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Dynamic functional connectivity (dFC) estimates time-dependent associations between

pairs of brain region time series as typically acquired during functional MRI. dFC

changes are most commonly quantified by pairwise correlation coefficients between

the time series within a sliding window. Here, we applied a recently developed

bootstrap-based technique (Kudela et al., 2017) to robustly estimate subject-level dFC

and its confidence intervals in a task-based fMRI study (24 subjects who tasted their

most frequently consumed beer and Gatorade as an appetitive control). We then

combined information across subjects and scans utilizing semiparametric mixed models

to obtain a group-level dFC estimate for each pair of brain regions, flavor, and the

difference between flavors. The proposed approach relies on the estimated group-level

dFC accounting for complex correlation structures of the fMRI data, multiple repeated

observations per subject, experimental design, and subject-specific variability. It also

provides condition-specific dFC and confidence intervals for the whole brain at the

group level. As a summary dFC metric, we used the proportion of time when the

estimated associations were either significantly positive or negative. For both flavors, our

fully-data driven approach yielded regional associations that reflected known, biologically

meaningful brain organization as shown in prior work, as well as closely resembled resting

state networks (RSNs). Specifically, beer flavor-potentiated associations were detected

between several reward-related regions, including the right ventral striatum (VST),

lateral orbitofrontal cortex, and ventral anterior insular cortex (vAIC). The enhancement

of right VST-vAIC association by a taste of beer independently validated the main

activation-based finding (Oberlin et al., 2016). Most notably, our novel dFC methodology

uncovered numerous associations undetected by the traditional static FC analysis. The

data-driven, novel dFC methodology presented here can be used for a wide range of

task-based fMRI designs to estimate the dFC at multiple levels—group-, individual-, and

task-specific, utilizing a combination of well-established statistical methods.
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gustatory task, addiction
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INTRODUCTION

The assessment of dynamic functional connectivity (dFC),
estimated by finding the time-varying association between time
series of brain region pairs, is a recent expansion of functional
connectivity (FC). Traditional FC analyses, which assume
constant functional associations across time (i.e., static metrics)
successfully grouped brain regions into distinct functional
networks (Greicius et al., 2003; Beckmann et al., 2005; Fox et al.,
2005; Yeo et al., 2011). Despite its success, static functional
connectivity only partially answers the question of how networks
communicate (Turk-Browne, 2013), and it may not detect
important network behaviors critical for understanding the brain
(Calhoun et al., 2013). The dynamic nature of the functional
connectivity in large-scale brain networks during task-free
designs (Chang and Glover, 2010) revealed that the brain is never
truly at rest. Recent studies pointed out non-stationary nature
of functional connectivity that was changing not only during
task-related activity but also while resting (Hutchison et al.,
2012), and indicated that population-based static networks are
less informative to uncover neurological illness (Hutchison et al.,
2012; Jones et al., 2012). Similarly, cognitive control processes
are transient and dynamic and may be best characterized in
terms of inter-regional functional coupling dynamics (Hutchison
and Morton, 2016). Others also addressed the dynamic nature
of brain activity in both task-based and task-free designs
(Debener et al., 2006; Sadaghiani et al., 2009; Doucet et al., 2012;
Cribben et al., 2013; Allen et al., 2014), suggesting an important
role for dFC analyses in quantifying time-varying network
behavior. While dFC methodology was largely developed in
healthy subject datasets, it has been employed in clinical
populations as well (Filippini et al., 2009), including Alzheimer’s
disease (Jones et al., 2012), autism (Starck et al., 2013), and
schizophrenia (Sakoglu et al., 2010). Too often, however, dFC is
estimated solely in a resting state, without any emitted behavior
(Turk-Browne, 2013).

A variety of approaches have been developed to assess
dynamic functional connectivity, including a sliding window
approach (Sakoglu et al., 2010; Jones et al., 2012; Leonardi and
Van de Ville, 2013), time-frequency analysis (Chang and Glover,
2010; Yaesoubi et al., 2015), change-point analysis (methods used
to detect the important transient point Cribben et al., 2013), data-
driven approaches from a signal processing field (Calhoun et al.,
2014; Calhoun and Adali, 2016), and dynamic graph methods
(Mucha et al., 2010; Fornito et al., 2016). Among the most
popular is the sliding window approach due to its simplicity,
easy implementation, and ability to recover salient features of
dFC. This method has some limitations, such as the window size
choice and the inherent variation present in the estimate. Even if
there is no association between signals, one canmisinterpret their
associations as time-varying changes in connectivity (Lindquist
et al., 2014). The choice of the window length is an ongoing
topic of interest. Previous studies indicated optimal window to
be in the 30–60 s range to represent the dynamic nature of the
signal (Keilholz et al., 2013; Leonardi and Van de Ville, 2015;
Deng et al., 2016; Liégeois et al., 2016), but others suggest using a
multilayer formalism indicating importance of both the medium

time windows of size 75–100 s and shorter window lengths that
reveal individual differences that were not apparent at longer
time scales (Telesford et al., 2016).

Many extensions were proposed to overcome the sliding
window approach limitations, including tapered windows
(Handwerker et al., 2012; Allen et al., 2014; Damaraju et al., 2014)
or methods based on multivariate bootstrapping (Kudela et al.,
2017). In some cases, the sliding window approach was utilized
in combination with methods from the signal processing field,
such as higher-order singular value decomposition (Leonardi
and Van de Ville, 2013), an independent component analysis
(ICA) (Kiviniemi et al., 2011), group ICA (Calhoun and Adali,
2012), or an extension of ICA methods called independent
vector analysis (Adali et al., 2014; Ma et al., 2014). Others
combined ICA and sliding window methods with k-means
clustering method (Allen et al., 2014; Damaraju et al., 2014).
However, fMRI data are noisy, which limits signal processing
family of methods when they attempt to combine subject-level
ICA results. It is not guaranteed that for each subject, the
components will be unmixed alike (Calhoun and Adali, 2012;
Preti et al., 2017).

Yet another class of methods uses graph theory and applies
network analysis to obtain time courses of graphmeasures, which
allows an assessment of dynamically changing associations from
a different perspective. The one of most popular graph theory
metrics is modularity, which quantifies partition into modules
containing brain regions with intra-connectivity greater than
obtained by chance (Fornito et al., 2016; Contreras et al., 2019).
Mucha et al. (2010) proposed an approach to examinemodularity
dynamically across time, which was later utilized to investigate
dynamic associations during task performance (Bassett et al.,
2011, 2015). For more detailed reviews of dFC methods
please refer to Hutchison et al. (2013), Calhoun et al. (2014),
Preti et al. (2017).

The statistical methodology described in this work was
developed to uncover and characterize the dynamics of brain
networks during task-based functional magnetic resonance
imaging (fMRI) studies. Specifically, we wanted to establish
the feasibility of estimating time-varying FC and its confidence
intervals in a task-based fMRI. We implemented the method
using a novel two-step estimation approach. First, we applied
a bootstrap-based approach (Kudela et al., 2017) that utilized a
multivariate linear process bootstrap (Jentsch and Politis, 2015)
and a sliding window technique to obtain the time-varying
functional associations among brain regions in each subject.
Then, these subject-specific dFC estimates were treated as an
outcome in the semiparametric additive mixed model (Ruppert
et al., 2003) to estimate stimulus-specific population-level dFC
for each pair of brain regions. This approach estimates the
complex correlation structure while simultaneously combining
information across subjects to yield population level estimates
of time-varying associations and their confidence intervals for
each stimulus type and their difference. Unlike other methods,
this data-driven approachmodels multiple repeated observations
per subject, the experimental structure, subject-level variability,
and importantly, provides condition-specific dFC and confidence
intervals for the whole brain at the group level.
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Here, we applied our novel methodology to fMRI task
data in healthy drinkers. A sample of social-to-heavy alcohol
drinkers completed an fMRI task that delivered beer and
Gatorade R© flavors to subjects’ mouths. The flavor of beer is
a potent conditioned reward stimulus for alcohol intoxication,
provoking dopaminergic activity in the brain’s reward system
even without alcohol (Oberlin et al., 2013, 2015). Therefore,
our objective was to estimate time-varying FC and its
confidence intervals for each flavor and their difference,
using population-level inference in the whole brain. Based
on our previous findings of corticostriatal and dopaminergic
responses to beer flavor (Oberlin et al., 2016), we hypothesized
that functional connectivity within visual, attentional, and
somatosensory “upstream” networks would be similar for both
flavors. Reasoning that a conditioned reward signal would
integrate into executive and introspective monitoring systems,
we hypothesized that beer flavor would enhance associations
between limbic (Uddin, 2015), frontoparietal (Etzel et al., 2015;
Cole et al., 2016), and default mode networks (Whitfield-
Gabrieli and Ford, 2012; Bolt et al., 2017)—systems implicated
in attentional gating of executive function between resting and
active time periods during salient tasks. Oberlin et al. (2016)
demonstrated that wanting and desire to drink correlated with
the right ventral striatum and medial orbitofrontal activation
to beer flavor stimulation during fMRI. Therefore, we also
hypothesized that beer, as compared to Gatorade, would enhance
functional connectivity within the reward circuitry (striatal and
orbitofrontal regions) involved in reward valuation and alcohol
cue salience-gating regions of the anterior insular cortex. To
validate our method and extend previous findings, we focused
on a priori regions of interest (ROIs) implicated in alcohol
cue responses from Oberlin et al. (2016). More details about
selected a priori regions and networks can be found in section
Brain Networks and Regions of Interest. Our proposed statistical
method aimed to assess the dynamics of these alcohol cue
responses in the brain’s reward circuits by providing dFC metrics
and associated confidence intervals not available using traditional
functional connectivity approaches.

The article is organized as follows: study design, data
acquisition and preprocessing steps, brain networks and regions
of interest, as well as statistical framework for proposed
methodology are introduced in the Methods section; results are
summarized in the Results section, and the Discussion section
provides conclusions and a discussion.

METHODS

Subjects
Task-based analyses of the blood oxygenation level dependent
(BOLD) response to beer and Gatorade flavors for these subjects
were previously reported in Oberlin et al. (2016). Subjects
(Table 1) were recruited from the local community and prior
to participation signed an informed consent approved by the
Indiana University Institutional Review Board. All were male,
right-handed, and in good self-reported physical and mental
health, with recent drinking ranging from social-to-heavy. Each
reported beer as one of their two most-often consumed alcoholic

TABLE 1 | Subject characteristics.

Mean ± (SD) Range N (%)

Age 24 (2.3) 21–28

Caucasian – – 24 (100%)

Education 15.8 (1.4) 12–19

% with at least one first degree

relative w/AUD

7 (29%)

Drinks per weeka 14.9 (9.9) 2–33

Drinks per drinking daya 4.9 (3.0) 1–10

Heavy drinking days per weeka,b 1.6 (1.4) 0–6

AUDITc 10.2 (6.3) 3–26

aDrinking data are from the Timeline Followback Interview (Sobell et al., 1986).
b4+ or 5+ drinks per day for females and males, respectively (Gunzerath et al., 2004).
cAlcohol Use Disorders Identification Test (Saunders et al., 1993).

SD, Standard Deviation.

FIGURE 1 | fMRI session outline. Each scan was 4:48min long, and functional

imaging, including subjective ratings typically lasted 35–40min. Gustatory

stimuli (beer, Gatorade© ) or water were presented every 11 s during each

scan; individual trials are indicated by B (beer), G (Gatorade© ), and W (water).

The design of separate beer and Gatorade scans was the best match to our

earlier PET studies (Oberlin et al., 2013, 2015). SR denotes subjective ratings

(pleasantness, intensity, etc., see Oberlin et al., 2016 for details). The scan

order is counterbalanced across subjects (beer or Gatorade scan first).

beverages (see Oberlin et al., 2016 for complete inclusion and
exclusion criteria).

Experimental Design
Beer and Gatorade flavors (chosen for their matched flavor
intensity; see Oberlin et al., 2013, 2015) were delivered in ∼1 s
sprays (trials) on subjects’ tongues, and were interspersed with
neutral water (flavorless sensory baseline). Subjects completed six
fMRI scans, with beer and Gatorade scans alternating and flavor
order counterbalanced across subjects. In each scan, 3 flavor
epochs (4 trials each) were interspersed with 4 water epochs (3
trials each), resulting in 12 flavor and 12 water trials with a fixed
11 s inter-trial interval (Oberlin et al., 2016). Figure 1 illustrates
the experimental design scheme.
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Image Acquisition and Pre-processing
Imaging employed a Siemens 3TMagnetom Trio-Tim (Erlangen,
Germany) scanner and a 12-channel head coil array. BOLD
contrast sensitive functional data (echo planar imaging, gradient
echo, 125 volumes, repetition/echo time 2,250/29ms, flip angle
78◦, field of view 220 × 220mm, 39 interleaved 3-mm thick
axial slices, 2.5 × 2.5 × 3.0 mm3 voxels, GRAPPA acceleration
factor 2) were positioned on a high resolution anatomic volume
acquired with a 3D magnetization prepared rapid gradient
echo (MPRAGE) sequence. Head movement and motion-related
artifacts were minimized using deformable foam pads and
real-time three-dimensional prospective acquisition correction
(Thesen et al., 2000). Pre-processing was performed with an
FSL-based pipeline within Matlab detailed in Contreras et al.
(2017) and Amico et al. (2017). Denoised (Coupe et al.,
2008; Coupé et al., 2010) T1-weighted MPRAGE volumes
were non-linearly transformed (FSL’s FLIRT & FNIRT) to the
Montreal Neurological Institute (MNI) brain template, which
also segmented brain tissues. The inverse transformation then
allowed parcellation of the cortical (Shen et al., 2013) and
subcortical (Patenaude et al., 2011) gray matter in native BOLD
data space. BOLD data preprocessing included slice timing
correction, motion correction, registration to T1, detrending,
band pass filtering (0.009–0.08Hz), and normalization to mode
1,000 (Smith et al., 2013).

FC Data Analysis
FC correlations are especially sensitive to head motion, so we
used rigid-body derived realignment parameters and additional
metrics to scrub outlier BOLD volumes (Power et al., 2012,
2014) as described in Amico et al. (2017). Five of the initial 29
subjects were excluded because one or more (of the six) BOLD
scans contained an excessive fraction (>40%) of BOLD volume
outliers, resulting in a final sample of 24 subjects. Physiologic
noise and residual head motion confounds were regressed out
of signals in eroded masks of the whole-brain gray matter, white
matter, and cerebrospinal fluid of the third ventricle, with global
signal regression also applied. We employed 3 PCA components
from segmented masks to better account for noise (Chai et al.,
2012; Power et al., 2015). For each subject, we implemented gray
matter parcellation into 278 ROIs, as defined by a meta-analysis
of resting state fMRI data (Shen et al., 2013). The time series of
each ROI was generated by averaging time series of all voxels
within that region.

Brain Networks and Regions of Interest
Cortical ROIs defined based on Shen et al. (2013) parcellation
were assigned to one of the seven resting state networks
(RSNs) derived from a large study (n = 1,000) of young
healthy volunteers (Yeo et al., 2011). Thirty-two non-cortical
brain regions were assigned to a subcortical network, while
30 cerebellar regions were discarded due to incomplete BOLD
acquisition coverage, yielding 248 cerebral regions used in
subsequent analyses.

Many of the brain networks are relevant to the task; either
during the cue presentation (primary and associative visual),
while following task instructions (attentional), during oral liquid

flavor stimulation periods (somatosensory), or in the post-
stimulation periods (limbic, frontoparietal, and default mode).
The visual and attentional systems should be largely flavor
agnostic, while somatosensory regions do exhibit some flavor-
specific enhancements in response to Gatorade, which while
matched in flavor intensity (see Oberlin et al., 2015, 2016), cannot
be perfectly matched to beer in all possible sensory qualities. The
prominence of these three “upstream” networks is a prerequisite
to studying limbic, cognitive control, and default mode network
region responses to alcohol-cue related gustatory stimuli.

While network approaches are commonly used in functional
connectivity studies and provide extensive normative data
(especially from large resting state studies), it is also of value
to understand functional connectivity in the context of specific
behavioral circumstances. In the present case, we focused on
data derived from a subset of a priori regions of interest
(ROI) from a study by Oberlin et al. (2016) in which subjects
who varied in alcohol drinking behaviors tasted two flavors of
different appetitive significance: those of beer and Gatorade.
Here we identified Shen et al. regions that included peak
activation coordinates of brain areas that: (1) responded to
the flavors of beer and Gatorade and, (2) showed differential
flavor responses to assign appropriate Shen regions. Each flavor
recruited a large network of sensorimotor regions, gustatory
cortex (area “G” in the insula/opercular areas), amygdala, and
caudate nucleus. We hypothesized that reward regions such as
ventral striatum (VST) and orbitofrontal cortex (OFC) would
exhibit beer flavor-enhanced associations (Table 2, Oberlin et al.,
2016). Of note, the originally reported beer and Gatorade flavor
effects (Supplementary Tables S1 and S2 in Oberlin et al., 2016)
were relative to the water baseline as is customary in activation
studies, while dFC metrics incorporate water trials and are more
analogous to the implicit baseline (i.e., resting brain) comparison.

Statistical Methods
Group-level dFC estimates across time for both flavors and their
difference for all pairwise ROI associations were obtained in two
steps. First, we estimated pairwise ROI associations at a subject
level using the method proposed by Kudela et al. (2017). Second,
we combined the subject-specific estimates using generalized
additive mixed models (Ruppert et al., 2003; Durbán et al., 2005)
to obtain a population-level dynamically changing association
for each flavor and each pair of regions. In sections Subject-
Level dFC Estimation and Population-Level dFC Estimation we
provide more details for both steps.

Subject-Level dFC Estimation
Whole-cerebrum pairwise dFC associations for each scan were
estimated at the subject level by applying a recently proposed
technique (Kudela et al., 2017) that combines the sliding
time window correlation estimation with an extension of the
Multivariate Linear Process Bootstrap (MLPB). The latter is a
specialized bootstrap method applicable to bootstrapping time
series data (Jentsch and Politis, 2015). Specifically, for each
subject and pair of regions, we divided the time-series into
adjacent time blocks and used the data within each block to
generate bootstrap samples of the bivariate time series via MLPB.
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TABLE 2 | Models estimating dFC for the two flavors and their difference.

Beer fw=B (t) Gatorade fw=G (t) Subject-specific giw

dFCM β0 + β1t+
∑K

k=1 ukzk (t) β0 + γ0 + (β1+γ 1)t+
∑K

k=1 ukzk (t)+
∑K

k=1 wkzk (t) bi0 + ais0

sFCM β0 β0 + γ0 bi0 + ais0

We then combined these samples across adjacent blocks to create
a bootstrap realization of the whole bivariate time series and
estimated pairwise correlations via a sliding window approach
with a window size equal to 20 TRs, thus reducing the number
of time points from 125 to 105. The correlation coefficient values
are between −1 and 1. We applied the Fisher Z-transformation
to the estimated correlation coefficients to ensure that the
homoskedasticity assumption would not be violated in the GAM
approach. The bootstrap procedure was repeated 250 times and
the median was used to estimate dFC for each pair of regions and
each scan.

In a recent work by Kudela et al. (2017), it was shown
that the described bootstrapping procedure provides not only
valid model-free time-varying connectivity estimates but also
their uncertainty level. In that study, the dFC estimation
accuracy was assessed through a series of simulation studies
and it was demonstrated that the dFC estimates obtained
using the bootstrapping algorithm had a smaller mean squared
error than the sliding window technique see Figures 3–7 in
Kudela et al. (2017).

Two tuning parameters must be specified for the subject-
level dFC estimation: the size of the sliding window and the
width of the adjustment block used in the bootstrap procedure.
Published empirical results were used as a guideline. One of the
key parameters in the sliding window technique is the size of the
window, with its’ optimization a widely discussed research topic.
Shorter windows provide more sensitivity to detect dynamic
associations, while longer windows offer a better stratification
into regions that provide a core structure, but not necessarily the
one of importance. In the literature, suggested optimal window
size for the sliding window technique are typically between
30 and 60 s (Sakoglu et al., 2010; Leonardi and Van de Ville,
2015; Telesford et al., 2016). Here, due to the attentional shifts
(switching between the resting and active time periods), we
decided to use 20 time point window, which translates to the
window size of 45 s that should better capture the dynamic
nature of the signal. Similarly, the width of adjustment blocks
for bootstrapping was selected to be 20 time points. In the future
work, the effect of the different window sizes should be examined.

Population-Level dFC Estimation
Subject-specific dFC estimates were combined using the
generalized additive mixedmodel (GAMM) framework (Ruppert
et al., 2003), which is a principled statistical approach accounting
for the hierarchical structure of the data and an unspecified
(smooth) form of the dFC. GAMM’s flexibility permits the
estimation of both overall flavor-FC and scan-by-subject-FC.
Figure 2 depicts estimated dFC examples for homologous
sensorimotor regions (known to activate in this task) for each

subject-scan combination. Our specific estimation method relies
on a penalized regression approach (see e.g., Ruppert et al.,
2003) that accounts for multiple repeated observations per
subject while modeling the fixed factors in the experimental
design, i.e., three alternating beer and Gatorade scans. This
method is also amenable to fast computation in large datasets
and facilitated by R’s (www.r-project.org) range of mixed
models. In our study, we estimated dFC for 30,628 [derived
from (n∗(n+1)/2)-n pairs; where n = 248 regions] pairwise
associations for each flavor. The details of the statistical model are
presented below.

Wemodel dFC as: dFCijd = fd
(

tj
)

+gid+εijd, where a response
variable dFCijd is the estimated dynamic FC for each subject
i (i = 1, · · · , 24); time point j denoted by tj = 1, · · · , 105;
and flavor d (d = B or G; for beer or Gatorade, respectively).
We assume that the error terms, εijd, are independent and

normally distributed N
(

0, σ 2
ε

)

; fd
(

tj
)

is the group-average curve
representing the shape of dFC for the flavor d; gid is the subject-
specific deviation from the group-average curve for flavor d.
Based on the experimental design, we assumed that gid is a sum
of two mutually independent random effects: the subject-specific
intercept, bi0 and a nested within-subject random scan effect, ais0

where bi0 ∼ N
(

0, σ 2
b0

)

, ais0 ∼ N
(

0, σ 2
a0

)

, and s (=1,2,3)

denotes a scan number.
The GAMM method enables us to also study the static

connectivity (sFCM in Table 2) by assuming that the flavor-
specific population-level connectivity is constant, but unknown,
i.e., fB(t) = β0 for beer and fG (t) = β0 + γ0 for Gatorade. As
a byproduct of this approach, we obtain the difference between
flavors as c (t) = fG (t) − fB (t) = γ0.

In the dynamic connectivity model (dFCM in Table 2), we
assumed that the dFC varied smoothly across time as the brain
connectivity varies slowly. The explicit model specification and
parameter estimation is presented below. The outcome variable,
y (t) , is modeled as a linear combination of basis functions zk (t)
as y(t) = f (t) + ε = β0 + β1t +

∑K
k=1 ukzk(t) + ε, where zk(t)

are the O’Sullivan spline basis functions (Wand and Ormerod,
2008), the random effects uk are independent and follow normal
distribution N

(

0, σ 2
u

)

and random errors ε are independent and
follow a normal distribution N

(

0, σ 2
ε

)

.
The parameters are estimated by minimizing the criterion

min
∑n

i=1

(

yi − f (ti)
)2

+ λ
∑K

k=1 u
2
k
(Ruppert et al., 2003). By

using the equivalence between the penalized splines estimator of
themodel and the best linear unbiased estimator ofmixedmodels
(Brumback et al., 1999; Durbán et al., 2005), model regression

parameters and the smoothing parameter λ =
σ 2

ε

σ 2
u
are estimated

by the restricted maximum likelihood estimation (REML) (see
e.g., Ruppert et al., 2003).
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FIGURE 2 | Estimated dynamic functional connectivity associations between the homologous precentral gyri ROIs 34 and 154 from Shen et al. (2013) for beer (blue)

and Gatorade (green) scans for each of the study subjects. dFC estimates for each of three beer and Gatorade scans are illustrated by different line styles (solid,

dashed, dotted).

The population-level-dFC can then be expressed as: (1)
fB (t) = β0 + β1t +

∑K
k=1 ukzk(t) (for beer), (2) fG (t) =

β0 + γ0 + (β1 + γ1)t +
∑K

k=1 ukzk(t) +
∑K

k=1 wkzk(t) for
Gatorade. With this flavor-specific function representation, the
difference between the flavors can be expressed as c (t) = fG (t)−
fB (t) = γ0 + γ1t +

∑K
k=1 wkzk (t). Parameters β0, β1, γ0, γ1 are

fixed and uk, wk are random following the normal distributions
N

(

0, σ 2
u

)

and N
(

0, σ 2
w

)

, respectively. In our analysis, we used

O’Sullivan penalized splines (Wand and Ormerod, 2008) due
to their appealing properties including smoothness, numerical
stability, natural boundary properties, and a direct generalization
of smoothing splines. We define a set of knots κ1, . . . , κK

according to quantiles across the time domain and set the
number of knots K to 40, to allow the dFC function to change
non-linearly. The main advantage of penalized splines is that
due to a penalty imposed on spline basis coefficients, it is less
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sensitive to the choice of location and the number of knots
(Ruppert et al., 2003; Harezlak et al., 2018). If there are too many
knots (risk of overfitting), the unnecessary coefficients will be
shrunk toward zero. dFCM and sFCM models are summarized
in Table 2.

The steps described in sections Subject-Level dFC Estimation
and Population-Level dFC Estimation can be summarized
as follows:

1) Subject-level dFC estimation:
a) For each subject and pair of regions, apply the
Multivariate Linear Process Bootstrap, a specialized method
for bootstrapping time series data (Jentsch and Politis, 2015)
to generate bivariate time series bootstrap samples.
b) Use obtained bootstrap realization of time series for a given
pair of regions and apply a sliding window technique to get a
set of time-varying estimates of association for each pair of
brain regions.
c) Apply Fisher Z-transformation to the entire set of the
bootstrapped dFC trajectories.
d) Estimate the subject-level dFC for each pair of regions by
the median of the dFC trajectories obtained in step 1c.

2) Population-level dFC estimation:
a) Treat subject-specific dFC estimates obtained in Step 1 as
repeated measurements within subjects.
b) Apply penalized splines within the generalized additive
mixed model framework to obtain population-level estimates
of dFC for both flavors, their difference, and their
confidence intervals.

By applying presented algorithm to the gustatory fMRI data,
we obtained 30,628 estimates and confidence intervals for
flavor specific pairwise dFC curves, including dFC curves for
the set of a priori defined regions. Finally, we needed to
summarize the results in a meaningful and principled way. We
detail the dFC summary procedure in sections dFC Summary
Measure, Multiple Comparison Correction, and Significance
Testing Criteria.

In addition, we performed supplementary analysis for a set of
selected a priori regions. Here, instead of using bootstrap-based
approach for subject-level dFC estimation (step 1 of presented
algorithm), we utilized the regular sliding window approach only
and compared the results with proposed bootstrap based method
(see Supplementary Materials for details).

dFC Summary Measure
To identify dFC associations of interest, we implemented an
objective metric that quantifies the proportion of time during
which the confidence intervals around the dFC curve exclude
zero on either the positive or negative side. This metric gives
a more comprehensive, whole-brain view of the results. For
example, 0.8 non-zero coverage indicates that the full confidence
interval for the dFC is either above or below zero for 80% of the
scan time.

Multiple Comparison Correction
In our study, we calculated population-level pairwise correlations
between 248 brain regions, yielding 30,628 estimates and

confidence intervals for flavor specific curves and differences
between flavors. To account formultiple comparisons, we applied
a false discovery rate (FDR) correction (Benjamini and Yekutieli,
2001) with a 0.05 threshold. We also compared our results
with a more stringent family-wise error (FWE) rate correction
(Bretz et al., 2010) with the significance level set to 0.05 (see
Supplementary Materials).

Significance Testing Criteria
Informed by the study design, where flavor and water trials in
each scan are equally represented, we tested for the proportion
of time that the confidence intervals around the dFC curve for
beer and Gatorade excluded zero. On average, we expect the
proportion of time = 0.5, and ideally, we would only test this
during the flavor periods, however temporal smoothing and the
sliding window approach precludes such isolated testing. The
null hypothesis test for the flavor difference dFC curve was set
at a less stringent proportion of time = 0.14, approximating a
test for flavor differences during a single flavor block (i.e., 4 flavor
trials out of 24 flavor and water trials) adjusted for the sampling
limitations of the sliding window approach within the first and
last 10 scan time points. In addition, we evaluated significance
of flavor differences only when the same pair of regions shows a
significant association during the beer scans. To better illustrate
the results for a set of a priori regions of interest, we present the
results using proportion testing at 0.14 and 0.1.

RESULTS

We present the population-level dFC estimation results in the
next section and compare them with the static FC estimates
in the following section. The summaries are presented first
as dFC curves at the pairwise correlation level, second as all
brain parcel pairwise comparisons of the non-zero coverage
level, and last as comparisons between the dFCM and sFCM
model estimates.

Dynamic Functional Connectivity Model
(dFCM)
We examined a model of non-linearly changing time-dependent
associations between the time series of representative pairs of
brain regions (Figure 3). Three scenarios where associations
during beer scans are positive and enhanced with respect to
Gatorade scans are shown in the top panels. During Gatorade
scans, the time dependence of the dFC estimates is either
more variable as reflected by estimated amplitude and phase
of the curves (Figures 3A,B) or almost constant and not
significantly different from zero at any time point (Figure 3C).
Other time-varying scenarios for the population-level dFC curve
estimates are shown in the remaining panels of Figure 3. To
validate dFC estimates, we assessed associations of the right
sensorimotor cortex (SMC; precentral gyrus region) to three
other somatomotor network (SMN) regions, which showed
expected positive associations for both flavors and no significant
differences between flavors (Figures 3D–F).

For clarity, we present the model results in a matrix form,
where rows and columns represent pairwise brain region
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FIGURE 3 | Examples of time dependence for six pairwise associations in the dCFM model. Blue, green and red lines and shaded areas represent estimated dFC

with pointwise 95% CIs for beer, Gatorade, and Gatorade-beer difference, respectively, with the vertical yellow shading representing flavor delivery periods. Three

scenarios where associations during beer scans are positive and enhanced with respect to Gatorade scans (the difference curve is negative), are shown in the top

panels. In all three cases, the difference significantly differs from zero at similar scan times (peaking between time points 40 and 50). The temporal characteristics of

the dFC during Gatorade scans, however, differ in amplitude and phase (A,B) or have no time points when the associations differ from zero (C). The bottom panels

illustrate expected behavior of associations of the right primary sensorimotor cortex (SMC; right precentral gyrus) and three somatomotor network (SMN) regions,

indicating no differences between flavors. A homologous, left precentral gyrus area shows an expected, high, nearly constant, positive association for both flavors

(D), while a slightly lower positive association is seen to the ipsilateral Rolandic Operculum (RO)/Insula, area “G” of the primary gustatory cortex (E). The ipsilateral

Putamen (subcortical part of the SMN) associations are much lower for both flavors, but slowly increase and remain positive (F).

associations. The top panels of Figure 4 illustrate significant
associations (left= all, middle= negative only, right= positive
only) as derived by the significance testing of the non-zero
coverage across time for beer flavor and FDR-adjusted for
multiple comparisons within 248 ROIs. The brain regions are
organized into 7 cortical resting state networks (RSN; Yeo et al.,
2011) and a subcortical set of regions, with the upper triangular
and diagonal elements showing the percentage of significant
proportions between and within each network, respectively (e.g.,
75% of pairwise associations between somatomotor and ventral
attention networks are significant). Each colored dot in the lower
triangular elements represents the value of the proportion for a
specific pair of brain regions. Many of the significant positive
associations are observed within the known RSNs, while negative
associations tend to occur between regions from different
networks (e.g., 56% of time-varying associations between limbic
and dorsal attention network regions have a significant negative
non-zero coverage; the DMN is more negatively related to other
network regions). As anticipated, the difference between flavors
summarized in the bottom panels of Figure 4 shows a less regular
pattern, reflecting many associations common to both flavors.
The highest percentage of significant negative associations (i.e.,
fB (t) − fG (t) > 0) involves associations of the visual network

regions to frontoparietal and ventral attention networks (14%;
Figure 4E), while significant positive associations (i.e., fB (t) −

fG (t) < 0) are the highest within the ventral attention network
(32%; Figure 4F).

Static Functional Connectivity Model
(sFCM)
The results presented in Figure 5 are in a matrix form, where
each element indicates t-statistic of the model parameters.
β0 is an estimate of the static (i.e., constant over time)
functional connectivity during the beer scans. γ0 is an
estimate of the static FC for difference between flavors,
with negative values indicating associations enhanced
by beer (with respect to Gatorade) and positive values
indicating associations enhanced by Gatorade (with respect
to beer).

Beer Associations (β0)
Task-based time-invariant positive associations mirrored
established findings from task-free (resting) FC (Yeo et al.,
2011) as shown in Figure 5A (pFDR < 0.05; FDR-corrected
for multiple comparisons across all ROIs). Between network
interactions were predominantly characterized by positive
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FIGURE 4 | dFC model estimates of all, negative, and positive significant associations for beer (top; A–C) and flavor difference (bottom; D–F), assessed by testing the

proportion of time that the confidence intervals around the dFC curve excluded zero. As the null hypothesis for beer associations, the proportion was set to 0.5 and

tested against the alternative that proportion is >0.5. Less stringent proportion value of 0.14 was used for flavor difference testing. All results are corrected for multiple

comparisons (pFDR < 0.05). Each significant association is depicted as a dot in the lower triangular elements while the diagonal and upper triangular elements

illustrate a percentage of significant dFC associations between pairs of regions within each network and between networks, respectively.

associations between somatomotor and attention (dorsal and
ventral) networks, while frontoparietal-visual, DMN-visual, and
DMN-attention (dorsal and ventral) networks showed primarily
negative associations.

Flavor-Enhanced Associations (γ0)
None of the model estimates for flavor-enhanced associations
satisfied the significance criterion (pFDR < 0.05; FDR-corrected
for multiple comparisons). For completeness, the directionality
of flavor effects (beer-Gatorade; γ0 < 0 and Gatorade-Beer;
γ0 > 0) is illustrated by Figures 5B,C, respectively presented
at an uncorrected significance (p < 0.05, two-tailed, single
test assumption).

Model Comparisons of Associations
Between a priori Regions of Interest
To compare the dFCM and sFCM models, we focused on
estimated associations between a priori ROIs that responded
in the general linear model (GLM) “activation” analysis when
contrasting [beer > Gatorade] as reported in the Table 2 in
(Oberlin et al., 2016). During the beer scans (Figure 6, below

the diagonal), the dFCM model detected all associations present
in the sFCM model as well as four additional associations.
When testing for beer-enhanced associations (Figure 6, above
the diagonal), none were found in the sFCM model (Figure 6C).
However, the dFCM model detected three and seven significant
associations for proportion testing levels of 0.14 and 0.1
(Figures 6A,B respectively).

Aside from the overall non-zero coverage metric, the dFC
model proposed here can be used to further tease apart the time
dependence of regional associations as illustrated by Figure 7.
For example, non-zero coverage can be broken into sub-classes,
depending on whether the dFC estimates are only positive, only
negative, or have both positive and negative contributions. In
addition, we can select specific cases and evaluate the flavor
difference dFC curve only when the beer associations are positive,
and the resulting beer-enhanced associations are significant (i.e.,
estimated flavor difference curve is negative), as in panels A and
D. In the second set of scenarios, estimated flavor difference curve
is significantly positive (panels B, C), but that occurs due to a
negative association during beer scans in one case (panel B),
and positive association during Gatorade in another (panel C).
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FIGURE 5 | sFCM estimates for β0 coefficient representing time-constant associations during beer scans (A). Significant pairwise correlations (pFDR < 0.05;

FDR-corrected for multiple comparisons) are shown below the diagonal, while the percentage of significant pairwise ROI associations within- and between- each pair

of networks is displayed on and above the diagonal, respectively. None of the sFCM estimates for γ0 coefficient representing beer-Gatorade (γ0 < 0; B) and

Gatorade-beer (γ0 > 0; C) associations satisfy the pFDR < 0.05 criterion so these effects are presented at p < 0.05 (two-tailed, uncorrected for multiple

comparisons). The color bars with black horizontal lines indicate t-statistic values and appropriate display threshold.

FIGURE 6 | dFCM and sFCM estimates for significant associations between a priori regions of interest (for dFCM: A,B; for sFCM C). Lower triangular elements

illustrate associations during the beer scans while upper triangular elements indicate beer-enhanced (i.e., beer −Gatorade) associations. In the dFC model, non-zero

coverage metric for beer was tested for the proportion of 0.5, while the flavor difference was tested for the proportion of 0.14 and 0.1 (A,B, respectively). Similarly,

(C) illustrates sFCM model estimates for β0 (beer scan associations; below the diagonal) and γ0 coefficient (beer-enhanced associations; above the diagonal). None of

the γ0 estimates reached the significance criterion pFDR < 0.05; FDR-adjusted for multiple comparisons in 248 brain regions). The t-statistic values displayed in the

color bar illustrate the magnitude and direction of observed associations. Matrix elements for which associations do not reach the significance criterion are grayed out.

Brain region indices from Shen et al. (2013) are in parentheses. L, left; R, right; md, medial; VST, Ventral Striatum; ACC, Anterior Cingulate Cortex; H & B, Head and

Body; vAIC, ventral Anterior Insular Cortex; FO, Frontal Operculum; IFG p.T., Inferior Frontal Gyrus (Pars Triangularis); OFC, Orbitofrontal Cortex; SFG, Superior Frontal

Gyrus; MFG, Middle Frontal Gyrus; Hippo/Parahi, Hippocampus/Parahippocampal Gyrus.

Panels E and F still show significant flavor difference associations
but in both cases associations during beer and Gatorade scans
are negative.

In summary, for each flavor both models yielded regional
associations closely resembling resting state networks. However,
only the dFC model detected beer flavor-potentiated associations
between several reward-related regions, including right ventral

striatum (VST), lateral orbitofrontal cortex, and ventral anterior
insular cortex (vAIC).

DISCUSSION

The statistical methodology developed in this work provides
a novel approach for the analysis of task-based dynamic
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FIGURE 7 | dFCM curve estimates for six (out of seven) significant flavor-enhanced associations between a priori regions of interest from Figure 6B. The proportion

of time points with non-zero coverage (NZC) is shown in the bottom left of each panel. These results illustrate a variety of scenarios that result in a significant non-zero

coverage, with the estimated flavor difference curve either positive (B,C), negative (A,D,E), or both positive and negative (F). Brain region indices from Shen et al.

(2013) are: 43 = R-vAIC/FO, 54 = R-ACC, 91 = R-dAIC/Insula, 114 = R-VST, 134 = R-rostrolateral OFC, 235 = L-Fusiform Gyrus. L, left; R, right; VST, Ventral

Striatum; ACC, Anterior Cingulate Cortex; vAIC/dAIC, ventral/dorsal Anterior Insular Cortex; FO, Frontal Operculum; OFC, Orbitofrontal Cortex; Hippo/Parahi,

Hippocampus/Parahippocampal Gyrus.

functional connectivity. Our approach examines the population–
level dFC for a large number of associations between pairs of
time-varying processes with a complex correlation structure.
We first estimated the time-varying association among 248
functionally defined cerebral regions (Shen et al., 2013)
at a subject level using the recently developed algorithm
(Kudela et al., 2017). Kudela et al. (2017) showed that the
proposed bootstrapping approach provided a valid model-free,
time-varying connectivity estimates together with associated
confidence bands. The obtained estimates had a smaller MSE
compared to the regular sliding-window approach. As a result,
we obtained dFC curves and theirs confidence intervals for
all 30,628 pairwise time-varying associations for each subject
and scan, which included a set of a priori regions of interest.
Then, these subject-specific estimates were used to obtain
a population-level dynamically changing association for each
stimulus and their differences via the semiparametric additive
mixed effects model approach. This approach allowed us to
incorporate the study design by taking into account scan
effects as well as subject- and task-specific variability. As a
result, we combined the information across subjects and scans

to obtain a population estimate of time-varying association
and its confidence intervals for each flavor and the difference
between flavors.

We also compared the performance of two popular
procedures for multiple testing; FDR- and FWER- based
correction. The FDR correction for strongly correlated fMRI
data was slightly less conservative than the Bonferroni correction,
but the resulting number of significant associations was very
similar (see Supplementary Materials).

We proposed a novel metric to summarize the results
from population-level pairwise associations for each flavor and
difference between flavors by using a non-zero coverage of
confidence bands and the magnitude/sign of dFC curves. We
showed that the dynamic functional connectivity analysis of the
gustatory task fMRI data yielded a pattern closely resembling
the resting state networks (the networks found when subjects
do not perform any task). Recent studies by Cole et al. (2014,
2016) reported that the FC architectures across a variety of tasks
were highly similar (80% shared variance) to the resting-state FC
architecture. This correspondence also strengthens the validity of
the outcome. Presented dFC approach also reproduced known
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static FC between homologous areas and revealed differences
in dFC patterns that standard approaches would likely miss.
The non-zero coverage for the difference revealed beer and
Gatorade differentiation in visual, somatomotor, and attentional
networks, as well as frontoparietal and default mode networks.
Intercepts from the static FCmodel, interpreted as the mean dFC
across time for each flavor individually, also yielded FC patterns
similar to the RSNs. However, no associations for the difference
between flavors were significant after adjusting for multiple
comparisons in the static model. It should be noted that our
approach is fully data-driven and uses the resting state networks
only to relate the estimated task-based dFC to the known
brain organization.

As a validation, we performed analysis for a set of a
priori regions of interest, which were previously demonstrated
to be involved in alcohol cue response (Oberlin et al.,
2016). A more targeted analysis showed that ventral striatal,
lateral orbitofrontal, and insular regions had time courses
that were all positively associated most during beer scans
(and more than during Gatorade), confirming their specificity
to the response to an alcohol paired cue. The methods
used in the (Oberlin et al., 2016) study were GLM-based
and implemented in SPM (www.fil.ion.ucl.ac.uk/spm/). While
this co-activation approach has been in use for a long
time, it is hypothesis driven and assumes identical canonical
hemodynamic response (HDR) in all brain areas and subjects.
The chemosensory aspect of the gustatory stimuli (taste of
beer and Gatorade), however, is not optimally described
using a rigid HDR framework. The possibility of sustained
responses in some reward-related areas as well as different
temporal dependence of BOLD responses in sensory-related
and salience-assigning regions (e.g., insula) is better assessed
by applying a data-driven approach such as implemented in
this work. Indeed, our dFC analysis showed patterns and time
dependence of associations that might not be detectable with
standard approaches.

One of the limitations of the proposed approach is
that temporal smoothing introduced by the sliding window
application precludes a disentangling of flavor andwater stimulus
contributions. In other words, reported flavor results might
be diminished by the presence of water trials. One solution
would be a finer temporal sampling (e.g., subsecond repetition
time with multiband acquisition), which would increase the
number of measurements 2–3 times. Nevertheless, we were
able to reproduce Beer>Water and Gatorade>Water contrast
results from Oberlin et al. (2016). Another limitation is
that our approach considers only associations between two
brain regions at a time and further extension is needed
for more than two regions. To fully benefit from the large
sample of estimated dFC curves, an application of clustering
algorithms would allow us to investigate different dFC curve
classifications. Consequently, one could uncover and test specific
time dependence scenarios not easily modeled in the standard
FC or GLM-based approaches. In future studies, we plan to
extend our dFC analysis to these other domains, as well as
to replicate the regions showing specificity to beer flavor. The
results presented here were also obtained using a modest size

data sample. Hence, more detailed interpretation of presented
associations should be left for the follow-up investigations,
with the present manuscript speaking to the feasibility of
the method.

We also compared the performance of the algorithm
for a set of a priori regions of interests using the regular
sliding window approach only during the subject-level
estimation of dFC (step one of the proposed algorithm;
please see Supplementary Materials for details). In general, two
approaches yielded similar results. The shape and behavior of
dFC trajectories were generally similar, but the bootstrap-based
approach provided smoother estimates. Proposed method and
the regular sliding window only approach presented similar
temporal dependence between pairs of brain regions but differed
in detecting the number of statistically significance associations.
Nevertheless, the advantages of each approach can only be fully
assessed with simulation studies using a realistic data generation
mechanism. Further simulation studies with a realistic data
generation mechanism would have to be undertaken to
conclusively show superior performance. Similar studies have
been performed in the Kudela et al. (2017) manuscript under
numerous scenarios.

In summary, we demonstrated the importance and utility
of the proposed methodology when modeling population-level
dFC that can be implemented with the statistical significance
criteria applicable at different spatial resolutions—from the
whole-brain, to the network level, or even a subset of a
priori regions. The proposed approach is data-driven and
provides flexiblemethodology to investigate associations between
brain regions’ time series. More specific to the brain’s reward
system in those who drink alcohol, the approach showed
enhancement of the right ventral striatum and ventral insular
cortex association by beer, independently validating the main
activation-based finding from Oberlin et al. (2016), and
providing a novel insight into the dynamics of beer-potentiated
regional associations.
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