space using the MNI anatomical labeling atlas, and Brodmann
area (BA) labels were estimated using the Talairach Daemon
Client (Talairach and Tournoux, 1988).
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BCI Task
Subjects were instructed to control the vertical velocity of a cursor
in a one-dimensional center-out BCI task, to reach and dwell
within a trial target for 1 s using motor imagery (Figure 1A).
Although trial success was determined by whether the cursor
dwelled within the target for 1 s, our investigation focuses on
correct and erroneous movements made toward or away from the
target (specific details provided below). The control electrode was
selected through a prior motor screening task, which was used
to identify the channel exhibiting the strongest HBP response
to a cued imagined movement task of the contralateral hand
or tongue (depending on electrode coverage) as previously
described (Wander, 2015; Table 1). Consequently the control
electrode was always localized to the primary motor cortex.

Each BCI run consisted of four blocks of eight randomly
ordered trials. Targets were placed either above or below the
starting center point, either large or small (35 or 20% of screen
height, respectively) and placed either near or far from the
starting center point (20 or 16% of screen height, respectively).
This resulted in eight unique trial configurations per block. Each
trial was structured to include a 1 s rest period where neither
the cursor nor target were displayed [inter-trial interval (ITI)],
followed by a 2 s cue period where the target was visible, followed
by a feedback period of up to 6 s where subjects would attempt
to reach and dwell within the trial target for 1 s. Each trial would
terminate either when dwell time was reached or the trial timed
out, whichever came first.

For the purposes of these analyses, we grouped trial
configurations to only distinguish between trials where the
target was placed above or below the starting point, reflecting
differences in behavioral task demands.

To drive the cursor up, subjects were required to increase
HBP in their control electrode using motor imagery. HBP was
estimated using BCI2000’s auto-regressive filter on the preceding
500 ms of data. HBP was normalized to 6 s of pre-trial data using
the BCI2000 built-in normalizer, and were linearly mapped to
cursor velocity as described in Wolpaw and McFarland (2004).
To drive the cursor down, they were instructed to rest. The cursor
velocity would update every 40 ms.

Offline Analysis for Error-Related
Potentials
All signal processing and statistical analyses were conducted in
MATLAB (MathWorks, Natick, MA, United States) computing
environment. For each subject, we performed common average
referencing to account for common noise across all channels
in the grid. We then removed 60 Hz noise and isolated the
high-gamma frequency band activity (HG, 70–100 Hz) using
4th order Butterworth filters (non-causal), and estimated the
amplitude envelope of the signals using a Hilbert transform.
Power was calculated by taking the absolute square of the
analytical amplitude across the full time series. Then the power
for each trial was normalized with respect to the preceding ITI
(baseline) by calculating the z-score specifically for HBP. The
full normalized power time series was smoothed using a sliding
Gaussian window with a window width of 40 samples to match
the update rate of the task ran in BCI2000.

Error and Correct Window Extraction
We were specifically interested in the topography of the
responsive HBP during periods of BCI error. To accomplish
this, we first grouped subject’s electrodes by identified Brodmann

FIGURE 1 | Task structure and epoch conditions. (A) Subjects modulated cursor velocity in a one-dimensional center-out BCI task using imagined hand or tongue
movement (Table 1) in order to reach and dwell within a target. Cursor was re-centered prior to each trial and was not displayed during the inter-trial interval (ITI) and
cue period. Trials were randomized to have the target located above or below the start position, near or far, and small or large. Trials were organized into four blocks,
each containing eight randomized trials. (B) Within trials, data were binned into epochs based on four movement conditions: cursor moved up correctly (I, light blue),
moved up erroneously (II, yellow), moved down correctly (III, navy blue), or moved down erroneously (IV, orange).
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Areas. Second, we defined decoder error as a mismatch between
the decoder assessment of HBP and the subject’s goal-directed
intention. This was defined operationally as when the slope of the
cursor movement (at any junction across the 6000 ms duration
of a trial) was in the direction opposite of the target position
for a continuous period of 400 ms. This definition allowed for
the identification of improper decoding under the assumption
that subjects intend to move the cursor toward a target during
trial feedback (for clarification, see Figure 1B). We reasoned
400 ms duration is sufficient time for the subjects to realize
error during real-time continuous feedback (Gerson et al., 2005).
We then identified the beginning of this period as t = 0 in
error identification. Likewise, correct performance windows were
extracted where the cursor movement was in the direction toward
the target for a 400 ms period, with t = 0 at the start of this period.
We then extracted error and correct epochs from these error and
correct windows, respectively.

To prevent overlap between epochs, we extracted only one
epoch per window, where we defined windows of 1000 ms
starting from 200 ms prior to our t = 0 time points to 800 ms
after, based on previously published reports investigating error-
related potentials in an overt-movement ECoG task (Milekovic
et al., 2012). Figure 2 shows data of one full length trial
from an example electrode with example windows and example
epochs. Note that there are often multiple error and/or correct
epochs within any given trial, based on our pre-defined states
described below.

From these defined windows, we classify epochs into the four
conditions presented in Figure 1B. Specifically, error epochs were
classified as when the cursor moves incorrectly upwards when
located above a target (Condition II) and when the cursor moves
incorrectly downwards when located below a target (Condition
IV). Finally, correct epochs were defined as when the cursor
moves correctly upwards when located below a target (Condition
I) and when the cursor moves correctly downwards when located
above a target (Condition III).

Statistical Analysis Epochs From Windows
To contrast HBP behavior across the cortical sampling space
during real-time continuous error detection, we generated
statistical analysis epochs from error and correct windows. These
epochs were defined as the samples from t = 100–500 ms in
their respective 1000 ms windows (where t = 0 corresponds
to the start of 400 ms consecutive movement in one direction,
as described above). Previous ErrP work by Milekovic et al.
(2012) observed that the window from 100 to 800 ms after
error onset engendered ECoG, error-related components during
an overt motor control task. We used the length and range
of t = 100–500 ms after error onset to characterize responsive
HBP behavior based on (1) a relatively short, continuous trial
period (6000 ms) and (2) previous EEG observations of typical
higher-order processing time of visual cues ranging from 150
to 500 ms, depending on the cortical area being examined
(Gerson et al., 2005).

FIGURE 2 | HBP throughout one trial. In this parietal channel in one subject (shown in black), we see a decrease in HBP as the cursor moves correctly toward the
target and increase when the cursor is no longer moving as intended. The highlighted light red sections shows example error windows, where their t = 0 time points
are defined by 400 ms of continuous movement away from the target. The darker red areas represent example error epochs. Likewise, the highlighted light blue
sections show example correct windows, and the dark blue sections show example correct epochs, as detailed in Section “Offline Analysis for Error-Related
Potentials.”
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FIGURE 3 | Time series of mean HBP during motor imagery in the decoder error and correct conditions in the parietal lobe (BA 40, highlighted in the brain inset). In
these conditions, the subjects were attempting to move the cursor toward the target through eliciting motor imagery. In the erroneous condition, the BCI mistakenly
decoded the subject’s intention as wanting to move downwards with rest. Error onset begins at time t = 0 ms for the Condition IV plot. Statistical analyses were
performed using the time window of t = 100–500 ms (i.e., the statistical analysis window), as indicated by the window on the figure. Shaded region shows standard
error of the mean. Dashed gray line represents baseline.

Statistical Analysis
At the group analysis level, we conducted a two-way ANOVA
by extracting mean HBP from our defined statistical analysis
epochs and estimating main effects of trial type (whether the
target was located above or below the center starting position,
requiring motor imagery or rest, respectively) and performance
[whether the epoch was a correct epoch (Conditions I and III)
or an error epoch (Conditions II and IV)] on HBP for each
Brodmann Area available.

We utilized post hoc two-sample t-tests (FDR corrected) to
identify significant interactions of correct and erroneous decoder
behavior epochs by subject action type (active motor imagery or
rest). We present our findings through exploring Error-related
Potentials as changes in HBP across cortical areas. That is, our
post hoc approach compares (1) HBP of all error epochs and (2)
HBP of all correct epochs from all channels falling within each
Brodmann Area of interest. Finally, at the individual level, we
utilized these two-sample t-tests.

RESULTS

Task Performance
As common with motor imagery controlled BCIs, the users
experienced difficulty in achieving high task performance
without an extensive calibration period (Wolpaw and McFarland,
2004; Blankertz et al., 2007, 2008, 2010). The low overall trial

success of the subjects (average trial success 30.67%, Table 1)
may be due to the difficulty of the task requirement to dwell
within the target, and the limited amount of time we had with
each subject for training (Table 1). Overall, all three subjects
had greater trial success when the target was below the cursor
starting position (average trial success 37.93%, Table 1). The
effects of task performance on error potentials is discussed in
Section “Discussion.”

Effect of Trial Type and Performance on
Group HBP Responses
To determine the HBP response topography of error
performance (whether the cursor moved accurately toward
or away from the target) we conducted a two-way ANOVA on
HBP across BA regions. Results from all available BA regions are
presented in Supplementary Table 2. Here we focus on specific
BA regions of interest related to ErrPs. Supplementary Table 1
denotes the number of contributing electrodes from each subject
within each BA investigated.

A significant main effect of trial type was observed in BA
4 [primary motor cortex – F(1,999) = 4.49, p = 0.0343], BA 6
[premotor cortex – F(1,4258) = 14.01, p = 0.0002], BA 40
([inferior parietal lobule – F(1,4918) = 7.21, p = 0.0073], and
BA 43 [F(1,161) = 7.59, p = 0.0065]. A significant main effect
of performance was observed in BA 3 [primary somatosensory
cortex, F(1,912) = 5.92, p = 0.00152], BA 40 [F(1,4918) = 4.48,
p = 0.0342], and BA 4 [F(1,999) = 4.49, p = 0.0343].
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FIGURE 4 | Increased HBP in multiple cortical areas during motor imagery error. The brain in the center shows the spatial range for each Brodmann Area available in
our subject population, with each area labeled by their corresponding number. Each plot shows the average response within the specified Brodmann Area during
erroneous decoding (red) and during correct decoding (blue), 100 to 500 ms after error onset (indicated by the vertical dashed line).

Importantly, we noted a statistically significant interaction
between the trial type, control requirement and performance
in primary somatosensory cortex [BA 3; F(1,912) = 3.97,
p = 0.0466], in primary motor cortex [BA 4; F(1,999) = 8.46,
p = 0.0037] as well in the inferior parietal cortex [BA 40;
F(1,4918) = 6.09, p = 0.0136]. For all ANOVA results, please refer
to Supplementary Table 2.

Error-Related HBP Time Series by
Brodmann Areas
To illustrate our overall HBP response profiles, we plotted the
mean time-series for all four epoch conditions generated by
averaging the responses of all constituent electrodes from all
subjects for significant BA regions. Figure 3 shows the mean
time-series during the correct and error windows used to extract
our Conditions I and IV epochs in all electrodes placed over
the inferior parietal lobule (BA 40). We observed increased
HBP after error onset at t = 0 ms (red) when the decoder
failed to recognize the subject’s motor imagery as intent to
move the cursor upwards toward the target (Condition IV).
Contrarily, we did not see a general increase in HBP when
the decoder was correctly decoding the subject’s motor imagery
(Condition I). During rest, we did not see a change in HBP
relative to error onset (Supplementary Figure 1). We generated
similar plots for all available BAs during both motor imagery

and during rest. Note, that t = 0 ms is a window-unique
classification based on our behavioral mismatch between cursor
trajectory and decoder output. Our t = 0 is not a phase-resetting,
evoked boundary event in the classic sense of evoked potentials.
Importantly, because there were typically multiple error and
correct epochs within any given trial, t < 0 reflects behaviorally
heterogeneous conditions.

Collectively, this approach provides a useful description of
the overall responsive cortical regions generating ErrPs. We next
used post hoc tests to determine the specific nature of HBP activity
as a function of error and correct condition type. We contrasted
two different populations for a given action type, motor imagery
or rest for significantly responsive regions: (1) the mean value
for each error epoch 100–500 ms following error onset from
all electrodes within the specified BA, and (2) the mean value
for each epoch during correct decoder performance 100–500 ms
following the start of recognized correct performance, from all
electrodes within the specified BA. We applied a one-sided t-test
to test the specific hypothesis that HBP is greater in error than
in correct epochs.

When comparing average responses following error onset
(100–500 ms) during motor imagery (Condition IV–Condition
I), we found motor, somatosensory, temporal, and parietal areas
as having greater HBP in error epochs than in correct epochs
(Figure 4). Specifically, HBP in Condition IV (motor imagery
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FIGURE 5 | HBP during correct and erroneous BCI decoder performance per individual subject. Difference in high-gamma power during correct and error epochs
100–500 ms after error onset for each subject. Top row shows power of Condition IV–Condition I, bottom row shows power of Condition II–Condition III. Heat maps
were scaled to visualize the most robust effects.

error) were significantly greater than in Condition I (motor
imagery correct) in BAs 4 and 40 (one-sided Student’s t-test, FDR-
adjusted p < 0.05). During rest error (Condition II–Condition
III), BA 4 was statistically significant (Supplementary Figure 2).

Low Frequency Error-Related Potentials
by Brodmann Areas
In addition to investigating increases in HBP in error
epochs as compared to correct epochs, we also observed
increases in spectral power in lower frequency bands in these
same conditions. Although lower frequency activity is not
as localized as high-gamma activity, some lower frequency
bands have played an important role in ErrP investigations
in EEG work (Trujillo and Allen, 2007; Atchley et al., 2017;
Glazer et al., 2018).

Like with HBP, we compared the band power between 100
and 500 ms after error onset and correct performance using
one-sided Student’s t-tests (alpha = 0.05) and correcting for
multiple comparisons using FDR-adjusted p-values. For the delta
band (<4 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, posterior to the temporoparietal junction (BA 39).
For the theta band (4–8 Hz), we observed significantly greater
power in error epochs compared to in correct epochs, regardless
of movement direction, in Brodmann Area 9 (frontal) and in
the temporal lobe (BAs 21, 22, and 37). For the alpha band
(8–13 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, posterior to the temporoparietal junction (BA 39) and
in the temporal lobe (BAs 21 and 22). Lastly, for the beta band
(13–30 Hz), we observed significantly greater power in error
epochs compared to in correct epochs, regardless of movement
direction, only in the temporal lobe (BA 21). For a full table of
t-test results for all available Brodmann Areas and bands, see
Supplementary Table 3.

Error-Related Potentials in Individual
Subjects
Beyond region of interest event-related error analysis, we also
explored individual electrode response topography for each
subject. Contributions from each electrode are presented in
Figure 5 as the difference in mean HBP 100–500 ms following
error onset in erroneous and correct decoding, during motor
imagery. To visualize this topography, we used a Gaussian spatial
smoothing kernel across electrodes allowing for the visualization
of cortical-response ‘heat maps’ at the individual level. Warm
colors indicate a positive difference where HBP during error is
greater than HBP during correct decoding.

As seen in Figures 5, 6A, electrode coverage per subject varies
thus yielding variable number of electrodes per Brodmann Area
(Supplementary Table 1). Similar to the group-wide analysis, we
also determined significance of BAs within individual subjects by
comparing the respective error and correct epochs applying one-
sided Student’s t-tests (alpha = 0.05) and correcting for multiple
comparisons using FDR-adjusted p-values.

For Subject 1 (11 years old), the majority of electrodes present
within the following areas had statistically significantly greater
HBP during error than during correct in the motor imagery
case (Condition IV–Condition I): BAs 1, 3, 5–7, and 40 (one-
sided Student’s t-test, FDR-adjusted p < 0.05). Brodmann Areas
2 and 4 had a few significant electrodes. There was at least one
significant electrode for all observable areas in this subject during
motor imagery. During rest (Condition II–Condition III), the
number of significant electrodes per respective area was lower
than during motor imagery, except for in BA 4. Like during motor
imagery, there was always at least one electrode per area that
was significant.

For Subject 2 (13 years old), 50% or more of electrodes present
within the following areas had statistically significantly greater
HBP during error than during correct in the motor imagery
case: BAs 2–4, 9, 21, 37, 40, and 42 (one-sided Student’s t-test,
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FIGURE 6 | HBP during correct and erroneous BCI decoder performance. (a) Electrode coverage by subjects in the left (n = 3), separated by color (Subject 1 in
blue, Subject 2 in purple, Subject 3 in pink). (b) Difference in high-gamma power during correct and error epochs 100–500 ms after error onset. Left shows power of
Condition IV–Condition I, right shows power of Condition II–Condition III. Heat maps were scaled to visualize the most robust effects.

FDR-adjusted p < 0.05). Brodmann Area 6 had one significant
electrode, BA 22 had three significant electrodes, and BAs 39
and 43 did not have any. During rest, the number of significant
electrodes per respective area was typically lower than during
motor imagery. Some areas, which had most of their electrodes
significant during motor imagery, do not have any significant
differences during rest (BAs 3–4, 9, 42).

For Subject 3 (35 years old), 50% or more of electrodes
present within the following areas had statistically significantly
greater HBP during error than during correct in the motor
imagery case: BAs 4 and 5 (one-sided Student’s t-test, FDR-
adjusted p < 0.05). Brodmann Areas 1, 6, 21, and 40 had
at least one significant electrode each, and areas 2, 3, 7, 9,
22, 39, 42, 44, and 45 had no significant differences. During
rest, the number of significant electrodes per respective area
was typically higher than during motor imagery. With the
exception of BA 7, all the areas which had no significant
electrodes during motor imagery had at least one significant
electrode during rest.

Group Analysis: Cortical Topography of
Error-Related HBP Responses
Using the data from each electrode of all subjects (Figure 5), we
generated cortical heat maps to observe the overall activity of the
group. Figure 6 serves to show the contributions by electrodes
instead of presenting the mean response of any given Brodmann
Area. As seen when we project each subject’s electrodes
onto the MNI brain, each subject has different coverage and
therefore contributes a different number of electrodes to each
area of interest.

The areas with the most common coverage were BA 40 (part of
the parietal cortex) and BA 6 (posterior-most part of the frontal
cortex), with 42 and 38 total electrodes per area, respectively.
Areas 2–4 also had common coverage but had 10 electrodes
or less per area.

We zoom-in to a portion of the parietal lobe in Figure 7
to show examples of individual electrode contributions from all
subjects in BA 40, one of the few areas with multiple electrodes
from each subject.

DISCUSSION

We present the brain topography of HBP changes associated with
error processing in the context of visual feedback, closed-loop,
motor-imagery BCI. Our novel approach to extracting epochs
of behaviorally defined error within a free-running BCI context
is likely to be more reflective of naturalistic error processing,
provides high ecological validity and is specifically relevant to
contemporary co-adaptive BCI design. That is, our post hoc
identification of error epochs, based on violations of intention,
circumvent limitations of artificially-induced error events which
do not take subject intention into account. To this end, our
results are in agreement with a previous study investigating
error-related potentials in ECoG in an overt movement task
(Milekovic et al., 2012).

Our BCI task involved using both active motor imagery
and rest to control the vertical velocity of a cursor to reach
and dwell within a target. We investigated the involvement
of different Brodmann Areas and individual electrodes across
subjects for these two different control paradigms when the
decoder incorrectly decodes the subject’s intention and moves the
cursor away from the target.

Interpreting Effects of Trial Type and
Performance on HBP
The interaction of trial control requirement (whether the subject
needed to bring the cursor up to a target placed above the
center starting position using motor imagery) and performance
(whether the cursor moved correctly toward or erroneously away
from the target) had a statistically significant interaction on
HBP in Brodmann Areas 3, 4, 40, and 43. In other words, the
difference in HBP between correct performance and erroneous
performance were affected by whether motor imagery or rest
was required as the initial action to reach the target in the trial.
The specificity of this significant interaction was clarified by
post hoc t-test results for the motor imagery conditions and the
rest conditions.

Importantly, we noted a statistically significant effect of trial
control requirement on HBP in the primary motor cortex (BA 4)
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FIGURE 7 | Increased HBP in multiple cortical areas during motor imagery error (parietal). Each plot shows the average response of a single electrode (from one
subject, each) within Brodmann Area 40 during erroneous decoding (red) and during correct decoding (blue).

and premotor cortex (BA 6), providing internal validity for our
statistical approach. Specifically, the control electrode, located in
primary motor cortex, moved the cursor up or down through
increasing or decreasing HBP.

Broader Response Observed for Motor
Imagery Error Than for Rest Error
Overall, more areas of the cortex exhibited significantly greater
HBP during error in motor imagery cursor control rather than in
rest cursor control. BA regions which showed more significant
HBP changes in both the motor imagery and rest cases, when
including all subjects, were the somatosensory (BAs 1 and 5),
motor (BA 4), and parietal (BA 7) cortices. Areas which were
exclusively significant during motor imagery include part of
somatosensory (BAs 2 and 3), temporal (BAs 21 and 37), and
parietal (BA 40) cortices. The only area which was significant
during rest but not motor imagery was near the angular gyrus in
the parietal lobe (BA 39). Note that we did not have much frontal
coverage from any of the subjects, preventing investigation
of common areas of interest associated with outcome (not
execution) error, such as the ACC (Figure 6A). In Milekovic
and colleagues overt movement ECoG study, ErrPs in the motor,
somatosensory, parietal, temporal, and pre-frontal areas were
observed when an execution error was induced in the subject’s
joystick control (Milekovic et al., 2012, 2013).

ErrPs in the motor and somatosensory areas are not
unexpected considering they are directly involved in the control
and immediate feedback associated with the control. Involvement
of other areas may not be as obvious. Previous work has suggested

that the parietal lobe is involved with low-level error processing,
which cursor control error can be considered (Krigolson and
Holroyd, 2007). Although not traditionally explored for error
analyses, as there is typically a focus on the ACC and other frontal
areas, previous fMRI work suggests the temporal lobe is also
involved in error processing (Stevens et al., 2009).

Corrective Movement
The extent literature also suggests the parietal lobe may be
involved in the execution of corrective movements in response
to error or low-level error (Calhoun et al., 2006; Krigolson
et al., 2008; Navarro-Cebrian et al., 2016). It is of note that the
temporoparietal junction (TPJ; BA 40) only had significant HBP
during motor imagery error, but the more posterior and superior
area of the parietal lobe (BA 7) had significant HBP during both
motor imagery and rest error conditions. Krigolson et al. (2008)
suggest that low-level errors are mediated in the PPC, which
may be reflected by the increased HBP in BA 7 for both error
conditions. Interestingly, the same group showed that a P300
response from the TPJ would immediately precede corrective
movements in response to error in an earlier study (Krigolson
and Holroyd, 2007). Instead of being directly responsible for the
corrective movement, Krigolson et al. (2008) postulate that the
P300 indicates the updating of an internal model of the task
at hand. Navarro-Cebrian et al. (2016) instead suggest the PE
from the parietal lobe indicates that enough error information
has been gathered to make a decision to change motor output
in order to correct for the error. In our current work, the TPJ
had significant increases in HBP during motor imagery error, but
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not during rest error. This may imply that the parietal lobe elicits
a greater response when the corrective action to take requires
an increase or change in motor output, in this case, increased
motor imagery. Rest error may not have resulted in increased
local activity in the TPJ because the corrective action to take
would be to suppress motor imagery.

Low Performance and Error Elicitation
Error-related potentials are typically investigated in settings
where instances of correct performance greatly outnumber the
instances of error. However, recent work by Pezzetta et al. (2018)
reverses the correct/error ratio by inducing error events for
70% of the task. In their study, Pezzetta et al. (2018) find that
error-related potentials are still elicited even when error occurs
during the majority of the task, confirming that the performance-
monitoring system engages in the presence of error and not just
in the presence of uncommon stimuli.

The subjects of this present investigation had relatively low
task performance, with an average trial success rate of 30.67%
(Table 1). This low trial success rate can be partially explained
by task difficulty and/or BCI task novelty, as the targets would
be placed at varying distances from the center and would also
vary in size. In particular, the success condition of having to
dwell within the target made the task more difficult than similar
one dimensional cursor control tasks, such as the Right-Justified
Box task. Note that our behavioral definition of low-level error
is not dependent on trial success, but instead on successful
cursor movements within each trial. Overall, subjects performed
marginally better on trials where the target was placed below the
cursor starting position (Table 1). Even with this generally poor
performance, we believe our investigation to still be valid as error-
related potentials are still elicited in tasks where the majority of
actions are erroneous (Pezzetta et al., 2018).

Impact of Age on Error Potentials
Two of the subjects in this investigation were early adolescents of
the ages 11 and 13 years old (Subjects 1 and 2, respectively), and
the other subject was 35 years old (Subject 3) (Table 1). Human
brain maturation from childhood to adulthood is characterized
by changes in the structure of and activation of various brain
structures, including in the ACC in the prefrontal cortex (Casey
et al., 1997; Adleman et al., 2002), a structure essential to
conflict monitoring.

Previous work by Ladouceur et al. (2007) found that with a
more developed ACC, adults (19+ years old) and late adolescents
(14–18 years old) had stronger ERN responses than early
adolescents (9–13 years old), however, the PE responses did not
differ significantly between any of the groups.

Although most subjects exhibited greater HBP in more areas
during motor imagery error, Subject 3 had more electrodes
with significantly greater HBP differences between error and
correct in rest rather than in motor imagery. While this does not
seem to be directly related to the aforementioned developmental
changes, it is still possible that error presentation in Subject 3
differed from the younger subjects due to processes related to
cortical maturation.

Error Presentation in the Time Domain
Unlike with well-established error potentials in EEG, which are
often measured as particular phase-locked negative and positive
deflections in the time domain, we explored ErrPs related to
specific changes in the band-limited time-frequency domain due
to the high temporal/spatial resolution inherent to ECoG. Our
use of a post hoc defined behavioral marker for detecting error-
onset instead of a controlled, elicited error in control may have
also led to less distinct, non-event locked ErrP waveforms. As
discussed, analyses in the frequency domain do not provide a
clean time-stamped waveform present in multiple electrodes in
or across any of the subjects. The higher spatial resolution of
ECoG, in addition to our unique epoch boundary markers were
determined, contributed to the difficulty of relying on time-
domain data for ErrP identification in this study.

Regardless, we attempted to compare topographical results
more directly with EEG literature by investigating changes in
the raw voltage potentials recorded per channel per subject in
all conditions. Due to the nature of our task not having an
experimentally controlled induced onset of error, we did not
expect, nor did we see, as robust a response as in EEG. We
only saw significantly greater voltage amplitude during error than
during correct in a few select electrodes in two subjects.

Implications for BCI
Although this investigation focused on identifying cortical
error-related potentials post hoc, online classification of error-
related potentials have been demonstrated in a few EEG studies
(Iturrate et al., 2015; Zander et al., 2016; Cruz et al., 2018).
With online ErrP monitoring, future cortical BCI can infer
BCI performance without explicit task information, allowing
for automatic adaptation of the system based on estimated
performance. The task-independent nature of this method could
allow for robust adaptive systems that allow for long-term use of
BCI that account for changes in recorded brain signals over time.

As this was a preliminary investigation into error-related
potentials in cortical BCI, we did not employ online classification
methods. The methods presented here could be adapted to work
for online classification by continually calculating HBP via a
sliding window, and setting a threshold for channels located on
particular regions of interest, such as over BA 7. The baseline
may be set as the data prior to the start of the sliding window,
of a length longer than the sliding window itself. Alternatively,
a machine learning model could be developed and trained to
classify error and non-error signals and fed the necessary sliding
window information for continual classification.

CONCLUSION

In this study, we examined the cortical activity of human subjects
during a one-dimensional center-out BCI task and investigated
how different areas of the cortex behaved during erroneous
BCI decoding versus during correct performance. Of all the
cortical areas available for analysis, the somatosensory (BAs 1
and 5), motor (BA 4), and the parietal lobe (BA 7) showed
significantly greater HBP 100–500 ms after error onset than
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during correct behavior, regardless of whether the subject was
actively imagining movement or resting to achieve their goal.
During motor imagery, parts of the somatosensory (BAs 2 and
3), the temporal lobe (BAs 21 and 37), and part of the parietal
cortex (BA 40) were exclusively significant. During rest, only
part of the parietal cortex near the angular gyrus (BA 39) was
exclusively significant. Overall, more areas were involved in
error processing during the motor imagery error cases rather
than during rest error, although there were differences between
subjects, with one subject having more significant electrodes
during rest. The observed activity of these areas agrees with
previous work suggesting the involvement of the parietal and
temporal areas in error processing.

Although our results generally agree with previous work
performed with overt movement in ECoG (Milekovic et al.,
2012), our error-related potentials (ErrPs) do not present
themselves as the well-defined waveforms discussed in the EEG
literature, likely due to the diffuse timing of our error events.
The presence of ErrPs in both overt- and imagined-movement
controlled ECoG tasks suggests error processing is impartial to
the method of control in a task.

Our investigation is the first to explore ErrPs in the context
of continuous control in a cortical BCI. As the BCI field delves
further into understanding error and reinforcement learning,
it is critical that we understand error processing at various
spatial and temporal levels in a multitude of conditions. This
study contributes to the field by focusing on continuous control
(instead of discrete control for simple selection) representing a
more naturalistic setting for characterizing error potentials in
the brain. Additionally, we report the first description of the
responsive local high-frequency activity using high-gamma band
power in a BCI, instead of more global signals such as theta band
activity in EEG.

In addition to exploring error processing in the context of
motor BCI, we are also interested in the effects of different forms
of feedback during continuous control, not just visual (as is
typical with most current BCIs). In the future of BCIs and their
adoption into neuroprostheses, we will need to understand the
effect of other forms of feedback, which inform volitional control,
on BCI learning. Ultimately, the use of ErrPs as an automatic
feedback signal to future BCIs will allow for co-adaptation,
leading to better and longer-lasting control. Greater performance
and longer ability of use will allow these co-adaptive BCIs to
break out of the confines of the research setting and make their
way into clinics and home settings.

We would like to explore the long-term effects of learning on
the error-related potentials, but our limited time with research
subjects renders this nearly impossible. A better understanding of
ErrPs and their usability over time is crucial for implementing co-
adaptive BCI systems which rely on ErrPs for feedback. Longer
use in the experimental setting may allow for the development
of robust classification techniques which can assist in real-time
error detection in the future.
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