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Neural circuits respond to multiple sensory stimuli by firing precisely timed spikes.

Inspired by this phenomenon, the spike timing-based spiking neural networks (SNNs)

are proposed to process and memorize the spatiotemporal spike patterns. However,

the response speed and accuracy of the existing learning algorithms of SNNs are still

lacking compared to the human brain. To further improve the performance of learning

precisely timed spikes, we propose a new weight updating mechanism which always

adjusts the synaptic weights at the first wrong output spike time. The proposed learning

algorithm can accurately adjust the synaptic weights that contribute to the membrane

potential of desired and non-desired firing time. Experimental results demonstrate that the

proposed algorithm shows higher accuracy, better robustness, and less computational

resources compared with the remote supervisedmethod (ReSuMe) and the spike pattern

association neuron (SPAN), which are classic sequence learning algorithms. In addition,

the SNN-based computational model equipped with the proposed learning method

achieves better recognition results in speech recognition task compared with other

bio-inspired baseline systems.

Keywords: spike neural networks, supervised learning, synaptic plasticity, first error learning, speech recognition

1. INTRODUCTION

For years, researchers have been exploring and trying to simulate the brain’s powerful and
high-speed information processing capabilities and learning mechanisms. While the traditional
artificial neural networks (ANNs) have achieved outstanding performance in various application
fields, they assume that sensory information is represented and transmitted via the firing rate of
the neuron. Nevertheless, the rate-based coding does not seem to transmit all the information
associated with the rapid processing sensory tasks, such as vision, smell, and hearing stimulus
modalities (Hopfield, 1995; Gautrais and Thorpe, 1998; Cariani, 2004; Mohemmed et al., 2013).
A new type of artificial neural network that is dedicated to the study of more biologically plausible
neuronal models and neural networks has emerged and has been well used (Wu et al., 2018a,b),
which is called spiking neural networks (SNNs). On the other hand, many recent studies have
shown that spike-timing neural activities exist in several areas of the brain, such as the visual
cortex (Bair and Koch, 1996), the retina (Meister, 1998; Uzzell and Chichilnisky, 2004; Gollisch
and Meister, 2008), and the lateral and geniculate nucleus (Reinagel and Reid, 2000). Temporally
encoded SNNs that represent information as precisely timed spikes rather than mean firing rates
have also been studied extensively (Maass, 1997; Andrew, 2002; Ghosh-Dastidar and Adeli, 2009b;
Nguyen et al., 2012; Wang et al., 2012). Though the powerful computing performance of SNNs
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has been demonstrated (Keller and Hahnloser, 2009), its practical
application is still limited by its computational complexity, and
the learning algorithms applicable to SNNs are also generally
short of high efficiency and stability. Therefore, it is of great
significance to develop new effective and robust learning
algorithms to take full advantage of the powerful computing
performance of SNNs.

In many cases, learning behavior is thought to be performed
by utilizing the error signals, i.e., the mismatches between
expected and actual spiking behaviors (Thach, 1996; Bastos et al.,
2012; Keller et al., 2012; Wu et al., 2019). Supervised learning
based on error signals has obtained the most documented
evidence in the study of the cerebellum and cerebellar cortex of
the central nervous system, although the exact mechanism still
remains unclear (Ito, 2000). The aim of supervised learning is to
minimize the gap between actual output and expected output,
and according to the different ways of reducing the gap, the
existing learning algorithms of SNNs can be divided into two
categories. One is to utilize rigorous mathematical analysis to
derive formulas of loss reduction, and the other is to make weight
updating according to the inspiration of biological mechanisms,
such as the Widrow-Hoff rule (Widrow and Lehr, 1990) and
the spike-timing dependent plasticity (STDP) rule (Masquelier
et al., 2009), where the synaptic strength is enhanced when the
presynaptic neuron elicits spikes before the postsynaptic neuron
and vice versa.

Many methods based on mathematical analysis adopt the
idea of gradient descent, but they define the cost function in
different ways. SpikeProp (Bohte et al., 2002) minimizes the loss
defined by the distance between the true firing time and the
single desired firing time using gradient descent rule, and later
this algorithm was improved to emit multiple spikes (Ghosh-
Dastidar and Adeli, 2009a; Xu et al., 2013a). In addition to
these methods, Tempotron (Gütig and Sompolinsky, 2006), an
algorithm that has been proved to be effective for binary temporal
classification but unable to handle the firing of multiple spikes,
and some other algorithms (Zhang et al., 2018, 2019a) define
the cost function as the distance between the membrane voltage
and the firing threshold. Recently, there is another thought of
defining cost function of multi-spike sequences. For example,
Multi-Spike Tempotron (MST) (Gütig, 2016) is designed to
decrease the difference between a hypothetical threshold and
the fixed threshold. MST also employs the gradient descent
strategy, and in each iteration the difference between the fixed
biological firing threshold and the hypothetical threshold under
which neurons emit the expected amount of spikes is calculated.
However, it requires multiple recursive calculations to derive the
hypothetical threshold, making the learning process indirect and
computationally time-consuming. TDP1 and TDP2 (Yu et al.,
2018) simplify the calculation of MST to some extent, which
improves the learning efficiency, but there is still the problem of
seeking the hypothesis threshold through iteration.

The Remote Supervised Method (ReSuMe) (Ponulak and
Kasiński, 2010) is a classic algorithm that combines the STDP
and anti-STDP learning rules to modulate the synaptic weights.
There are also some improved algorithms to further strengthen
the learning property of the ReSuMe by integrating it with delay

learning (Taherkhani et al., 2015a,b, 2018), and particle swarm
optimization (PSO) algorithm (Xie et al., 2014), etc. In addition,
the Spike Pattern Association Neuron (SPAN) (Mohemmed
et al., 2012), Chronotron E-learning (Florian, 2012), and the
Precise-Spike-Driven (PSD) (Yu et al., 2013) algorithm are in a
similar vein, whereby they transform spike trains or sequences
into analog signals by convolution, then apply the Widrow-
Hoff rule to update weights. SPAN uses a variant metric of
the van Rossum metric (van Rossum, 2001) to define the
distance between the actual and desired spike sequences, while
Chronotron E-learning uses the Victor and Purpura metric
(Victor and Purpura, 2009). SPAN transforms all the discrete
input, actual and desired output spikes to continuous signals,
while only input signals are convolved in PSD. Compared with
algorithms requiring convolution operation, algorithms based on
the perceptron rule, such as the perceptron-based spiking neuron
learning rule (PBSNLR) (Xu et al., 2013b) and its improved
version (Qu et al., 2015), the normalized perceptron based
learning rule (NPBLR) (Xie et al., 2017), are easier to calculate.
In general, these algorithms are more biologically plausible
and have lower computational complexity than the algorithms
based on the gradient descent rule, but they are still not very
effective and robust in the task of learning target spatiotemporal
spike patterns.

Except for these algorithms, the algorithm Learning Spike
Sequences with Finite Precision (FP) (Memmesheimer et al.,
2014) uses the existing postsynaptic potential to adjust the
synaptic weights at the first unmatched time between the actual
and desired output spike trains in each trial. However, the simple
and crude way of weight modification makes it use less spike
information and also lack good robustness in the face of noise.
Then in this paper, we propose a new efficient and robust learning
algorithm. The proposed algorithm not only utilizes the first
wrong spike time, but also utilizes all previous spike temporal
information to calculate the weight update quantities. Simulation
results demonstrate that the proposed learning rule has higher
learning accuracy, efficiency, and better robustness as compared
with ReSuMe and SPAN. In addition, in this paper, we also
put forward a dynamic decoding strategy for precise multi-
spike learning algorithms. With a combination of the proposed
learning algorithm and the decoding strategy, the SNN-based
computational model outperforms other bio-inspired baseline
systems in a speech recognition task.

The structure of the article is as follows. In section 2, after a
brief introduction of the neuron model, our method is presented.
In section 3, we conduct some experiments to explore the
performance of the method, and the simulation results are
provided. The different properties of the proposed algorithm,
ReSuMe and SPAN are analyzed and compared in section 4.
Finally, we draw the conclusion in section 5.

2. NEURON MODEL AND LEARNING
ALGORITHM

In this section, we first introduce the spiking neuron model
used in this article, then elaborate on the algorithm we
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proposed. Finally, the measurement used to evaluate the learning
performance is introduced.

2.1. Neuron Model
Many spiking neuron models have been proposed over the
years, among which conductance-based models can simulate
biological neurons’ dynamics accurately to a large extent but
require considerable computational cost because of the inherent
complexity of their expressions. By contrast, the current-based
leaky integrate-and-fire (LIF) (Gerstner and Kistler, 2002) model
can well simulate the dynamics of biological neurons with lower
computation cost, which has made it a widely used model in
many papers, including this one.

In the LIF model, learning neuron accumulates its membrane
voltage V(t) by integrating synaptic currents from N upstream
neurons, yielding

V(t) =

N
∑

i=1

wi

∑

t
j
i<t

K
(

t − t
j
i

)

− ϑ
∑

t
j
s<t

exp

(

−
t − t

j
s

τm

)

, (1)

where t
j
i is the firing time of the jth spike from the ith synapse

and t
j
s is the firing time of the jth spike generated by the learning

neuron. ϑ is the firing threshold. wi represents the synaptic
strength of the ith synapse, and it controls the amplitude of the
postsynaptic potential induced by its spike, while the kernel K(·)
controls the shape, and it is defined as

K(x) = Vnorm

[

exp

(

−
x

τm

)

− exp

(

−
x

τs

)]

, (2)

where τm and τs are the time constants of themembrane potential
and the synaptic current, respectively. Vnorm is the normalization
constant that stretches the peak value of K(·) to unit, and it is
calculated by

Vnorm =
ββ/(β−1)

β − 1
, (3)

with β = τm/τs. If the voltage V (t) reaches the firing threshold,
it triggers a spike immediately, then this new spike causes the
membrane voltage of the neuron to encounter a reset operation,
which is expressed by the second term in Equation (1).

2.2. First Error Learning Algorithm
The aim of our learning algorithm is to modify the neuron’s
synaptic weights so that it can generate the target spike sequence
corresponding to the given input spike pattern. Most existing
algorithms train the neuron to fire spikes directly toward the
desired times, but here we set a tolerance window with a
small width ε (less than the distance between any two desired
spike times) at each desired time, and by training the neuron
to emit a spike within the corresponding tolerance window
in chronological order, the requirement of firing target spike
sequence is finally achieved. Accordingly, we present our learning
method taking advantage of the idea of running synaptic
modification rules only at the first wrong spike time in each trial
in Memmesheimer et al. (2014).

There are different types of wrong spike times, but in general
they all fall into one of the three categories and are shown
in Figure 1:

• If there is a spike fired outside all tolerable windows, this spike
time is a wrong spike time of type a;

• If there are two spikes generated within a same window, the
second spike time is a wrong spike time of type b;

• If there is no spike within the desired tolerable window, the
desired spike time is a wrong spike time of type c.

Following the idea of running synaptic modification rules only at
the first wrong spike time in each trial, the proposed First Error
Learning rule (FE-Learn) calculates weight adjustment in a new
way that utilizes more temporal information between the input
and output spike trains. Based on the different error types, the
proposed method employs two weight updating processes. The
cost function is defined as

E = ± (ϑ − V (terr)) , (4)

where terr is the first wrong spike time and the± sign corresponds
to weight increment and decrement, respectively.

2.2.1. Weight Increment at Desired Output Spike

Times
In terms of error type c, a spike is supposed to be emitted within

the tolerable window of a desired output spike time t
j

d
, while it is

not, so terr is equal to t
j

d
. Then, we apply the gradient descent

method to stretch the membrane potential at time terr to the
threshold ϑ .

In gradient-based learning, the weight modification 1wi is
proportional to the negative of the derivative of the cost function
with respect to wi:

1wi = −λ1
dE

dwi
= λ1

dV (terr)

dwi
, (5)

where λ1 > 0 is the learning rate that defines the size
of the weight increment. From Equation (1), the membrane
potential V(terr) not only receives the direct influence of the
synaptic weights, but also the indirect influence of them, which

FIGURE 1 | Three error types: undesired spike outside the tolerable window

(a), undesired spike inside the tolerable window (b) and missed spike within

the tolerable window (c). The gray vertical bars near the desired spike times t
j
d

are the respective tolerable windows.
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is transmitted by the previous output spike times t
j
o < terr , j =

1, 2, · · · ,m. The derivative term in Equation (5) is hence given by

dV (terr)

dwi
=

∂V (terr)

∂wi
+

m
∑

j=1

∂V (terr)

∂t
j
o

dt
j
o

dwi
. (6)

From Equation (1), the first term of Equation (6) can be
expressed as

∂V (terr)

∂wi
=
∑

t
j
i<terr

K
(

terr − t
j
i

)

, (7)

and the partial derivative in the second term is
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j
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= −
ϑ
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exp
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−
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)

, (8)

while for the derivative dt
j
o/dwi, applying the chain rule,

we can get
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j
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,

(9)

in order to save the computation cost, we eliminate the
iterative computation term in Equation (9). Following the linear
assumption of threshold crossing in Bohte et al. (2002), Ghosh-
Dastidar and Adeli (2009a), and Yu et al. (2018), the neuron’s
membrane potential is thought to increase linearly in the
infinitesimal time step before the firing time. Hence, there is

∂t
j
o
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j
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(11)

and ∂V(t
j
o)/∂wi can be solved by Equation (7), and ∂t

j
o/∂V(t

k
o)

with tko < t
j
o can be solved by Equation (8).

Note that each actual output spike time t
j
o before the terr is

within the tolerable window of the corresponding desired spike

time t
j

d
, and there is usually a slight deviation between t

j
o and t

j

d
.

So the weight modification strategy based on Equation (6) may
exacerbate this deviation aftermultiple updates, resulting inmore
unnecessary adjustments. In order to address this, in the actual

weight adjustment, we substitute t
j
o for t

j

d
in Equation (6) through

Equation (11) and give a scaling factor Sr (> 0) to the second

term of Equation (6) to control the weight updating at t
j

d
(< terr)

not excessively (the detailed analysis is presented in section 4),
which is proven to be meaningful and vital by experiments.

2.2.2. Weight Decrement at Undesired Output Spike

Times
When there is a spike fired outside the tolerable window
(error type a) or there is more than one spike fired inside the
same tolerable window (error type b), the contributory synaptic
weights should be weakened to prevent the extra spike. Instead
of utilizing all the past firing spikes (actual or desired) like the
case of weight increment, for error types a and b, synaptic weight
decrement depends only on the error time terr , i.e., the scaling
rate Sr is set to zero. As a result, the second term in Equation (6)
is removed, and the updating rule at undesired output spikes is
defined as

1wi = −λ2
dE

dwi
= −λ2

dV (terr)

dwi
≈ −λ2

∂V (terr)

∂wi
, (12)

where λ2 > 0 is the learning rate which defines the size of the
weight decrement. ∂V (terr) /∂wi is solved by Equation (7).

The intention of removing the second term in Equation (6)
is to avoid disturbing the properly emitted output spikes before
terr . How this affects the previously emitted spikes is explained
in section 4. To better illustrate the process of the proposed
FE-Learn algorithm, we give a flowchart in Figure 2.

2.3. Metric of Learning Performance
The correlation-based metric C defined in Schreiber et al.
(2003) is adopted in the next experiments to evaluate the
learning performance of the learning algorithm, and it was
also used in Ponulak and Kasiński (2010) and Taherkhani
et al. (2015a). C (0 < C < 1) represents the similarity degree
of two vectors, and the larger the value of C, the higher the
similarity between the two vectors. The metric is defined in the
following equation:

C =
υd · υo

|υd||υo|
, (13)

where υo and υd are vectors which are the convolution (in
discrete time) of actual and desired output spike trains by a
symmetric Gaussian filter given as f (t, σ) = exp

(

−t2/2σ 2
)

,
respectively. The parameter σ determining the width of the filter
is set to 2 in this article. And υd · υo represents the dot product
of the two vectors, while |υd| and |υo| are the Euclidean norms of
them, respectively.
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FIGURE 2 | The flowchart of the algorithm FE-Learn.

3. SIMULATION RESULTS

Next, we conduct extensive experiments to explore the
influence of different parameters with different values on
the learning performance of the FE-Learn. Moreover, the
robustness in the face of noise of different intensities is
tested, and finally, FE-Learn is applied to a practical speech
recognition task.

3.1. Performance Evaluation of FE-Learn
The effects of several important parameters on learning
performance are investigated in this section, including the time
duration of spike trains, the number of synaptic inputs, and
the firing rates of input and output spike trains. We compared
the FE-Learn against ReSuMe and SPAN. In these simulations,
the time constant of the membrane potential and the synaptic
currents, τm and τs, are set to 10 and 2.5 ms, respectively. And
the firing threshold and the time step are set to 1 mV and 1
ms, respectively. The synaptic weights are randomly initialized
by the Gaussian distribution N(0.01, 0.01). Twenty trials with
different input and desired output pairs are conducted for
each experiment.

3.1.1. Effect of the Time Duration
In this section, the learning neuron has 400 synaptic afferents.
The aim is to train the neuron to reproduce a desired spike train
with a time duration of 200 ∼ 3,000 ms and the length of the
interval is 200 ms. Before each training trial, the desired output
is a spike train with a firing rate of 100 Hz, and input spike
trains with a firing rate of 10 Hz are generated according to
the homogeneous Poisson processes. During each training, the
maximum value of C and the running time required to reach

FIGURE 3 | Effect of the time duration of spike trains on learning performance.

When the time duration of spike trains is in [200, 1,000], [1,200, 2,000], [2,200,

3,000] ms, the corresponding width of the tolerable window is 1, 3, and 5 ms,

respectively. Learning accuracy comparison of FE-Learn, SPAN, and ReSuMe

under different time duration of spike trains (A), running time comparison of

FE-Learn, SPAN, and ReSuMe under different time duration of spike trains (B).

it are recorded. After 20 training trials, the average values of all
maximum C and corresponding running times are reported.

Figure 3A shows the variation trend in learning accuracies of
FE-Learn, SPAN, and ReSuMe. The learning accuracies of the
three algorithms can reach one when the time duration of spike
trains varies from 200 to 600 ms, but when the time duration
exceeds 800 ms, the learning accuracies of SPAN and ReSuMe
start to decline, and the learning times increase gradually.
Meanwhile, the learning accuracy of FE-Learn is limited by the
width of the tolerable window ε, so it can keep constant at 1 when
ε = 1, C ≈ 0.96 when ε = 3 and C ≈ 0.89 when ε = 5, and
the learning accuracy drops significantly when the width of the
tolerable window changes. Under the same width of the tolerable
window, the learning time increases with the increase of spike
train length. The general trend is that FE-Learn can obtain higher
learning accuracy than SPAN and ReSuMe with less time.

3.1.2. Effect of the Number of the Synaptic Inputs
The effect of the number of the synaptic inputs is investigated
in this section, and it varies from 100 to 500 with an interval of
50. The time duration of the spike trains is set to 800 ms. The
desired output spike train with a firing rate of 100 Hz and input
spike train with a firing rate of 10 Hz are generated according
to the homogeneous Poisson processes at the beginning of each
training trial.

Figure 4 shows the experimental results. As shown in
Figure 4A, a small number of synaptic inputs lead to a low
learning accuracy for both SPAN and ReSuMe—for instance, the
learning accuracy of SPAN is only 0.81 and for ReSuMe it is
0.79—when the neuron is trained with only 100 synaptic inputs,
but SPAN takes a very short time, and although FE-Learn with
ε = 5 takes more time, it can achieve higher accuracy. When
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FIGURE 4 | Effect of the number of the synaptic inputs on learning

performance. When the synaptic input is in 100, [150, 250], [300, 500], the

corresponding width of the tolerable window is 5, 3, and 1, respectively.

Learning accuracy comparison of FE-Learn, SPAN, and ReSuMe with different

number of the synaptic inputs (A), running time comparison of FE-Learn,

SPAN, and ReSuMe with different number of the synaptic inputs (B).

the number of synaptic inputs is greater than or equal to 300,
the width of the tolerable window of FE-Learn is set to 1 ms.
Then, the learning accuracy of it can reach 1, while the learning
accuracies of SPAN and ReSuMe slowly increase to 1 with the
increase of the number of synaptic inputs. Additionally, under
the same width of the tolerable window, the learning time of
FE-Learn can decrease with the increase of the number of the
synaptic inputs. In short, FE-Learn performs better than ReSuMe
both in terms of accuracy and running time, and obtains higher
accuracy than SPAN with comparable time.

3.1.3. Effect of the Firing Rate
The effect of the firing rate of the spike trains is evaluated in the
following experiments. For the input spike trains, the firing rates
(rin) are varied from 6 to 18 Hz with an interval of 4 Hz, while
for the desired output spike trains the firing rates (rout) vary from
20 to 160 Hz with an interval of 20 Hz. The time duration of the
spike trains is 800 ms and the amount of the synaptic inputs is set
to 400. In each trial, the learning continues until the algorithm
converges and the averages of the maximum obtained C from 20
trials are reported in Figure 5.

From Figure 5A, the learning accuracy of FE-Learn can
achieve 1 except when the firing rates of the input spike train and
the desired output spike trains are 6 and 160 Hz, respectively, but
even in this worst case, the accuracy still reaches 0.986. However,
the performances of SPAN and ReSuMe become worse with the
decrease of rin and the increase of rout , and their lowest accuracies
are about 0.97, as shown in Figure 5B.

3.2. Robustness to Noise
In this section, the robustness of the neuron trained by FE-
Learn and ReSuMe is investigated. The neuron has 400 synaptic

FIGURE 5 | Effect of the firing rate of the spike trains on learning performance

of FE-Learn (A), SPAN (B), and ReSuMe (C). All parameters except the firing

rates of input spike trains rin and the desired output spike trains rout are fixed.

The width of the tolerable window ε is set to 1.

FIGURE 6 | Antinoise capability of FE-Learn, SPAN, and ReSuMe against

background voltage noise. The width of the tolerable window ε is set to 1.

inputs. The time duration of the input and expected spike
trains is set as 500 ms, both of which are Poisson spike trains,
and the firing rates of them are 10 and 100 Hz, respectively.
After deterministic training, the response reliability of the
neuron is considered in the case of adding background noise
on the membrane potential and adding jittering noise on the
input pattern.

3.2.1. Robustness to Background Noise on the

Membrane Potential
After training, the membrane potential of the trained neuron
is affected by background Gaussian white noise with mean
0 and variance σb ∈ [0.03, 0.33] mV in this case. The
variance interval is 0.03 mV, and for every value of σb,
20 independent experiments are conducted. The metric C is
still used to measure the similarity of the actual output and
desired output.

As shown in Figure 6, the learning accuracies of the
three algorithms decrease with the increase of noise
intensity. However, the correlation metric C achieved by
the neuron trained by FE-Learn is consistently higher than
that of SPAN and ReSuMe, confirming that the neuron
trained by FE-Learn is more robust when encountering
background noise.
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3.2.2. Robustness to Jittering Noise on the Input

Pattern
In this case, a Gaussian jitter with mean 0 and variance σj ∈

[0.2, 2] ms is added to each input spike after deterministic
training. In addition, every spike of the noisy input pattern may
be randomly deleted with a probability of 0.05 while some new
spikes may be randomly added into the noisy input pattern,
which are generated by a 1Hz homogeneous Poisson process. Just
as before, the correlation measure C of the distance between the
actual and the desired output spike sequences is calculated.

As can be seen from Figure 7, with the increase of the noise
intensity, the correlation between the actual and the desired
output spike trains shows a gradual downward trend, but for FE-
Learn, it stays about 0.05 and 0.1 higher than that of SPAN and
ReSuMe, respectively. Unlike before, SPAN performs better than
ReSuMe when exposed to jitter noise. However, neurons trained
by the FE-Learn have better anti-noise performance against jitter
noise than either of them.

3.3. Effect of Learning Parameters
The width of the tolerance window ε and the scaling rate Sr are
two important parameters of FE-Learn. We conduct experiments
to explore the influence of them on learning efficiency and
robustness of FE-Learn. Then we give a spatiotemporal spike
pattern recognition experiment, and show the effect of ε on the
testing performance.

3.3.1. Effect on Efficiency
In this section, the learning neuron has 400 synaptic afferents,
and the time duration is 800 ms. Input pattern and target pattern
are generated as in the previous experiments with a firing rate of
10 and 400, respectively. The scaling rate varies from 0 to 2 with
an interval of 0.2, and the width of the tolerance window has four
different values, 1, 3, 5, and 7 (under the condition that time step
equals one, width equal to 2 is actually the same as width equal to
1, so there is no need to explore the situation of 2, 4, and 6). For
each pair of ε and Sr , the learning continues until the algorithm
converges and the average of the maximum obtained C from 20
trials are reported in Figure 8.

Tolerance window width determines the learning accuracy of
convergence, and Figure 8A shows this obviously, and it also
shows that no matter what the scaling rate is, the algorithm will

FIGURE 7 | Antinoise capability of FE-Learn, SPAN, and ReSuMe against

jittering noise. The width of the tolerable window ε is set to 1.

eventually converge to the accuracy limited by the corresponding
window width. From Figures 8B,C, we can see that, only when
the tolerance window width is 1, the time of convergence
increases as the scaling rate increases, and is always much higher
than other cases, i.e., when the width is greater than 1, the
scaling rate has little impact on the convergence speed, and the
convergence time is always very small.

3.3.2. Effect on Robustness
The experiment settings are the same as last section, except that
the time duration is changed to 500 ms. We add background
noise and jittering noise to the network after each training trial.

As seen in Figure 9, whether for background noise or jittering
noise, the smaller the tolerance window width, the stronger
the noise resistance. From Figure 9A, the antinoise capability
against background noise becomes stronger with the increase of
scaling rate, but from Figure 9B, the antinoise capability against
jittering noise does not change obviously with the change of
scaling rate.

Combined with Figures 8, 9, when the window width
is greater than 1, FE-Learn can converge rapidly and the
convergence speed is not sensitive to the scaling rate, but
increasing it can improve the antinoise performance to
background noise. When the width is 1, the convergence speed
of the algorithm is very slow, and the smaller the scaling rate is,
the faster the convergence speed is, but the worse the antinoise
performance to background noise is.

3.3.3. Effect of the Width of Tolerance Window on

Overfitting
In this section, we conduct experiments to investigate the effect
of the width of tolerance window on overfitting. Three different

FIGURE 8 | Effect of tolerance window width and scaling rate on learning

efficiency. The evaluation index includes learning accuracy (A), the number of

epochs (B), and the running time (C).
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FIGURE 9 | Effect of tolerance window width and scaling rate on robustness.

(A) Antinoise capability against background noise with standard deviation

σb = 0.2. (B) Antinoise capability against jittering noise with standard deviation

σj = 1.

FIGURE 10 | Effect of tolerance window width on overfitting.

spatiotemporal spike patterns are randomly generated with 400
synaptic afferents, all of which are triggered at 5 Hz. The time
duration of each spatiotemporal spike pattern is 200 ms. For each
spike pattern, 25 samples are generated for training by adding a
jitter noise drawn from a Gaussian distribution with a standard
deviation of 3 ms, resulting in a training set with 3× 25 samples.
The test set is obtained in the same way. The learning neuron
is trained to emit the corresponding desired output spike trains
([5:15:170], [15:15:180], [25:15:190]) in response to the three
kinds of spike patterns. When the actual output spike train is
most similar to the desired output spike train of a category, then
the input pattern is classified into that category. For each ε, the
average recognition accuracy on the test set from 20 trials is
reported in Figure 10.

FIGURE 11 | Classification capability of FE-Learn, SPAN, and ReSuMe on

spatiotemporal spike patterns.

As shown in Figure 10, when ε is less than or equal to 7ms, the
classification accuracy on the test set increases with the increase
of window width. This is because a smaller window means more
rigorous learning on the training set, which will lead to overfitting
and reduce the generalization on the test set. For example, when
the window width is 7 ms, the mean recognition accuracy on
the test set is 96%. However, when the window width is 1 ms,
the accuracy is only about 88%. On the other hand, an overly
large window will make the training insufficient, thus reducing
the recognition accuracy. For instance, the recognition accuracy
decreases to 93.80% when the window width is 9 ms. In a
nutshell, a relatively large ε generalizes better, and the recognition
accuracy on the unseen data is higher.

3.4. Classification Task
3.4.1. Spatiotemporal Spike Pattern Classification
In this experiment, we investigate the ability of the proposed
FE-Learn in classifying spatiotemporal patterns. The setup for
the experiment is the same as in section 3.3.3. The aim of the
task is to classify three different spatiotemporal spike patterns.
Both the training set and test set contain 3 × 25 samples. For
each algorithm, after 300 learning epochs on the training set, the
classification performance on the training set and test set is tested.
The results are shown in Figure 11.

As can be seen from Figure 11, the classification accuracies
of FE-learn, SPAN, and ReSuMe on the training set are 1,
0.986, and 0.998 while those on the test set are 0.978, 0.95,
and 0.971, respectively. FE-Learn achieves better performance
in both the training set and test set. On the other hand, from
the respective differences between the training accuracy and the
testing accuracy (0.022 for FE-Learn, 0.036 for SPAN, 0.027 for
ReSuMe), FE-Learn has a better generalization ability.

3.4.2. Speech Classification
SNNs have great advantages in handling temporally rich signals
since they can transform the spatiotemporal information into
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desired output spike patterns, which means that SNNs are
well-suited for realistic tasks such as motion and speech
recognition. In order to verify the capability of FE-Learn, the
spiking neurons trained by the algorithm are used to conduct
a spoken digit classification task. In this work, we investigate
the TIDIGITS corpus (Leonard and Doddington, 1993), one
of the most commonly used data sets in benchmarking speech
recognition algorithms. The utterances of this data set were
collected from speakers who come from 22 different dialectical
regions and are digit sequences, containing 11 words: “zero,”
“one,” · · · , “nine,” and “oh.”

In this case, the threshold encoding mechanism (Gütig et al.,
2009) is adopted to encode the speech data into spike patterns,
and the encoding mode is the same as that in Zhang et al.
(2019b). Firstly, a Constant-Q Transform (CQT) cochlear filter
bank (Pan et al., 2018) is used to filter the original speech
waveform to get a spectrogram. Then, the spectrogram is divided
into multiple frequency bins. For each bin, a cochlear filter of the
corresponding frequency is used to filter it into a series of spikes
by recording events that cross thresholds up and down. Finally,
the spikes filtered by all cochlear filters are vertically integrated
to obtain a complete input spike pattern. Referring to the
visualization processing tool of auditory information provided
in Dominguez-Morales et al. (2016), a visual representation
of this process is given in Figure 12. In the experiment, the
training set and test set include 2,464 and 2,486 speech spike
patterns, respectively.

The computational model used here is shown in Figure 13.
There are eleven groups of output neuron in the classification
layer, and each group contains ten neurons, which correspond

to the same category. The goal of this experiment is to train

the target group of neurons to emit a desired spike train when
receiving the input patterns of the corresponding category, and to

remain silent otherwise. However, it is not clear how to determine
the target output spike train corresponding to each category as

each speech digit category contains many different sub-patterns

and the differences between these sub-patterns make a fixed
desired output spike train impractical. To resolve this problem,

a strategy for dynamically determining the target spike train is
proposed as follows.

When entering a training input pattern, we record the

membrane voltage traces of target neurons and non-target
neurons. The desired spike trains Td and the first wrong time terr
are defined as follows.

1. For the non-target neurons: Td = ∅.

• If no spike is generated, no learning is required.

• If the actual output spike trains To 6= ∅, then the first

wrong spike time terr is the first actual output spike time.

2. For the non-target neurons: Td is dynamically determined,
and suppose tmax is the time instant when the maximum
membrane voltage Vmax under the threshold is reached. ϑe

(< ϑ) is a pre-defined encoding threshold.

• If no spike is generated, Td = {tmax}, then obviously,
terr = tmax.

• If the actual output spike trains To 6= ∅ and Vmax is
above the pre-defined encoding threshold ϑe, then Td =

To ∪ {tmax}, terr = tmax.

FIGURE 12 | Threshold coding mechanism of speech data. (A) The Encoding process of a speech utterance “Two.” (B) The Encoding process of a speech utterance

“Seven.” The left column shows the original speech waveforms, the middle column shows corresponding spectrograms and the right column shows the final encoded

spike pattern.
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FIGURE 13 | Network architecture of speech classification. The three diagrams on the left show the encoding process of the speech data and the network structure

is on the right. The input layer contains 620 neurons and the output layer contains 11 groups of neuron (mullion), corresponding to 11 output categories, and each

group is composed of ten neurons. Among the ten output neurons with the same serial number in these 11 groups, the one that emits the most spikes is the

“activated” neuron (red circle). The output category belongs to the group with the largest number of “activated” neurons.

• If the actual output spike trains To 6= ∅ and Vmax is below
the pre-defined encoding threshold ϑe, then Td = To and
no learning is required.

According to the defined Td and terr , the corresponding weight
updating formula is called for learning. During the test, the
output category belongs to the group with the largest number
of activated neurons (red neuron shown in the output layer
in Figure 13). Moreover, the training strategy with margins
in Gütig (2016) is applied in this work. We also test the
performance of ReSuMe and SPAN on this task with the same
network configuration, encoding method, and training strategy
as FE-Learn.

As shown in Table 1, the spiking convolutional neural
network (Tavanaei and Maida, 2016) and the deep recurrent
network (Neil and Liu, 2016) perform well in this speech
recognition task, and they can obtain an accuracy of 96 and
96.1%, respectively. However, compared with their complex
network structures, the computational model we used here is
very simple while the accuracy of our method is higher than
others. As shown in Table 1, the single layer spiking neural
network with the proposed FE-Learn algorithm obtains an
accuracy of 96.42%, which is superior to other biologically
motivated baselines, as well as ReSuMe and SPAN with the same
network structure, encoding scheme, and training strategy. The
excellent performance of FE-Learn shows its great potential in
practical application.

TABLE 1 | Comparison of speech recognition performance among several

frameworks.

Model Accuracy

Spiking CNN and HMM (Tavanaei and Maida, 2016) 96.00%

Single-layer SNN and SVM (Tavanaei and Maida, 2017) 91.00%

AER Silicon Cochlea and Deep RNN (Neil and Liu, 2016) 96.10%

Liquid State Machine (Zhang et al., 2015) 92.30%

AER Silicon Cochlea and SVM (Abdollahi and Liu, 2011) 95.58%

Auditory Spectrogram and SVM (Abdollahi and Liu, 2011) 78.73%

Single-layer SNN with SPAN 91.22%

Single-layer SNN with ReSuMe 93.52%

Single-layer SNN with FE-Learn 96.42%

Additionally, in order to investigate the performance of
FE-Learn in more complex cases, we also conduct speech
classification experiments of the three algorithms with different
input noise intensities. The standard deviation of jitter noise
added to the input spike pattern increases from 0.5 to 5
ms with an interval of 0.5 ms. As shown in Figure 14, the
classification accuracy of the proposed FE-Learn is 94.69% even
when the noise intensity is 5 ms, which is much higher than
ReSuMe and SPAN with the same noise level. Therefore, the
robustness of the FE-Learn is better than ReSuMe and SPAN in
practical application.
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FIGURE 14 | Speech recognition performance of FE-learn, SPAN, and

ReSuMe in the test set in the face of input noise.

4. DISCUSSION

In this section, we first analyze the difference between the three
algorithms and explain the role of the parameter Sr through a
concrete example. Then we figure out the reasons that contribute
to FE-Learn’s better performance over ReSuMe and SPAN in
accuracy, computation time, and generalization.

The membrane potential curves before and after a single
weight updating have been shown in Figures 15A,C, respectively.
In Figure 15B, the synaptic learning curves depict the spike-
timing dependence of weight adjustment at time terr . ReSuMe
has an exponential learning curve (the gray dashed line),
which means that the closer the input spike time is to terr ,
the larger the synaptic weight update is. However, due to
the existence of the time constants of the membrane voltage
and synaptic current, the input spike closest to terr does not
make the largest contribution to the membrane voltage at
terr , so the learning of ReSuMe does not serve the aim very
well. As for SPAN, we depict its spike-timing dependence
curve (green dotted line) of weight adjustment with α-kernel
in Mohemmed et al. (2012) at time terr . From Figure 15A,
each actual output spike time before the terr is within the
tolerable window of the corresponding desired spike time.
Accordingly, the convolution of the error is very small,
resulting in very little weight change at terr . The shape of
the learning curve is determined by the convolution kernel,
and the inconsistency between the convolution kernel and
the current kernel of the neuron model can also lead to
mismatching between the weight change of the synaptic and its
potential contribution.

As we already know, FE-learn with Sr = 1 utilizes all the
spike times before terr to calculate weight increment, so the
learning curve of it has multiple crests compared with that of
FE-learn with Sr = 0 which has one crest. It means that the
former would promote the synaptic weights whose input spikes

happened before t3
d
with a larger amount, but for those spikes

fired between t3
d
and t4

d
, the weight updates are the same (the

red solid line and the blue dashed line coincide). As shown
in Figure 15C, the membrane potential at t4

d
is successfully

raised in all cases, and the spike times before t4
d
are pushed

forward a little bit. But for FE-learn with Sr = 1, this is
more obvious than others because of the greater weight updates
and thus the greater voltages at these times, which means that
it is more robust to noise disturbance. However, an overly
strong weight update may cause the previous output spikes to
be removed from the corresponding tolerable windows, so the
appropriate strength of weight adjustment at previous desired
spike times which is controlled by the scaling factor Sr is crucial.
As for the case of weight decrement, we only want to reduce
the membrane voltage at terr , but do not want the previously
correctly emitted spikes to be affected, so setting Sr to zero
is reasonable.

As shown in the experimental results, FE-Learn achieves
a higher learning accuracy with less training time and has
a better generalization. First of all, the reason for the high
accuracy of our method is that our method follows the BPBA
(Bigger PSP, Bigger Adjustment) (Xu et al., 2013a) principle
to effectively overcome learning interference among multiple
desired spikes, while the weight update rules in ReSuMe and
SPAN cannot be combined with the BPBA principle. Besides,
to improve the efficiency of the program, we have calculated
and stored the PSPs (Postsynaptic potentials) of every time
step before training. For example, when the time duration is
T, the time step is dt and the number of the synaptic inputs
is N, storing the calculated PSPs requires N · T/dt storage
units. For the three algorithms, the calculation of the neuron
dynamics and weight adjustments are all based on the stored
PSPs, and the additional memory costs required by them are
very small, implying that they have a similar memory overhead.
On the other hand, in each training epoch, ReSuMe makes
multiple weight adjustments at each desired and actual firing
time, while SPAN changes weight at each time step. However,
FE-Learn only makes a weight adjustment once at terr in
one epoch, and the membrane potential after terr does not
need to be calculated in our experiments. This is the reason
that FE-Learn requires less computation time. Finally, as the
constraint on the tolerable window for spiking loosens, the
generalization ability of proposed FE-learn learning is much
better than others. This is the reason for the better results
in Figure 11.

5. CONCLUSION

The proposed FE-Learn is designed for identifying
spatiotemporal spike patterns, i.e., the neuron is trained to
output the specific spike sequence for the given input spike
pattern. FE-Learn adjusts the synaptic weights at the first wrong
output spike time, and only when the trained neuron correctly
fires the first spike at the desired time does FE-Learn begin
to focus on adjusting the weights to fire the second desired
spike. The adjustment of the synaptic weight is proportional
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FIGURE 15 | Comparison between FF-learn, SPAN, and ReSuMe for one weight updating. The neuron has been trained to elicit the first three spikes in

corresponding tolerable windows, which are represented by the gray shadow region, the desired spike times are located at the middle of the windows. The black

vertical dashed lines represent the first wrong time terr . (A) Membrane dynamics of the neuron before this learning. (B) Synaptic learning curves of FE-Learn with

scaling rate Sr = 1 (red solid line) FE-Learn with scaling rate Sr = 0 (blue dotted line), SPAN (green dotted line), and ReSuMe (gray dashed line). (C) Membrane

dynamics of the neuron after one learning using different rules.

to the derivative of the membrane voltage of the first wrong
time with respect to the synapse. These three error types
described above actually belong to two types: one is at the
desired spike time, the other is at the actual spike time.
They correspond to the two opposite cases of increasing and
decreasing synaptic weights. For the first case, the desired spike
times before the wrong spike time are also used to calculate the
derivative, but for the second case, only the wrong spike time
is used.

Although the proposed FE-Learn has reliable performance
in the experiments, the inherent properties of this
algorithm make it converge to the narrow window
of the desired spike times, and it is difficult to emit
a precisely timed spike. Hence we will explore how
to balance the width of the window (accuracy) and
the learning speed in the next work. Furthermore,
extending FE-Learn to multi-layer deep spiking
neural networks is another interesting future direction
to explore.
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