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State of the art myoelectric hand prostheses can restore some feedforward motor
function to their users, but they cannot yet restore sensory feedback. It has been
shown, using psychophysical tests, that multi-modal sensory feedback is readily used
in the formation of the users’ representation of the control task in their central nervous
system – their internal model. Hence, to fully describe the effect of providing feedback
to prosthesis users, not only should functional outcomes be assessed, but so should
the internal model. In this study, we compare the complex interactions between two
different feedback types, as well as a combination of the two, on the internal model, and
the functional performance of naïve participants without limb difference. We show that
adding complementary audio biofeedback to visual feedback enables the development
of a significantly stronger internal model for controlling a myoelectric hand compared
to visual feedback alone, but adding discrete vibrotactile feedback to vision does not.
Both types of feedback, however, improved the functional grasping abilities to a similar
degree. Contrary to our expectations, when both types of feedback are combined, the
discrete vibrotactile feedback seems to dominate the continuous audio feedback. This
finding indicates that simply adding sensory information may not necessarily enhance
the formation of the internal model in the short term. In fact, it could even degrade it.
These results support our argument that assessment of the internal model is crucial
to understanding the effects of any type of feedback, although we cannot be sure
that the metrics used here describe the internal model exhaustively. Furthermore, all
the feedback types tested herein have been proven to provide significant functional
benefits to the participants using a myoelectrically controlled robotic hand. This article,
therefore, proposes a crucial conceptual and methodological addition to the evaluation
of sensory feedback for upper limb prostheses – the internal model – as well as new
types of feedback that promise to significantly and considerably improve functional
prosthesis control.
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INTRODUCTION

The ease with which adults use their hands is owed to
an intricate feedforward-feedback mechanism that has been
honed since birth (Johansson and Cole, 1992). To those
who have lost a hand (i.e., amputees) or were born without
it, some feedforward motor functions can be restored with
hand prostheses. However, while prostheses with myoelectric
control represent the clinical state of the art (Schmidl, 1973),
current commercial devices do not intentionally provide sensory
feedback, and only few sensory feedback systems have found
their way out of the research labs (Antfolk et al., 2013;
Clemente et al., 2016; Ortiz-Catalan et al., 2017).

Feedforward control of myoelectric hand prostheses is chiefly
influenced by two factors: (1) the robustness of the control
of the movements of the prosthesis, which is affected by the
method of recording and decoding the users’ intent (i.e., their
signals) (Geethanjali, 2016). (2) the users’ ability to produce
these control signals that is dependent on their understanding
of the system – how it is represented in the central nervous
system – which is known as the internal model (Kawato, 1999).
In the unimpaired individual, internal models are continuously
updated through multi-modal sensory feedback (tactile, visual,
and auditory) during and after any movement (Imamizu et al.,
2000). In amputees wearing a prosthesis, this differs due to
the poor implicit sensory feedback available. Prosthesis users
rely, chiefly, on proprioception in the remaining muscles (sense
of contraction), visual feedback and, to some extent, on the
incidental feedback that motor noise, and socket vibration
provide (Simpson, 1973; Childress, 1980; Antfolk et al., 2013;
Markovic et al., 2018b). Consequently, they cannot adequately
hone their internal model, which negatively affects their ability
to control the prosthesis (Lum et al., 2014; Shehata et al., 2018c).
When highly reliable efferent signals are available for control,
incomplete sensory inputs may suffice to retain the internal
model (Hermsdörfer et al., 2008; Saunders and Vijayakumar,
2011; Ninu et al., 2014; Dosen et al., 2015b; Markovic et al.,
2018b). However, it is a desirable goal to restore natural closed-
loop control with supplementary (explicit) sensory feedback.

To address this goal, researchers have devised and assessed
ways of providing feedback through invasive and non-
invasive methods (Childress, 1980; Antfolk et al., 2013).
Invasive peripheral nerve stimulation holds the promise of
eventually being able to restore close-to-natural, modality-
and somatotopically matched sensations (Riso, 1999; Graczyk
et al., 2016). So far, however, realization of this hope has proven
difficult; truly natural “touch” sensations have only been reported
once (Tan et al., 2014). Non-invasive feedback does not directly
interface with the nerves and is thus potentially less informative,
but it is preferred by prospective users (Engdahl et al., 2015). It
has also proven capable to improve functional performance in
prosthetic hand users (Chatterjee et al., 2008; Ninu et al., 2014;
Raspopovic et al., 2014; Clemente et al., 2016; Dosen et al., 2016;

Abbreviations: DESC, discrete event-driven sensory control; DoF, degree of
freedom; EMG, electromyography/electromyographic; iVE, instrumented virtual
egg; V, visual feedback; VA, visual + audio biofeedback; VAT, visual + audio +
tactile feedback; VT, visual+ tactile feedback.

Markovic et al., 2017, 2018a). All these studies demonstrated new
technological devices and methods, produced new knowledge,
and revived the interesting question on the need/effectiveness of
sensory feedback and how to assess it. However, no study had
assessed the effects of sensory feedback on the internal model
within a formalized framework.

In an attempt to reduce this gap, we recently proposed to
assess the internal model strength developed while controlling
myoelectric prostheses by using a psychophysical framework
borrowed and modified from motor adaptation studies (Johnson
et al., 2017; Shehata et al., 2018a,c). This framework uses
parameters, such as sensory and control noise, to compute
uncertainties in the developed internal model. Our recent work
(Shehata et al., 2018c) showed that this framework can be
used to investigate the effect of the feedback level on internal
model strength. As a test bed for assessing this new method,
we developed a versatile non-invasive human-machine interface
that included a classifier for control and an audio sensory
feedback system conveying continuous information about the
control inputs of the classifier (EMG biofeedback) (Shehata
et al., 2018a,b). The psychophysical framework proved that the
strength of the internal model depends on the sensory input
received (Shehata et al., 2018c). In particular, it showed that
when audio biofeedback was added to vision, it outperformed
the visual feedback alone in terms of internal model strength
and performance in a functional task – both in a virtual
environment and while using a multi-DoF hand prosthesis
(Shehata et al., 2018a,b).

Based on these results, we sought to further enhance the
sensory input available to the user, with complementary cues,
in order to assess whether and how this could result in an
even stronger internal model, and better performance in a
functional task. To this aim we assessed and compared four
sensory feedback conditions while controlling a myoelectric
research hand prosthesis in psychophysical and functional tests.
The three main conditions differed regarding the amount
of complementary information: “visual-only (V),” “visual-plus-
audio (VA),” and “visual-plus-audio-plus-tactile (VAT).” To
disentangle the effects of the tactile component on the outcomes
of the VAT feedback, the fourth condition was “visual-plus-tactile
(VT).” The tactile feedback was provided by means of short-
lasting vibrotactile cues (time-discrete) rather than continuous
feedback, according to our previous work (Cipriani et al., 2014;
Crea et al., 2015; Clemente et al., 2016; Barone et al., 2017;
Aboseria et al., 2018) and the discrete event-driven sensory
feedback control (DESC) policy (Johansson and Cole, 1992;
Johansson and Edin, 1993; Johansson and Flanagan, 2009). The
latter is a neuroscientific hypothesis of the mechanisms involved
in human sensorimotor control, which posits that manipulation
tasks are organized by means of multi-modally encoded discrete
sensory events, e.g., resulting from object contact and lift-off.

Our findings show that all augmented feedback types
significantly improved the performance compared to vision alone
in the functional task, but only the audio biofeedback (VA)
had an effect on the internal model strength, as measured by
the psychophysical framework/metrics. Conversely, the tactile
feedback demonstrated poor psychophysical metrics without
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(VT) and in combination with the audio biofeedback (VAT).
These results on how the different inputs combine (either
constructively or destructively) in the integrated sensory percept
contribute to the scientific debate on the internal model and
suggest ways for providing effective supplementary sensory
feedback to prosthetic hand users.

MATERIALS AND METHODS

Study Participants
We collected data from 28 healthy participants without any
limb difference [13 females; age: 25 ± 4.5 (mean and standard
deviation)]. All participants had normal or corrected-to-normal
vision, were right-handed, and had no previous experience with
myoelectric control. We had already collected the data for
the “visual-only (V)” and “visual-plus-audio (VA)” groups (14
participants) and presented some aspects of it in our previous
study (Shehata et al., 2018a). Written informed consent according
to the University of New Brunswick Research and Ethics Board
and the Scuola Superiore Sant’Anna Ethical Committee was
obtained from all participants before conducting the experiments
(UNB REB 2014-019 and SSSA 02/2017). The protocol used in
this study was approved by the University of New Brunswick
Research and Ethics Board and the Scuola Superiore Sant’Anna
Ethical Committee.

Experimental Setup
The experimental setup was similar to that of our previous
study (Shehata et al., 2018a) and is briefly described here.
It comprised an array of eight custom-made myoelectric
sensors in a bracelet; a right-handed sensorized research hand
prosthesis (IH2 Azzurra hand, Prensilia S.r.l., IT) that was
mounted on a bypass attached to the participant’s forearm;
a PC running the control and feedback algorithms; standard
commercial headphones (MDRZX100, Sony, JP) for the audio
feedback; a vibrotactor for the tactile feedback (Pico Vibe
312-101, Precision Microdrives, United Kingdom); and an
instrumented test object [57 mm × 57 mm × 57 mm, ca. 180 g;
(Controzzi et al., 2017; Figure 1)].

The myoelectric sensor bracelet was placed around the
forearm of the participant and recorded the muscle activity used
to control the robotic hand. We limited robotic hand movements
to two degrees of freedom (DoF): (1) flexion/extension of the
thumb, index and middle fingers, and (2) abduction/adduction of
the thumb. Each of the four directions of movement of the robotic
hand was mapped to one of four specific wrist movements: flexion
and extension of the wrist corresponded to flexion/extension of
the digits, while wrist abduction and adduction corresponded to
abduction/adduction of the thumb. To implement the mapping,
i.e., to interpret the electromyographic (EMG) signals, we used
a Support Vector Regression algorithm that provided two
regression-based control signals, which could simultaneously
activate the two DoFs (e.g., thumb adduction and finger flexion)
(Shehata et al., 2017, 2018c). These signals were then gated by a
classifier; that means, the hand only moved in one direction at a
time (Figure 2).

FIGURE 1 | Overview of the setup. The robotic hand was attached to the
participant via bypass. The EMG signals recorded from the electrode bracelet
around the forearm controlled the hand. A vibrotactor on the dorsal forearm
provided discrete feedback i.e., discrete event-driven sensory feedback
control (DESC), and the headphones provided continuous feedback. If the
grasping force on the test object exceeded a breaking threshold in fragile
mode, its red LED turned on. Modified from Shehata et al. (2018a), used
under CC BY 4.0.

Biofeedback is the technique of providing biological
information to participants in real-time that would otherwise
be unknown (Giggins et al., 2013). Accordingly, the audio
biofeedback continuously relayed the two outputs of the
regression-based controller to the participant, in the form of
four distinct tones. Wrist flexion and extension were mapped
to tones of 400 and 500 Hz, wrist abduction and adduction
to 800 and 900 Hz, respectively. The amplitude of the tones
was proportional to the output of the regression algorithm
(max volume = 53 ± 3 dB Sound Pressure Level). With this
architecture (Figure 2), while the hand moved only one DoF at
a time, the audio biofeedback provided richer information about
the participant’s myoelectric signals, which encompassed both
proprioceptive and motor output information.

The tactile feedback provided information about the physical
interactions of the robotic hand with the environment through
the vibrotactor on the dorsal forearm. It delivered a short-lasting
vibration burst (60 ms, 150 Hz, peak-to-peak force amplitude of
ca. 0.3 N) upon contact, liftoff, replacement, and release of the
test object. These events are known to be highly significant for the
normal grasp-and-lift control, as per the DESC policy (Johansson
and Cole, 1992; Johansson and Edin, 1993; Cipriani et al., 2014).

The test object – called an iVE – contained load cells
measuring the grasp and load forces. The iVE could virtually
break when a grasp exceeded a force of ca. 3 N, which was signaled
to the participant by the activation of a red-colored LED on the
iVE (Controzzi et al., 2017).

Experimental Protocol
Participants were divided into four groups (7 persons each)
according to the kind of feedback they received: “visual-only
(V),” “visual-plus-audio (VA),” “visual-plus-tactile (VT),” and
“visual-plus-tactile-plus-audio (VAT).” They performed two tests
according to a previously developed psychophysical framework
(Shehata et al., 2018c): the “adaptation rate test” to measure the
rate of optimization of grasping due to the feedback, and the
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FIGURE 2 | Overview of the control and feedback loop. The dotted lines indicate the three types of feedback provided to the participants.

“just-noticeable difference (JND) test” to measure the threshold
of perceiving a control perturbation. A third “functional test” was
added in order to measure the ability to use the robotic hand in a
manipulation task (Clemente et al., 2016).

In the adaptation rate test, the participants had 40 trials and
were asked to grasp, lift, and replace the iVE as quickly as possible
without breaking it. The iVE was placed in front of the participant
so that the LED faced upward and the two instrumented sides
could be grasped without the need to turn the object. A limit of 5 s
was given to execute each trial, after which the hand automatically
reopened. During trials 1–25, breaking was signaled through a
red LED (fragile mode); during trials 26–40, the breaking was
no longer signaled (rigid mode). This was done to keep subjects
engaged with the task and prepare them for the following test.

In the JND test, the participants grasped the iVE (fragile
mode) in two consecutive trials, lasting 4 s each (after which
the hand automatically reopened). In one of the two, a stimulus
perturbed the control of the hand. Participants were told to
identify the altered trial (two-alternative forced choice) by
pressing a key on a keypad placed near their unconstrained
hand. The stimulus was calculated using an adaptive staircase
procedure with a target probability set to 0.84 and a step size of
67 degrees and repeated until 23 reversals were achieved, as in our
previous work (Shehata et al., 2018c).

In the functional test, for 20 trials of 10 s each, the participants
attempted to grasp, and transfer the iVE over a barrier (H:
14.5 cm × W: 25 cm) without breaking it (fragile mode), akin
to the well-known Box and Block test (Mathiowetz et al., 1985;
Clemente et al., 2016). For a more detailed description of the tests
please refer to (Shehata et al., 2018a).

In all groups, participants first trained freely to become
familiar with the control and then trained to grasp and lift the test
object. After that, they completed the three tests receiving only
visual feedback. Subsequently, participants repeated the training
and the three tests with either V, VA, VT, or VAT feedback. Ergo,
each participant completed training and the three tests twice.

FIGURE 3 | (A) Internal model uncertainty (Pparam). (B) Sensorimotor
threshold (JND). Horizontal bars denote p < 0.05. Error bars show the
standard error of the mean for each group.

The four groups were thus different and received the following
feedback (in order): V-V, V-VA, V-VT, and V-VAT. In between
the tests, the participants took short breaks; they took additional
breaks during the (long-lasting) JND (every 12 min, or more
often if desired). Each trial of the three tests was started with
the hand fully opened and ended with the hand (automatically)
returning to this starting pose. In the adaptation rate test and
in the JND test, the thumb was fully adducted, meaning that
participants had to activate only one DoF to close the hand [see
also Figure 3 in Shehata et al., 2018a]. In the functional test, the
fingers were extended, and the thumb fully abducted in resting
position, meaning that the participants had to activate the two
DoFs, mimicking the control of a multi-DoF prosthetic hand.

Outcome Measures
The internal model developed while using the robotic hand was
reconstructed from the data of the second repetition of the tests,
by extracting four metrics from the adaptation rate and the JND
tests, following the procedure described in our previous study
(Shehata et al., 2018a). These are termed psychophysical metrics
and consist of:
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• Pparam: Internal model uncertainty. This measure
describes the confidence participants have in their
developed internal model, and it is computed from the
outcomes of the adaptation rate test and the JND test
(Shehata et al., 2018c and their Supplementary Materials).
• JND: Just-noticeable difference (or sensorimotor

threshold). It describes, in degrees, the smallest external
control perturbation from the trajectory (generated
by the participant) that the participant perceived.
The JND was defined as the final noticeable stimulus
after 23 reversals of the adaptive staircase in the JND
test (Shehata et al., 2018c).
• R: Sensory uncertainty. R determines the participants’

trust in the sensory information they receive from the
system (Shehata et al., 2018c). It is derived from the JND
and the controller noise (Q) as follows:

R =
JND2

2
− Q (1)

Q was extracted from the adaptation rate test as the variance in
the control signal between the start of each trial and the first
activation of the muscles (ca. 100–200 ms).

• −β1: Adaptation rate. This is a measure of the
participants’ modification of the feedforward control
signal (from one trial to the next) based on the perceived
error between the optimal and their actual movement
(Bastian, 2008; Johnson et al., 2017). It was computed
from each trial in the adaptation rate test by analyzing
the first 150–300 ms window of the output signal from
the controller (Shehata et al., 2018b). This window was
selected to truly assess modifications in the control signals
before integration of the visual feedback (Elliott and
Allard, 1985). Since this test required only flexion of
the digits, any other activations were considered self-
generated errors (Shehata et al., 2017). Participants were
incentivized to minimize these errors while executing the
task as quick as possible without (virtually) breaking the
object. We computed the−β1 as follows:

errorn+1 − errorn = β1 × errorn + β0 (2)

where error is the angle between the ideal and the actual
hand trajectory, β0 is the linear regression constant, β1 is the
adaptation rate, and n is the trial number. A unity value for
β1 indicates perfect adaptation, i.e., an internal model that is
modified to perfectly compensate for errors. Higher or lower
adaptation rates suggest over- or under-compensation.

In addition – to infer the way participants used the sensory
input to control the robotic hand to grasp and lift the object –
we computed the number of sub-movements from the second
block of data in the adaptation test. Sub-movements are defined
as the number of zero-crossing pairs of the third derivative of
the grasp force profile per trial (Fishbach et al., 2007). This
measure describes the real-time (or closed-loop) regulation of
the grasp force and depends on the received feedback (Doeringer
and Hogan, 1998; Kositsky and Barto, 2001; Dipietro et al., 2009).

Specifically, a higher number of sub-movements indicates closed-
loop regulation of the grasp force.

Finally, the completion rate (defined as the proportion of
successful transfers) and the mean completion time (the average
time needed to successfully transfer the object) were computed
from the second repetition of the functional test, akin to our
previous studies (Clemente et al., 2016).

Statistical Analysis
We tested all parameters for homogeneity in variances of the
data by using Levene’s test in SPSS (IBM Corp., United States). If
data variances were homogenous, one-way ANOVAs were used
to assess differences among metrics for the feedback types tested.
If statistical significance was found, Bonferroni post hoc analysis
test was performed. However, if data variances were found to
be non-homogeneous, robust Welch ANOVA was used instead
and followed by post hoc analysis using Games-Howell test. The
confidence interval was calculated using the standard deviation
(95% CI = mean± 1.96× SD).

RESULTS

The internal model uncertainty, Pparam, proved significantly
lower with the audio augmented feedback (VA) compared to
all other conditions [robust Welch ANOVA (F (3, 24) = 8.6,
p = 0.006) and Games-Howell post hoc tests p < 0.05]
(Figure 3A). No other statistical differences were observed. In
contrast to our expectations, with VAT, Pparam (2.0 ± 0.45)
was larger than VA (0.22 ± 0.11) and VT (1.4 ± 0.4), and
not statistically different from V (2.14 ± 0.64). In other words,
adding the tactile component to the audio biofeedback not only
produced a lower confidence on the internal model than the two
components (VA and VT) individually, but it degraded to the
level of visual feedback alone.

The JND was 67 ± 7.2 degrees for V, 44.6 ± 3.9 degrees for
VA, 78.6 ± 2.5 degrees for VT, and 70.6 ± 5.4 degrees for VAT.
Its trend matched with that of Pparam. Indeed, it was lowest for the
VA condition (one-way ANOVA with Bonferroni post hoc tests,
p< 0.05), while no other statistical differences were found among
the conditions (Figure 3B).

Akin to Pparam and JND, the sensory uncertainty (R) was
lowest under VA and largest under VT (Figure 4A).

The adaptation rate was 0.82 ± 0.1 for V, 1.2 ± 0.1 for VA,
0.98 ± 0.1 for VT and 1.03 ± 0.1 for VAT. These outcomes
indicated that, when using the VA feedback, participants adapted
more than when using the other types, although this difference
was statistically significant only in comparison to V (Figure 4B;
Shehata et al., 2018a). No other statistical differences could
be observed across conditions. It is worth noting that the
controller noise Q extracted from this test was consistent across
all conditions (<20%; not shown). This means that any variability
in R is an effect of the sensory feedback, not of the variability of Q.

Altogether, the psychophysical metrics all indicated VA as the
condition yielding the strongest internal model, as assessed by a
lower JND and sensory uncertainties, higher adaptation rate, and
a stronger internal model.
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FIGURE 4 | (A) Sensory uncertainty, R. The graph is a visualization of the
variance of each feedback strategy in the probability curve. It displays
Gaussian curves constructed with a variance of R and an arbitrary area under
the curve of 1 unit. Visual-plus-audio biofeedback (VA) shows the narrowest
variance, i.e., the lowest uncertainty. Conversely, visual-plus-tactile (VT) shows
the widest variance, i.e., the highest uncertainty. (B) Adaptation rate (−β1).
The adaptation rate describes the extent to which participants adapted to the
self-generated error, i.e., how well they could optimize their control from one
trial to the next. Horizontal bars denote p < 0.05. Error bars show the
standard error of the mean for each group.

FIGURE 5 | Trial sub-movements. The graph shows significantly more
sub-movements with VA than with all other feedback types. VAT lead to
significantly more sub-movements than VT. VT and V are not statistically
different. Horizontal bars denote p < 0.05. Error bars show the standard error
of the mean for each group.

The analysis on the sub-movements highlighted a statistically
significant difference across conditions (one-way ANOVA;
p = 0.001) (Figure 5). Participants using VA adjusted their
control signals significantly more than participants using the
other feedback types (Bonferroni post hoc tests, p < 0.05). In
other words, the participants tended to use the audio biofeedback
in real-time, in order to modulate their grasp force to prevent
breaking the object. Conversely, participants using the VT
performed significantly less sub-movements than participants
using the audio biofeedback (VAT and VA) (Bonferroni post hoc
tests, p < 0.05). No other statistical differences were observed.
These general behaviors were nicely captured by the time series
of the grasp forces during the adaptation rate test (Figure 6).
The evolution of the grasp force profiles, under the different
conditions, suggest that, in the VAT, the participants used the
audio biofeedback in the initial trials (light gray traces in
Figure 6), and the discrete tactile feedback in the later trials
(dark gray traces).

Regarding the functional test, the completion rate with visual
feedback only (V) proved significanly worse than with VA, VT,

FIGURE 6 | Grasp force profiles. Representative grasp force profiles from
individual trials during the adaptation rate test for all feedback types.
A participant using (A) only visual feedback had lower variance in their
grasping patterns over trials, (B) visual-plus-audio adjusted their grasping
force throughout the trials and had higher variance in their grasping patterns,
(C) visual-plus-tactile had automated grasping patterns with very low
variance, and (D) visual-plus-audio-plus-tactile seemed to have highly variable
grasping pattern in the initial trials but more automated grasping pattern at the
final trials. Earlier trials are in lighter, later trials in darker shades of gray. The
red horizontal bar indicates the breaking threshold. Incomplete trials in which
the iVE was broken are not shown.

FIGURE 7 | Completion rate. The figure shows that the percentage of
successful transfers (i.e., the iVE was not broken) was significantly higher
when the participants received any kind of augmented feedback compared to
visual alone. Horizontal bars denote p < 0.05. Error bars show the standard
error of the mean for each group.

and VAT (One-way ANOVA; Bonferroni post hoc tests, p< 0.05).
Further, there may be a slight trend toward more successful
transfers with VAT (70± 5.4) compared to VT (55± 8.5) and VA
(65 ± 4.6) but it did not reach significance (p = 0.3 and p = 0.6,
respectively) (Figure 7).

The mean completion time was not affected by the different
feedback types and was 8.4 ± 0.65 s for V, 8.3 ± 0.74 s for VA,
8.6± 0.32 s for VT, and 8.4± 0.34 s for VAT.
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DISCUSSION

Many researchers have explored ways of providing hand
prostheses with supplementary sensory feedback, showing that
it could indeed improve the performance in functional tasks.
Yet, very little consideration has been given to the causes
underpinning improved performance; in particular, it is still
unknown how feedback contributes and combines to build
strong internal models of the myoelectric control system.
Here, we hypothesized that increasing the sensory information
provided to a myoelectric hand user could result in a stronger
internal model and better performance in a functional task.
Hence, we combined continuous audio biofeedback with event-
based vibratory tactile feedback in a myocontrolled prosthetic
hand. Furthermore, we also explored the complex interactions
between different feedback types (i.e., continuous visual and
audio, and discrete tactile feedback) and their effects on the
internal model strength.

Audio biofeedback provided continuous information about
intensity of the control signal but not about the actual grasp,
whereas time-discrete tactile feedback exclusively conveyed
precise information about the interactions between the robotic
hand and the environment. According to Johansson and
colleagues (reviewed in Johansson and Flanagan, 2009), these
interactions are processed and signaled to the nervous system
through discrete sensory events and are crucial for developing
efficient and natural feed-forward grasping in humans.

In this study we confirmed our previous findings (Shehata
et al., 2018a): adding complementary audio biofeedback to
visual feedback enables the development of a stronger internal
model for controlling a myoelectric hand, as assessed by all
psychophysical metrics (Pparam, JND, R, and −β1). The fact that
the VA feedback yielded a lower sensory uncertainty (or variance)
than V (cf. Figure 3A) suggests that the audio component
dominates the integrated visual-audio percept, according to the
maximum-likelihood estimate theory (Ernst and Banks, 2002).
In other words, when the visual input is complemented with a
coherent audio biofeedback, participants would likely rely more
on the latter to execute the motor task. This is in agreement
with current understanding of human sensorimotor control:
the nervous system can never be completely certain about the
relevance of visual information, as it provides only indirect
information about the motor task, and the interactions with the
environment (Johansson and Flanagan, 2009; Wei and Kording,
2009). Whether these results are due to the modality of the
biofeedback (i.e., audio) or to the nature of the biofeedback
itself (i.e., the sensory input which closely matches the intended
motor output), remains to be assessed. Interestingly our results
align with those of Dosen et al. (2015a), who conveyed EMG
biofeedback using a visual interface.

The reconstructed internal model did not further improve
when another piece of redundant information – this time
about the touch event – was added to visual and audio
biofeedback. In fact, the VAT condition yielded significantly
worse psychophysical metrics compared to VA, showing results
closer to the basic condition V (and also to VT). These
results – if the psychophysical metrics are a truthful and

complete description of the internal model – indicate that adding
sensory information, albeit consistent with the already available
information, may not necessarily enhance the formation of the
internal model in the short term. In fact, it could even degrade
it. A possible explanation for this is given by the causal inference
hypothesis (Knill, 2003; Ernst, 2006; Körding et al., 2007), which
posits that the nervous system interprets cues in terms of their
causes. When the cues are very different from one another in
space and time, the nervous system will infer that they are not
related and thus should be processed separately. The visual and
audio cues were indeed caused by the same process (i.e., the
control input) while the tactile cues were due to the interaction
of the robot hand with the environment (the control input is
also causal of touch but through a transformation that involves
extrinsic factors as well).

Combined in the VAT, the tactile component apparently
dominated in the so-integrated percept, as indicated by the
sub-movements and grasp force profiles (Figures 5, 6) and
also shown by the clear degradation of the psychophysical
metrics. This suggests that, when combined and during grasping,
(extrinsic) tactile sensory cues are more relevant to the central
nervous system than (intrinsic) biofeedback cues – at least in
the time frame explored. It is interesting to observe that this
degradation was not immediate, as the tactile feedback only
became predominant after several trials (Figure 6). This could
mean that, when both types are present, audio biofeedback
may be easier to pick-up in the initial phases – perhaps
because it is very informative and closely matches the motor
output – whereas it becomes less relevant in the later stages –
possibly because it is more cognitively taxing compared to
the tactile input. This argument would be supported by
the literature on motor adaptation (Wei and Kording, 2009)
and sensorimotor control of dexterous manipulation tasks
(Johansson and Flanagan, 2009). Another possible reason for
favoring the continuous feedback in the initial phases is related
to how people expect to receive information of the grasp based
on their top-down knowledge of the interactions of the body
with the environment: in nature these interactions are continuous
(although they may be processed differently by the nervous
system). However, why and how the tactile input corrupted the
psychophysical metrics (instead of enhancing them), remains
unclear so far. Future tests could investigate whether the
internal model is updated more efficiently with audio biofeedback
than with tactile feedback after disturbances, for example by
doing a pick-and-lift task with unexpectedly changing object
weight (Jenmalm et al., 2006).

The degradation of the psychophysical metrics with VAT is,
nevertheless, interesting, as one would expect that the tactile
feedback should barely interfere in such tests, contrary to
what we observed. The JND tested how well the participants
could perceive discrepancies in the control input. Here, audio
biofeedback provided a lot of relevant information, visual some
(because the hand was not always, and completely under visual
control) but tactile only notified the participants about touching
the object (which was expected to be meaningless in the JND).
In the adaptation rate test – where the task was to grasp and lift
the object – tactile info conveyed some more information about
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the final result of the control, i.e., a successful or unsuccessful
grasp. In fact, in the adaptation rate test, tactile information
(VT and VAT) yielded optimal results (−β1 close to 1) whereas
with only audio feedback (VA) participants overcompensated
(−β1 > 1). While the near-perfect adaptation with VT and VAT
may be due to the saliency of the time-discrete sensory feedback
policy (Johansson and Cole, 1992; Johansson and Edin, 1993;
Johansson and Flanagan, 2009), we argue that audio feedback
alone – being a reliable and continuous sensory input coherent
with vision – induced the participants to adapt continuously.
However, it is still unclear whether this difference between VA
and VT/VAT (and V and VT/VAT) is meaningful.

The results from the functional test were complementary to
those from the psychophysical tests. We found that all kinds
of augmented feedback (VA, VAT, and VT) enabled users to
perform significantly better than with vision alone (Figure 7). It
was expected that VT would allow for better performance than
V alone (Clemente et al., 2016). Further, this result advocates
that continuous audio biofeedback can enhance motor control
of a myoelectric prosthesis [in agreement with the work of
Dosen et al. (2015a) and our previous study (Shehata et al.,
2018a)]. However, it also reveals a significant deviation from the
results of the other tests. Indeed, while participants with VT
or VAT integrated the sensory input and exhibited a predictive
control behavior, participants with VA used it for continuously
regulating their grip force in real-time, in a closed-loop manner
(as seen in the data from the adaptation test in Figures 5, 6B).
We believe this was due to the nature of the feedback: the
time-discrete sensory cues could only be used by participants
as checkpoints for the motor task (Johansson and Edin, 1993;
Clemente et al., 2016), whereas the audio biofeedback – as
discussed above – induced the participants to use it constantly,
even when the grasp was successful. Both approaches seem to
be equally adequate to improve grasping performance with a
prosthetic hand.

During object manipulation, the brain uses sensory
predictions and afferent signals to adapt the motor output
to the physical properties of the manipulated object, as well
as to monitor and update task performance (Johansson and
Flanagan, 2009). In this way, humans can predict and use
an adequate level of grip force required to lift an object by
producing highly coordinated grasping and lifting forces and
correcting their actions in the case of unexpected events (e.g.,
object slip or incorrectly predicted weight). Sensory feedback
plays a crucial role in building and keeping the motor control
repertoire updated. However, neural delays make continuous

closed-loop control of dynamic motor behaviors impractical
at frequencies above 1 Hz (Hogan et al., 1987; Johansson and
Edin, 1993). Hence, natural grasping largely involves predictive
feedforward rather than closed-loop (servo control) mechanisms.
With this in mind, and considering that the VAT and VT
yielded a successful predictive control behavior in the functional
test (a sign of a mature internal model), we suspect that the
psychophysical tests used may not grasp all the facets of the
internal model. In particular, they may not be capable to properly
assess the contribution of touch-related sensory information,
or, alternatively, the discrete tactile feedback may have masked
the measurements.
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